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Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic
metabolic disorders worldwide and is a strong contributor for a broad range
of comorbidities, including vascular, visual, neurological, kidney, and liver dis-
eases. Moreover, recent data suggest a mutual interplay between T2DM and
Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resis-
tance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout
the past few decades have established notable links between signaling path-
ways and T2DM pathogenesis and therapy. Importantly, a number of signaling
pathways substantially control the advancement of core pathological changes in
T2DM, including IR and β cell dysfunction, as well as additional pathogenic dis-
turbances. Accordingly, an improved understanding of these signaling pathways
sheds light on tractable targets and strategies for developing and repurposing
critical therapies to treat T2DM and its complications. In this review, we provide
a brief overview of the history of T2DM and signaling pathways, and offer a sys-
tematic update on the role andmechanism of key signaling pathways underlying
the onset, development, and progression of T2DM. In this content, we also sum-
marize current therapeutic drugs/agents associated with signaling pathways for
the treatment of T2DMand its complications, and discuss some implications and
directions to the future of this field.
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1 INTRODUCTION

Type 2 diabetes mellitus (T2DM), a chronic noncom-
municable disease that is diagnosed by aberrant high
blood glucose levels, has attracted increasing attention
due to its high prevalence and enormous health burden.
Currently, there are more than 537 million patients with
diabetes, most of which are T2DM, and this number is
projected to reach at 783 million by 2045,1 accompanied
by a younger trend in the onset age around the world.2,3
Beyond a straightforward rise in blood glucose, T2DM
may cause a series of complications that are linked to the
vascular and neural damages triggered by hyperglycemia,
such as diabetic nephropathy (DN), diabetic retinopathy
(DR), diabetic neuropathy, and cardiovascular disease
(CVD).3 Of note, T2DM is emerging as an increased
risk of severe COVID-19, the recent novel coronavirus
pandemic worldwide. For a long duration, T2DM and its
complications have been witnessed to impose substantial
effects in the quality of life and socioeconomic burden,4
which inspires the incredible progress in mechanism
exploration and drug intervention for T2DM. However,
although current antidiabetic drugs, insulin therapy, and
lifestyle interventions, for example, metformin admin-
istration, carbohydrate restriction, and/or endurance
exercise, have warranted decent control of T2DM pro-
gression, implementing and maintaining these changes
for prolonged periods are still challenging, especially
given the pervasiveness of drug side-effects and the
accessibility of calorically dense foods and sedentary
lifestyle. To further develop new pharmacological strate-
gies that could potently target pathological mechanisms
and avoid side-effects, it is still urgent and important
to unceasingly disclose the mechanistic underpinnings
of T2DM.
Numerous signaling pathways play essential roles in

the development of T2DM and are implicated in its ther-
apy. From a pathological view, insulin resistance (IR)
and subsequent insulin deficiency due to pancreatic β
cell damage are two main pathological features of T2DM,
and their variable combination further contributes to the
complexity of T2DM and the diversity in the patients’
conditions.1 In addition, other pathological processes,
including chronic inflammation, incretin dysregulation,
hyperglucagonemia, lipolysis, central appetite dysregula-
tion, abnormal gastric emptying, gut dysbiosis, and islet
amyloid polypeptide (IAPP) deposition, are also regarded
as key regulators in the pathophysiology of T2DM.1 The
endeavors throughout the past decades have uncovered
that a series of signaling pathways play important roles
in controlling these pathological changes. For example,
phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB,
also known as AKT) signaling cascade regulates insulin

response,5 and AMP-activated protein kinase (AMPK)
pathway prevents β cell dysfunction.6
From a therapeutic view, most of current glucose-

lowering drugs have been found to exert their phar-
maceutical effects dependently of signaling pathways,
more or less. For instance, glucagon-like peptide-1 (GLP-
1) receptor agonists bind to their receptors on β cells
and promote insulin exocytosis by increasing intracel-
lular Ca2+ levels via the protein kinase C (PKC)/cyclic
adenosine monophosphate (cAMP) signaling pathway.7,8
Recently, four categories of potential hypoglycemic drugs
with new mechanisms of action have been proposed,
which may stimulate insulin secretion, utilize the incretin
axis, maintain hepatic glucose homeostasis, and improve
insulin sensitivity, repsectively.9 Interestingly, these poten-
tial drugs target a number of key receptors, vital enzymes,
or ion channels, such as glucokinase (GK) activators, G-
protein-coupled receptor 40 (GPCR40), GLP-1 receptor
(GLP-1R), and so on, which are involved in numerous
signaling pathways associated with T2DM.9 Therefore,
a better understanding of the signaling pathways is of
importance for in-depth dissecting the pathological mech-
anisms for T2DM and facilitating the development of
targeted drugs and interventions against T2DM and its
complications.
In this review, focusing on the two most important

pathological features of T2DM, that is, IR and impaired β
cells, align with simplified mention of other pathological
changes, we elaborated the roles of signaling pathways in
pathological changes of T2DMand its complications on the
one hand, and expatiated the intervention mechanisms of
important glucose-lowing drugs on these signaling path-
ways and emphasized the important targets on the other
hand.

2 HISTORY OF T2DMAND SIGNALING
PATHWAYS

Historically, the progresses of T2DM in pathogenesis and
therapy are closely related to the discovery and elucida-
tion of signaling pathways (Figure 1). As one of the oldest
diseases in human history, diabetes was first mentioned at
1552 BC,10 but it was not until the discovery of insulin in
1921 that understanding of the disease reached a milestone
stage.11 The notion that serumCa2+ concentration changes
with insulin levels was established as early as 1930 and
Ca2+ signaling was linked into insulin secretion in1976.12
Time lapsing to 1990, the intracellular transmitter and
effector of insulin were discovered and the PI3K/AKT sig-
naling was identified as the chief pathway to mediate the
insulin action.13 Since then, mechanism of insulin action
has been gradually revealed, leading to the discoveries of
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F IGURE 1 Timeline of key scientific and pharmaceutical
discoveries in T2DM.

several classical signaling pathways related to T2DM, such
as the phosphorylation ofmitogen-activated protein kinase
(MAPK), AMPK, WNT, and transforming growth factor β
(TGFβ) pathways.14 Furthermore, in recent years, several
novel signaling pathways have also been linked to insulin
production and action, such as fibroblast growth factors
(FGFs), hypoxia-inducible factors (HIFs), yes-associated
protein (YAP), and the unfold protein response (UPR)
signaling pathways.

Continuous revelation of the pathogenesis and signaling
pathways of T2DM also provides a basis for the develop-
ment of drugs that target T2DM, despite the confusion of
the study path. Metformin, the first-line glucose-lowering
drug, was first synthesized in 1922, but it was not until 2022
that metformin was confirmed to exert a hypoglycemic
effect by activating the presenilin enhancer 2 (PEN2)-
mediated AMPK protein15,16 signaling pathway. Akin to
metformin, sulfonylureas (SUs) were found to have hypo-
glycemic effects accidentally in 1942, but it was until 1979
when researchers truly found the underlying mechanism,
by which acting on β cells to stimulate insulin secretion
through closing K+ channels and activating Ca2+ signal.17
In the latest years, novel hypoglycemic drugs, such asGLP-
1 and sodium-glucose cotransporter 2 (SGLT2) inhibitor,
are effective in reducing fasting blood glucose18 and pre-
venting the reabsorption of urine glucose,19 regardless of
their unspecified mechanisms. Collectively, since these
drugs have different safety, tolerability, and availability,
hindering their best clinical use, it is particularly important
to explore the pathogenesis and precise signaling path-
ways of T2DM, which would drive the identification of the
targets of existing and novel drugs.

3 PATHOLOGICAL FEATURES OF
T2DM

T2DM is conventionally featured with two pathological
traits: IR and subsequent β cell dysfunction, which are the
consequences of the feedback loops between disordered
insulin secretion and insulin action (Figure 2).
IR, defined as the impairment of insulin sensitivity, is

a predictor of T2DM and describes the failure of target
organs/tissues to answer insulin stimulation.20 Previous
studies have reported that numerous factors, including
obesity, overnutrition, physical inactivity, gastrointestinal
microbial disturbance, and family history of T2DM could
drive IR.21,22 Insulin is the only one hormone that actively
lowers blood glucose by acting on its target organs/tissues,
including the hypothalamus, liver, adipose tissue, and
skeletal muscle. The hypothalamus is regarded as the
major regulator of appetite, and the signaling pathways
triggered by insulin, as well as leptin, play key roles in
maintaining energy expenditure, glucose homeostasis and
insulin sensitivity in peripheral tissues.23 Insulin stimu-
lation can inspire divergent physiological responses in the
peripheral tissues, including increased glycogenesis and
de novo lipogenesis (DNL) but decreased gluconeogenesis
in the liver,24 enhanced glucose uptake in the skeletalmus-
cle and adipose tissue, suppressed lipolysis in the adipose
tissue, and so on. Dysregulation of these responses, at least
a part of them, is therefore to be the major consequence of
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F IGURE 2 Pathological features of T2DM. T2DM is characterized by insulin resistance and β cell dysregulation, along with various
pathological disturbances, which are coordinately regulated by multiple tissues and organs, including the pancreas, liver, adipose, muscle,
gut, and brain. As the major characteristic of T2DM, insulin resistance occurs when the tissues become less sensitive to insulin, leading to
increased glucose production and lipogenesis in the liver, enhanced lipolysis and reduced triglyceride synthesis in the white adipose tissue
(WAT), and decreased glucose uptake and elevated fatty acid oxidation in the skeletal muscle, and so on. Failure of pancreatic β cells that are
responsible for the production and secretion of insulin results in decreased cell number and impair insulin secretion. The vicious cycle of
insulin resistance, hyperglycemia, inflammation, and so on, aggravate the onset, development, and progression of T2DM. The online resource
inside this figure was quoted or modified from Scienceslide2016 plug-in.

IR. Additional pathological changesmay be also intimately
associated with IR. For example, compositional and func-
tional alterations in gut microbiota have been observed in
patients with IR and metabolic dysfunction,25 which may
modulate cellular metabolism and energy homeostasis
through homeostatic and pathogenic microbiota-host
interactions. In addition, a decrease in circulating
adiponectin, an insulin-sensitizing, anti-inflammatory,
antiatherosclerotic, and hepato-protective factor predom-
inantly produced by adipocytes,26 has been shown to
extensively promote hepatic and muscular IR.27–30

Pancreatic β cells function as the hub for insulin secre-
tion (Figure 3), therefore declining β cell function due to
dysregulated genetic and external factors is key to T2DM
progression.31 βCell dysfunction is clearly presented in the
patients with hyperglycemia, but whether this trait occurs
early or late in the T2DM remains controversial. The cur-
rent conclusion ismore inclined to that β cell functionmay
be weakened early in T2DM progression and gradually
decline as glucose tolerance deteriorates.32 Under normal
conditions, β cells are inactive in secreting insulin during
fasting period, and postprandial transient hyperglycemia
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F IGURE 3 Multiple signaling pathways regulate β cell function. Elevated glucose enters the β cell via GLUT1/2 transporters to produce
ATP through glycolysis in the cytoplasm and oxidative metabolism in the mitochondria, resulting in an increase in the ratio of ATP to ADP.
Elevated cytoplasmic ATP leads to the close of ATP-sensitive potassium channel, membrane depolarization, and subsequent Ca2+ influx,
triggering the release of insulin from insulin granules. Meanwhile, multiple signaling pathways participate in mediating β cell function and
insulin secretion, including AMPK, MAPK, WNT, PI3K/AKT, TGFβ, YAP/TAZ, and so on.

can stimulate β cells to enhance glucose-stimulated insulin
secretion (GSIS), thereby increasing the blood insulin to
meet the demands for lowering blood glucose. Generally, β
cells are capable of producing sufficient insulin to compen-
sate for IR andmaintaining euglycemia. However, chronic
exposure to excess circulating nutrients, along with the
consequent changed epigenetic factors, could induce a
toxic state in the pancreatic islet, resulting in β cell dys-
function and compensatory failure followed by insulin
deficiency, eventually causing hyperglycemia andT2DM.33
Substantial evidence supports that metabolic stress

could compel the progression of multiple cellular events
that drive or aggravate IR and β cell dysfunction. Despite
of the biological differences among divergent peripheral
metabolic tissues/organs, these cellular events have
notable resemblance. Roughly, they include low inflam-
mation state,34,35 endoplasmic reticulum (ER) stress,36,37

mitochondrial dysfunction,38 lipotoxicity damage, cell
death, and so on, whose interaction could cause inflam-
matory attack,35 protein turbulence,36,39,40 reactive oxygen
species (ROS) accumulation,41 ATP deficiency,42–44 and
ceramide overload,45 accelerating the pathogenesis of IR
and β cell dysfunction. In particular, mitochondria serve as
the prime core of glucose metabolism and ATP production
in cells. Mitochondrial dysfunction, characterized as a
defect in mitochondrial dynamics and thus cellular bioen-
ergetics, is highly implicated in T2DM progression,42 as
hyperglycemia can compel the mitochondria to enhance
ROS production.42,46 Physiologically, mitochondria can
rely on its powerful plasticity of dynamic structures to
restore ROS and ATP imbalances, while, as metabolic
pathology proceeds, such self-regulating mechanisms
might be compromised, therefore advancing IR, β cell
dysfunction and T2DM.42,47,48 Altogether, the pathological
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crosstalk between metabolic stresses and cellular events
is a cause for the progression of IR, β cell dysfunction, and
consequent T2DM.
A bevy of complicated and interdependent mechanisms

have been conceptualized to dictate these cellular events,
T2DM pathological features and their vicious cycles,
which are primarily mediated and executed by signaling
pathways. Therefore, although new identifications involv-
ing signaling pathways remain to be completely validated,
it is urgent to summarize which signaling pathways and
how they contribute to these pathological cellular events
and T2DM.

4 SIGNALING PATHWAYS IN T2DM

Numerous prominent signaling pathways are involved in
IR and/or β cell dysfunction, including PI3K/AKT, AMPK,
MAPK, WNT, UPR, Hippo, HIFs, TGFβ, FGFs, bile acids
(BAs), Ca2+-related signaling pathways, and others. These
signaling pathways act through their coiled interactions
to enable the regulation of various biological processes
regarding insulin action and production, as well as other
pathophysiological modules controlling overall glucose
metabolism. Adherent to this, extensive investigations
have revealed that a remarkable level of dysregulations
in these pathways proceed in the related cells and tissues
from patients and animals with T2DM, IR, and obesity.
Despite a fraction of mechanistic underpinnings are still
entangled, such shifts in signaling pathways, on the one
hand, relate in a large part to the metabolic stress proceed-
ing T2DM, and on the other hand, reciprocally disrupt
glucose homeostasis and thus participate in T2DM pro-
gression. Herein, we will discuss the physio-pathological
switches, roles, and mechanisms of diverse signaling
pathways in T2DM development, primarily in terms of
insulin action and production, along with other related
biological processes.

4.1 PI3K/AKT pathway

Over the past decades, the PI3K/AKT pathway has been
identified as the prime effector pathway in response
to insulin action on the liver, adipose tissue and skele-
tal muscle (Figure 4). Basically, insulin binds to the
extracellular domain of insulin receptor tyrosine kinase
(IRTK) at cell surface,49,50 and rapidly activates insulin
receptor substrate (IRS), which then recruits and phos-
phorylates PI3K, and thus activate AKT.51,52 AKTs are
divided into three homologous isoforms, namely AKT1,
AKT2, and AKT3.53 The predominantly expressed iso-
form in peripheral tissues is AKT2, while in pancreas,

it is the AKT1, implying the tissue specificity of AKT
isoforms.53
Although the process of insulin-induced PI3K/AKTacti-

vation is similar, the distal steps of its activation vary
across different peripheral tissues, leading to distinct bio-
logical outcomes. In the liver, the activation of PI3K/AKT
pathway is responsible for decreasing hepatic glucose
production (HGP), promoting glycogen synthesis, and
increasing lipid biosynthesis. Activated AKT2 inhibits glu-
coneogenesis by phosphorylating forkhead box O families
(FoxOs) and subsequently preventing the transcription of
key gluconeogenic enzymes, including phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose 6-phosphatase
(G6Pase). Meanwhile, AKT2 activation can induce the
phosphorylation of glycogen synthase kinase 3 (GSK3) to
promote glycogen synthesis.54 Additionally, AKT2 acti-
vation can promote hepatic DNL by transcriptionally
enhancing the levels of several lipogenic proteins, such as
acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase, and
glycerol-3-phosphate acyltransferase 1.50,55 Furthermore,
the upstream mechanisms dictating such transcriptional
regulation include the increases in mammalian target of
rapamycin complex 1 (mTORC1)-dependent sterol regu-
latory element binding protein (SREBP) transcription,56
ribosomal S6 protein kinase 1 (S6K1)-dependent SREBP
maturation,57 and SREBP stabilization.58 While in the adi-
pose tissue and skeletal muscle, enhanced glucose uptake
is a shared outcome of insulin-induced AKT2 activation,
which is mainly related to an increase in the density of glu-
cose transporter 4 (GLUT4) in the plasma membrane.59,60
Moreover, AKT2 activation in the adipose tissue can pro-
mote DNL via the mechanisms similar to those in the liver
and suppress the lipolysis through multiple downstream
mechanisms. These mechanisms involve the suppression
of cAMP-dependent protein kinase A (PKA) activity61 and
the regulation of lipolytic regulatory proteins, such as
mTORC1,62 S6K1,63 protein phosphatase 1 (PPI),64 pro-
tein phosphatase 2A (PP2A),65 and interferon regulatory
factor 4 (IRF4).66 In summary, the well-proceeding of
these downstream branches of AKT confers the peripheral
insulin action with the power to reduce the blood glucose,
or in other words, maintains insulin sensitivity, thereby
contributing to glucose homeostasis.
Consistent with its protective effect on insulin sen-

sitivity, the PI3K/AKT pathway is usually impaired in
the insulin-resistant tissues, thus disrupting the key
metabolic actions of insulin.38,67 Actually, AKT2 knock-
out mice usually exhibit T2DM phenotype with IR and
glucose intolerance.46,47 The decreased ability to activate
PI3K/AKT pathway could derive from several pathologi-
cal facets related to IR and T2DM, including the mutation
of this pathway itself, dysregulation of some regulator pro-
teins or other signaling pathways, lipid accumulation or
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F IGURE 4 Role of the PI3K/AKT signaling pathway in different metabolic tissues. In response to insulin (or IGF1 in the skeletal
muscle), the INSR (or IGFR in the skeletal muscle) is activated, causing tyrosine phosphorylation of IRS1/2. Phosphotyrosine sites on IRSs
allow binding of the lipid kinase PI3K, which synthesizes PIP3 at the plasma membrane, leading to AKT phosphorylation by PDK1 and
mTORC2 to fully activate the PI3K/AKT pathway. In the liver, skeletal muscle and adipose tissue, activated AKT (especially AKT2) can
phosphorylate a number of substrates at Ser/Thr residues, including: (1) GSK3β, which stimulates glycogen synthesis via regulating G6P and
maintaining mRNA translation by modulating Atrogin1 and MURF1; (2) TSC2, which permits activation of mTORC1 and its downstream
targets 4E-BP1, S6K1 and SREBP1c to increase protein synthesis and lipogenesis; (3) FoxOs, which decrease gluconeogenesis by suppressing
gluconeogenic gene expression. In both skeletal muscle and adipose tissue, AKT inactivates AS160 to promote glucose uptake via the
translocation of GSVs to the plasma membrane. In the adipose tissue, AKT also suppresses lipolysis that is mediated by PDE3B, and occurs
largely through attenuation of cAMP-stimulated events and phosphorylation of HSL and ATGL. In the pancreas, activated AKT (especially
AKT1) promotes PDX1 activation and nuclear translocation by relieving FoxO1 induced FoxA2 inhibition, thereby maintaining β cell mass
and insulin secretion.

alteration, reduced circulating adiponectin, and enhanced
inflammation state. In T2DM, these factors together with
the impaired AKT pathway, control IR progression and
thus systemic glucose state in a complicated way.
Alterations of both the upstream and downstream com-

ponents in the PI3K/AKT pathway itself have been found
to aggravate peripheral IR. For example, insulin receptor
(INSR) with a single mutation at leucine 973 significantly
attenuated insulin/PI3K/AKT activation in the liver and
white adipose tissue (WAT), impaired systemic insulin
sensitivity, and thus decreased insulin-induced glucose

uptake.68 In parallel, mice with knockout of insulin and/or
insulin like growth factor 1 (IGF1) receptors developed
IR, glucose intolerance, and islet hyperplasia with hyper-
insulinemia, accompanied with increased lipolysis and
adipocyte apoptosis.69 Meanwhile, fat-specific disruption
of the downstream effectors of AKT pathway, FoxOs, can
result in a reversal of IR in the liver, an exacerbation of
hyperinsulinemia, but a maintenance of normal glucose
tolerance.70
Dysregulation of certain regulators might also compro-

mise insulin sensitivity and glucose homeostasis through



8 of 53 CAO et al.

altering AKT pathway. For instance, phosphatase and
tensin homolog (PTEN), a negative regulator that induces
IR by converting PIP3 back to PIP2 via dephosphorylation,
is often overexpressed in T2DM patients,71 contributing
to the termination of PI3K/AKT2 signaling network and
the progression of IR.72,73 Liver-specific deletion of sir-
tuin 1 (SIRT1) has also been pointed out to cause ROS
accumulation and thus impair AKT signaling, eventually
inducing IR, hepatic glucose overproduction and chronic
hyperglycemia.74 Consistently, the activation of ApoM/S1P
complex, which also activates the AKT pathway, can pre-
vent IR progression through upregulating SIRT1.75 More
recently, it was shown that TGFβ1 stimulated clone 22 D4
(TSC22D4) is a novel interaction partner for AKT, and
its dysregulation is able to disrupt insulin sensitivity and
glucose disposal in mice.76
It is well known that lipid metabolism and chronic

inflammation couldmodulateAKT-associated insulin sen-
sitivity and IR. Diacylglycerol accumulation in the liver
impairs the AKT activity through PKC,77–80 an inhibitor of
the PI3K/AKT2 pathway.81 Similarly, under T2DM condi-
tions, exosomes with altered lipid composition can be pro-
duced by the intestine and taken up by the macrophages
and hepatocytes to repress the hepatic insulin/PI3K/AKT
signaling pathway.82 Reduced circulating adiponectin,29,30
such as globular adiponectin (gAcrp30), could also cause
hepatic andmuscular IR by increasing ectopic lipid storage
in these organs.83 Furthermore, enhanced inflammation
state, caused by certain dysregulated inflammatory mod-
ulators, such as protease-activated receptor 2 (PAR2),84
and neurite outgrowth inhibitor (Nogo),85 have also been
linked to impaired AKT activation and thus periph-
eral IR. Besides, numerous microRNAs (miRNAs),86 for
example, miR-26a, can interfere with many proximal
PI3K/AKT pathway components to regulate insulin sensi-
tivity and glucose metabolism.87 In addition, a wide scope
of signaling pathways have been characterized to modu-
late the consequence of insulin-triggered AKT activation
through directly regulating AKT or indirectly affecting
AKT upstream and downstream branches, thereby influ-
encing the progression of IR and T2DM (Figure 5). These
signaling pathways, as well as their interplay with the
PI3K/AKT cascade, will be introduced in the below sec-
tions.
In the pancreatic islet, PI3K/AKT1 activation can

increase β cell mass and stimulate insulin production,
indicating another link between the dysregulation of
PI3K/AKT pathway and T2DM progression. Increasing
evidence indicates that β cell-specific overexpression or
constitutive activation of AKT1, as well as knockout of
PTEN,88 FoxO1,89 tuberous sclerosis complexes (TSCs)90
or mTORC1,91 are able to increase β cell mass, pro-
liferation, neogenesis, and cell size, thereby improving

F IGURE 5 Crosstalk between PI3K/AKT and various
pathways. The PI3K/AKT signaling inactivator PKC is promoted by
the BMP family via the TGFβ pathway and Ca2+ overloading, while
PTEN is inhibited by MAPK and YAP pathways. IRS2 is activated by
the YAP pathway, but repressed by multiple signals, including
MAPK, UPR, and WNT pathways, and proteins, such as IL-6 and
IKKβ. Both AKT and PDK1, are activated by BMPs, while AKT is in
turn dephosphorylated by the UPR pathway and Ca2+ overloading.
The AKT downstream GSK3β can be activated by the UPR pathway,
but blocked by the AMPK signaling and FGF family; FoxOs are also
stimulated by the UPR pathway in line with β-catenin and SIRTs,
while inhibited by the MAPK signaling and FGF family; mTORC1
can be motivated by MAPK, AMPK, and YAP pathways, but
repressed by FGFs pathways. The glucose transporter GLUTs
expression and membrane translocation can be improved by the
AMPK signaling and FGF family, while inhibited by the MAPK and
YAP pathways, as well as Ca2+ overloading.

glucose tolerance. On the contrary, specific knockout of
3-phosphoinositol dependent protein kinase 1 (PDK1),92
IRS2,93,94 INSR,95 IGF1,96 or S6K1,97 can repress AKT198
signaling transduction, leading to the decreases in insulin
content and secretion, β-cell mass and proliferation, and
glucose tolerance, and eventually facilitating the develop-
ment of hyperglycemia and T2DM. Mechanistically, the
PI3K/AKT1 pathway relies on the transcriptional factor
pancreatic and duodenal homeobox 1 (PDX1) to control β
cell differentiation, function, survival and proliferation.53
PDX1 controls the expression of multiple key genes for
β cell fate, such as insulin (Ins1 and Ins2), neuro-
genin 3 (Ngn3), SRY-box transcription factor 9 (Sox9), v-
mafmusculoaponeurotic fibrosarcomaoncogene homolog
A (MafA), Glut2, GK (Gck), iapp, cyclin D1/2 (Ccnd1/2),
and transient receptor potential canonical 3/6 (Trpc3/6).99
All in all, as the core signaling pathway downstream of
peripheral insulin action or a potent regulator of β cell
function, the PI3K/AKT pathway holds a great power
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F IGURE 6 The AMPK pathway regulates glycolipid metabolism in T2DM. Under conditions of energy requirement, such as starvation,
exercise and OS, the decrease of ATP/AMP ratio activates AMPK directly. Meanwhile, low glucose decreases FBP level, which is sensed by
aldolase. Reduced FBP only binds to a small number of aldolases, the remaining which occupy TRPV. Aldolase strongly interacts with TRPV
channels and blocks Ca2+ release, suppressing v-ATPase activity and stimulating AMPK activity. Metformin interacts with PEN2 and inhibits
v-ATPase activity, thereby activating AMPK. Besides, obesity-induced hyperinsulinemia activates protein kinases to suppress AMPK activity.
Upon activation, AMPK acts on multiple downstream targets to increase ATP generation and decrease ATP consumption by inhibiting
anabolic processes and increasing catabolic processes, subsequently regulating a series of downstream targets to affect glucose and lipid
metabolism.

in the regulation of T2DM progression, and a notable
potential to be a drug target for effectively treating T2DM.

4.2 AMPK pathway

The AMPK pathway is famous for its critical role in sens-
ing cellular energy status (Figure 6).100 AMPK can be
canonically activated by the increasing AMP and/or ADP
along with declining ATP through the upstream kinase
liver kinase B1 (LKB1)-dependent Thr172 phosphoryla-
tion, or noncanonically activated by other stimulations
through several recently described pathways that are inde-
pendent of AMP/ADP, including those related to the lyso-
some, mitochondrion, Ca2+/calmodulin-dependent pro-
tein kinase kinase 2 (CaMKK2) and TGFβ-activated kinase
1 (TAK1).101–103 Owing to these mechanisms, AMPK can

sense the availability of glucose, glycogen, FAs, Ca2+,
leptin, and adiponectin, and the damage to lysosomes
and nuclear DNA, as well as the stimulation of multiple
drugs.102,15 Basically, activated AMPK pathway is able to
endorse ATP-producing catabolic pathways via phospho-
rylating and activating certain proteins, while curb energy
consumption via phosphorylating and inactivating pro-
teins involved in anabolic (biosynthetic) pathways, thereby
balancing cellular metabolism and functions.102,104 In
this regard, the downstream events of the AMPK path-
way encompass: carbohydrate or glucose metabolism, FA
and cholesterol metabolism, protein synthesis, the coun-
teracting effects on mTORCs, mitochondrial biogenesis,
mitophagy, and autophagy.100,105 Such potent effects of the
AMPK pathway in cellular metabolism and functions are
prone to endow it with an incredible significance in the
peripheral insulin action, glucose uptake, nutrient intake,
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lipid metabolism, inflammation, insulin secretion, and
thus systematic homeostasis of glucose and lipids,warrant-
ing the vigorous attention of its therapeutic potential in the
area of T2DM.104
Degrading of AMPK activity is widely observed in the

skeletal muscle from mice and humans with obesity and
T2DM, probably due to that high glucose could inhibit the
AMPK activity by breaking the active LKB1 complex,106
activating the protein phosphatase PP2A,107 upregulat-
ing the phosphatase PH domain and leucine rich repeat
protein phosphatase 2 (PHLPP2),108 and inducing ubiq-
uitination degradation of AMPK subunits.109,110 AMPK
activation has been found to exert constructive effects on
the glucose uptake of skeletal muscle, and regarding this,
the deficiency of muscular AMPK activity might compro-
mise the whole-body glucose homeostasis during T2DM.
In detail, the activation of AMPK increases glucose uptake
through the mechanisms by which involve the inhibited
sequestering of GLUT4 to Golgi apparatus, the enhance-
ment of GLUT4 translocation to plasma membrane, and
the upregulation of GLUT4 expression.103 In the cells that
hinge on GLUT1, AMPK also boosts their glucose uptake
through promoting the translocation of GLUT1 to the
plasma membrane and increasing GLUT1 expression.111
Since glucose uptake is a key step in the downstream
of insulin action, such physiological supportive effect of
AMPK in glucose uptake might bypass the PI3K/AKT
pathway to link AMPK activation with IR inhibition.112 In
fact, muscle contraction, hypoxia and adiponectin stim-
ulation have been found to initiate GLUT4 translocation
via the activation of AMPK in the skeletal muscle, which
might counteract muscular IR.20 Supporting this, mul-
tiple drugs or natural products that activate AMPK can
improve IR and glucose homeostasis in the mice and
patients with obesity or T2DM, including metformin,15
O304,113 MK-8722,114 Canagliflozin,115 and PF-739.116 Inter-
estingly, although AMPK does not directly regulate the
insulin/AKT pathway, the ATK pathway has instead been
identified to inhibit AMPK activation,117 which may com-
plicate the relationship between the AMPK pathway and
insulin action. Collectively, identification of accurate alter-
ations, detailed mechanistic cues, and pharmaceutical
activators regarding the skeletal muscle-specific AMPK
pathway might confer a basis for the advancement of
T2DMmechanistic investigation and drugs intervention.
In recent perspectives, hepaticAMPKactivation appears

to indirectly inhibit hepatic gluconeogenesis, refreshing
the previous understanding of its direct effect on HGP.103
Nevertheless, genetically or pharmacologically induced
activation of AMPK in hepatocytes can still indirectly
suppress gluconeogenesis, alleviate the liver IR, lower
HGP, and improve glucose parameters in the human and
animals with obesity and T2DM.103,118 These effects are

primarily mediated through the inhibition of DNL, the
depression of inflammatory makers, and the promotion of
mitochondrial function in the liver and other organs.119
Hence, it is of importance for future study to deepen our
knowledge and understanding of the exact role of AMPK
in hepatic glucose metabolism.
The AMPK pathway can also participate in T2DM pro-

gression by controlling awide scope ofmetabolic processes
that are not directly linked to peripheral IR. First, hypotha-
lamic AMPK activation under ghrelin or low glucose
stimulation can improve appetite via inhibiting ACC1,120
and activating autophagy121 and p21-activated kinases,122
to enhance energy supply. Conversely, AMPK inactiva-
tion in response to leptin and insulin suppresses appetite,
preventing obesity and T2DM. Second, AMPK activation
is able to widely promote FA oxidation in the skeletal
muscle and liver through inhibiting the phosphorylation
of ACC1/2, thus indirectly amending hyperinsulinemia,
glucose intolerance and IR.119 Meanwhile, the suppres-
sion of cholesterol synthesis also responds to AMPK
activation, in which involves the inhibition of 3-hydroxy-
3-methylglutaryl (HMG) coenzyme A (CoA) reductase
(HMGCR).123 Third, AMPK activation can stimulate gly-
colysis through the phosphorylation and activation of
phosphofructokinase (PFK), and repress the glucose stor-
age by inhibiting multiple isoforms of glycogen syn-
thase (GS).105,124 Forth, the activation of AMPK pathway
has been linked to the depression of inflammation in
macrophages, adipose tissue, liver and skeletal muscle,
thereby ameliorating systemic IR and improving glucose
homeostasis.125 Finally, the important role of AMPK acti-
vation inmaintainingmitochondrial homeostasismay also
prime its indirect role in ensuring metabolic efficiency of
cells and tissues.105 In line with this, adipocyte-specific
deficiency of AMPK in mice worsens HFD-induced sys-
temic IR through disrupting mitochondrial integrity in
adipocytes, in terms of the mitochondrial function, struc-
ture, and markers of mitophagy.126
In the pancreatic β cells, the AMPK/mTOR pathway

may affect T2DM progression by modulating β cell mass
and insulin secretion.127 It has been reported that the
switch from mTORC1 to AMPK is the basis for the
growth of β cells during embryonic and early postnatal
life, including promoting β cell mitochondrial biogenesis
and functional maturation of oxidative metabolism.128 In
detail, the AMPK pathway represses mTORC1 activation
to confer β cells with functional maturation, and therefore
decreased AMPK activation in diabetic islets may be prime
for enhanced mTORC1 signaling.129 Despite physiological
mTORC1 activation has positive effects on β cell survival,
proliferation, and homeostasis,130 sustainedmTORC1 acti-
vation in the cases of overnutrition or hyperinsulinemia,
conversely leads to β cell failure and impaired GSIS, which
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can be inversed by a short-term inhibition on mTORC1
activation.131 In addition, it has been showed that abnor-
mally increased glycolytic metabolites caused by chronic
hyperglycemia can engender an inhibition of AMPK but
an activation of mTORC1 to reprogram metabolic gene
expression, weaken mitochondrial glucose metabolism
and ultimately impair GSIS.132 In summary, since switches
between mTORC1 and AMPK underlie β-cell metabolic
plasticity, the AMPK/mTOR pathway might play presti-
gious roles than previous thought in the β cell function and
T2DM progression.
Although the AMPK pathway has been regarded as a

potent target for T2DM treatment, its effect on GSIS is still
entangled. For instance, LKB1, the key upstream activator
of AMPK, has debatable roles in insulin secretion. On the
one hand, LKB1 deficiency in β cells could promote insulin
secretion by elevating ACC1 activity and plasma mem-
brane excitability.133,134 On the other hand, the absence
of LKB1/AMPK activity also promotes the mitochondrial
impairment that compromises GSIS. Notably, a recent
study reported that AMPK activation influences GSIS in
β cells in the manners dependent of action duration and
glucose concentration.135 Specifically, drug activation of
AMPK primes GSIS in a short duration, while a long-term
AMPK activation represses insulin secretion.135 Mean-
while, only a high level of glucose action can potentiate
insulin secretion.135 Additionally, the promoting effect
of AMPK on GSIS has been recently reported. It has
shown that β cell-specific deletion of AMPK increases the
levels of miR-125b-5p, which could subsequently impair
GSIS in both MIN6 cells and human islets.136 As well,
silencing of the metal-dependent protein phosphatase
1E (PPM1E), the most markedly downregulated protein
phosphatase in T2DM patients’ islets, can promote GSIS
through increasing the phosphorylation of CaMKII,
AMPK, and ACC.137 Altogether, these conflicting results
warrant further investigations to provide more reliable
information on the role of AMPK in T2DM and its clinical
application.

4.3 MAPK pathway

The MAPK signaling pathways contain three major sub-
classes, namely the extracellular signal-regulated kinases
1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38
family (Figure 7A).138–140 Multiple stimuli, such as hor-
mones, growth factors, and TGFβ-related agents, have
been identified to activate MAPK pathways via a ded-
icated three-tiered protein kinase cascade that is com-
prised of a MAPK kinase kinase (MAPKKK), a MAPK
kinase (MAPKK), and the MAPK.141 Activated MAPK
pathways indorse selective phosphorylation of transcrip-

tional factors, for example, nuclear factor of activated
T cells (NFAT), activator protein 1 (AP-1), and C/EBP-
homologous protein (CHOP)/DNA damage-inducing pro-
tein 34 (GADD34), as well as protein kinases, for example,
ribosomal s6 kinases (RSKS) and eukaryotic initiation fac-
tor 4E (eIF4E), thus controlling gene transcription and
signaling transduction.141 As such, they are capable of
connecting extracellular stimuli to cellular events such
as proliferation, inflammation, differentiation and apopto-
sis. Accumulating evidence suggests that MAPK pathways
are altered in several metabolic tissues during T2DM pro-
gression and play significant roles in peripheral IR and
β cell fate, despite of the discrepancies among the three
subclasses.142
It appears that ERK1/2, JNKs, and p38s pathways are

all basically activated in the liver of mice and humans
with metabolic stress, and contribute to impaired hepatic
insulin sensitivity and glucose metabolism, exacerbat-
ing the progression of T2DM. Hepatic ERK1/2 activities
have been found to be increased in both genetic and
diet-induced obesity mouse models,143 triggering overall
IR and impaired glucose homeostasis, while obese mice
with decreased hepatic ERK1/2 showed better systemic
insulin and glucose tolerance. Mechanistically, activa-
tion of ERK1/2 could participate in a range of biological
activities that function individually or interdependently
in aggravating IR progression. These biological activi-
ties roughly include the serine phosphorylation of IRS
proteins,143 the connection between the CBA stimulation
and impaired hepatic glucose metabolism,144,145 the nega-
tive effect of hepatocyte-derived fibrinogen-related protein
1 (HFREP1) in hepatic insulin sensitivity,146 the posi-
tive feedback between cytokine secretion of macrophages
and IR of hepatocytes,147 and the gluconeogenic response
of FGF21 stimulation on the liver.148 Additionally, the
protective effect of serum- and glucocorticoid-regulated
kinase 1 (SGK1) in hepatic insulin sensitivity relies on the
inhibition of ERK1/2 activity.149
Similar to ERK1/2, hepatic JNKs are also activated by

obesity. Hepatic activation of JNK is believed to reduce the
expression of peroxisome proliferator-activated receptor
α (PPARα) target genes, for example, FGF21, to block FA
oxidation and thus aggravate IR.150 Correspondingly, liver-
specific deficiency of functional JNKs in mice ameliorates
diet-induced IR and hyperglycemia.151 Akin to ERK1/2
and JNKs, hepatic activation of p38 family is also linked
to glucose intolerance and hyperinsulinemia. Supporting
this, either expression of dominant-negative p38α or inhi-
bition of p38α in the liver could decrease fasting insulin
levels and recuperate glucose tolerance in obesemice.152 In
detail, p38α activation induces the serine phosphorylation
of IRS1 to compromise hepatic insulin sensitivity152 and
upregulates gluconeogenesis by blunting the activation
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F IGURE 7 Involvement of MAPK, YAP, Wnt, and TGFβ pathways in T2DM. (A) The classic MAPKKK–MAPKK–MAPK or
Raf–Ras–MAPK signaling pathway can be activated by various metabolic signals. Upon being activated, MAPKs, comprising of three subtypes
(ERK1/2, JNK1/2/3, and p38 family), induce diverse metabolic responses, including chronic inflammation state, insulin resistance, and altered
gluconeogenesis in metabolic tissues, as well as improved insulin secretion and survival of pancreatic β cells. (B) The Hippo pathway is
mainly composed of MST1/2 and LATS1/2. Active MST1/2 phosphorylates LATS1/2, which in turn phosphorylates YAP/TAZ and thus inhibits
YAP/TAZ activity. Metabolites and hormones could act through GPCRs to regulate the Hippo pathway and YAP/TAZ. Deficient glucose
metabolism decreases YAP/TAZ activity and prevents the formation of YAP–TEAD complex. Subsequently, YAP/TAZ could regulate various
glycolipid metabolism processes in different metabolic organs. (C) WNT pathway encompasses three different branches, including
WNT/β-catenin, WNT/PCP, and WNT/Ca2+ pathways. Under metabolic stress, WNT/β-catenin pathway could aggravate hepatic insulin
resistance and enhance hepatic glucogenesis. WNT/PCP pathway increases hepatic insulin resistance via activating JNK pathway, whereas
activated WNT10b/β-catenin and WNT/PCP pathways improve the insulin sensitivity of skeletal muscle. Moreover, WNT/Ca2+ pathway could
regulate insulin secretion in β cell. (D) The TGFβ pathway could influence T2DM development by affecting the function of pancreatic islet as
well as the insulin signaling of nonislet tissues. TGFβ inhibits β cell proliferation, facilitates the generation of β cell, and enhances GSIS.
Moreover, different WNT ligands have specific effects in adipose insulin resistance and hepatic gluconeogenesis.
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of AMPK pathway153 and instigating the expression of
genes including CREB, C/EBPα, PPARα, and PGC1α.142
However, one important study once noted that hepatic
p38 activity is reduced in the livers of obese mice, which is
contrast to the previous findings, and hepatic activation of
p38 can attenuate ER stress and reset glycemia in diabetic
mice by enhancing nuclear translocation of X-box binding
protein 1s (XBP1s).154 Future studies are hence required
for identifying the real role of p38 signaling pathways in
hepatic glucose metabolism.
Multiple studies delineated that JNK1 is usually acti-

vated in the adipose tissue of high-fat diet (HFD)-fed mice
to aggravate IR. Inversely, adipocyte-specific deletion of
JNK1155,156 or JNK interacting protein 1 (JIP1),157 a key pro-
tein activating JNK, could restore insulin action in the
adipose tissue with metabolic stress. The contribution of
JNKs pathway in establishing adipocyte IR springs from
its promotive role in the inflammation of adipose tissue.
Activated JNKs can trigger the secretion of HMGB1, a
proinflammatory adipocytokine, and thus promote WAT
inflammation and IR in obese patients.158 Meanwhile,
macrophage-specific JNK deficiency was shown to reduce
the polarization of proinflammatory macrophages in the
adipose tissue.155 Additionally, several studies unconcealed
that ERK1/2 is also abnormally activated in the dia-
betic adipose tissue to facilitate adipocyte IR by inducing
adipogenesis159 and local inflammation state,160,161 despite
of the obscure molecular mechanisms.
In the skeletal muscle, MAPK pathways are also

deviant in obese or diabetic mice,142,162 suggesting their
potential roles in modulating muscular IR and glucose
metabolism.163 In fact, ERK1/2 pathway has been observed
to negatively control the action of GS in myotubes in a
manner independent of GSK3.164 The abnormal activa-
tion of JNK1 in the skeletal muscle was also detected in
the HFD-fed mice, and muscular blocking of JNK signif-
icantly reduced obesity-induced hyperglycemia by halting
inflammation and IR, as well as enhancing glucose uptake
of skeletal muscle.165 Basically, mice with increased activ-
ity of overall p38 in the skeletal muscle could prevent the
development of diet-induced obesity and IR by enhancing
miR-21 expression and repressing PTEN expression.166 It
is of interest to note that distinct p38 isoforms might have
differential metabolic functions in the skeletal muscle. For
example, p38α/β were apprised to advocate the inflamma-
tory state by initiating inflammatory cytokine expression
and infiltration of proinflammatorymacrophages,167 while
p38γ was demonstrated to elevate basal glucose uptake
but decrease contraction-stimulated glucose uptake, par-
tially by changing the expression of GLUT4 in skeletal
muscle.163 Meanwhile, it appears that the p38β is responsi-
ble for the major catabolic action of p38 family by affecting
the C/EBPβ activity.168

In the pancreas, the activity of ERK1/2 is also obviously
upregulated by hyperglycemia,169 thereby promoting GSIS
and survival of pancreatic islets during T2DM progres-
sion. Indeed, ERK1/2 activation in the β cells is sensitive to
the glucose and GLP-1 action,170 and further upregulates
the transcription of genes related to insulin production
and secretion171,172 by adjusting the formation of transcrip-
tional complex composed of NFAT and its partners.173
In parallel, ERK1/2 may contribute to the exocytosis of
insulin granules via inducing phosphorylation of synapsin
I (a key protein in exocytosis),174 and the first phase of
GSIS showed a reduction of 40% in mice that ERK1 and
ERK2 are inhibited simultaneously.175 Moreover, many in
vitro and in vivo studies176 also indicate that ERK1 is
indispensable for the glucose-induced activation of genes
responsible for β cell survival, such as mitogen- and stress-
activated kinase 1 (MSK1) and CREB.175 However, other
MAPK pathways might differentially affect the biology of
β cells. One significant instance is that suppression of p38
and JNK pathways is essential for metformin to upregu-
late the expression of pancreatic aquaporin 7 (AQP7) and
subsequently induce glycerol influx and insulin secretion
of β cells in T2DM.177 Therefore, there is a calling for more
investigations about the accurate roles of different MAPK
pathways in the pancreas biology.
What’s more, sustained activation of MAPK/ERK signal

transduction in hypothalamus has also been uncovered to
be key to the antidiabetic action of intracerebroventricular
injected FGF1 and subsequent remission of hyperglycemia
T2DM rodents.178 Taken together, one interesting aspect
that emerged from the existing findings of MAPK path-
ways in T2DM is that targetingMAPK signaling potentially
broaden the scope of antidiabetic interventions.

4.4 WNT pathway

TheWNTpathways are classified into twomajor groups, β-
catenin-dependent (canonical) or β-catenin-independent
(noncanonical) (Figure 7C).179 The nuclear translocation
of β-catenin is key to activating canonical WNT path-
way, where it binds to the transcription factor T-cell
factor/lymphoid enhancer-binding factor (TCF/LEF) and
consequently controls the transcription of target genes.179
The noncanonical pathways are subdivided into the
WNT/Ca2+ pathway and WNT/planar cell polarity (PCP)
pathway.180 Activated WNT/Ca2+ pathway enhances Ca2+
influx and initiates various signaling pathways that phos-
phorylate RORα and induce nuclear translocation ofNFAT
and nemo like kinase.180 The WNT/PCP pathway works
in both dishevelled (DVL)-independent and -dependent
ways: the binding of WNT to the receptor like tyrosine
kinase (RYK) is capable of activating protein tyrosine
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kinase (SRC) independently of DVL, while its binding to
the ROR1/2-Fzd complex can activate DVL, a centralmedi-
ator of WNT/PCP pathway, and then trigger the activation
of Ras-related C3 botulinum toxin substrate 1 (RAC1), Ras
homolog gene family (RhoA), and cell division cycle 42
(CDC42), thereby governing the cytoskeleton remodeling
and the activation of AP-1 and NFAT.181,182 Addition-
ally, some novel noncanonical WNT pathways, such as
WNT/mTOR, WNT/YAP/TAZ, WNT/LRP5/mTOR/AKT
and WNT/Hippo, have been delineated.182,183 It is war-
ranted that aberrant WNT pathways play important roles
in multiple pathological processes, including IR and β cell
dysfunction,184–186 and are causative to the progression
of T2DM,185,187 yielding a latent therapeutic strategy for
treating this disease.184,188
Dysregulated WNT pathways has been implicated in

hepatic IR. It has shown that overexpression of β-catenin
is correlated with a rise in fasting glucose concentrations,
while specific knock-out of β-catenin in the liver is suffi-
cient to improve hepatic insulin sensitivity and decrease
blood glucose concentrations in obese mice.189 Mecha-
nistically, decreased phosphorylation of hepatic IRS1/2
and GSK3β may mediate the inhibitory effect of WNT/β-
catenin pathway in insulin sensitivity. Meanwhile, the
abundant FoxO1 nuclear accumulation connects WNT/β-
catenin activation with hepatic glucogenesis. Consistent
with these findings, mice with a knockdown of LDL
receptor-related protein 6 (LRP6), a WNT coreceptor,
were resistant to HFD-induced hyperglycemia and hep-
atic IR, probably due to the enhanced transcription of
leptin receptor.189 Furthermore, aberrant expression of
the key effector of WNT/β-catenin pathway, transcription
factor 7 like 2 (TCF7L2), has been witnessed to induce
the transcription of gluconeogenic enzymes (e.g., FBP1,
PCK1, and G6Pase) and insulin signaling proteins (e.g.,
IRS1/2 and AKT2).190,191 Intriguingly, a number of gene
TCF7L2 variants are correlated with the susceptibility of
T2DM, which primes them as effective predictors of T2DM
risk.192 Hepatic activation of WNT/PCP pathway was also
observed to trigger the serine phosphorylation of IRS1 via
activating the JNK signaling.193 In addition, intercellu-
lar and interorgan communications might contribute to
the hepatic consequences of WNT. For example, secreted
frizzled-related protein 4 (sFRP4), an adipokine with ele-
vated expression in obese WAT, can function as a WNT
antagonist and promote hepatic DNL and IR,194 adding an
additional layer of complexity to the role and mechanism
of WNT pathway in hepatic function and metabolism.
The WNT pathways also modulate adipose IR185 and

adipogenesis,195 notwithstanding the diverse regulatory
roles of different WNT pathways. It has been disclosed
that the activation of WNT5a/PCP pathway could pro-
mote adipose IR via inducing adipose inflammation.196

Concomitant with this, sFRP5, a protein counteracting
WNT5a/PCP activation, is able to suppress inflammation
by blocking the JNK pathway, and thus improve glucose
and insulin intoleration in obese mice.197 Additionally,
WNT pathways in the brown adipose tissue (BAT) also reg-
ulate IR progression. For instance, knockdown of LRP6, a
receptor of WNTs, was shown to improve BAT insulin sen-
sitivity through increasing the expression of PGC1α and
uncoupling protein 1 (UCP1).198 In terms of adipogene-
sis, it appears that different WNT members have distinct
functional outcomes. Basically, several WNT members,
including WNT3a, WNT6, WNT8, WNT10a, and WNT10b,
have been observed to suppress adipogenesis in the β-
catenin- or PCP-dependent ways,184,199 while others, such
as WNT4, WNT5a, WNT5b and WNT11, are capable of
stimulating adipogenesis.195,200,201 Given the complexity of
WNTmembers, it is of interest to dissect their real roles in
adipogenesis under diverse physiological and pathological
conditions.
The WNT10b/β-catenin pathway is depressed in the

skeletal muscle tissues of overweight and prediabetes.
Therefore, not surprisingly, activating WNT10b/β-catenin
pathway could improve insulin sensitivity in the skeletal
muscle, which is dependent on a reduction in the lipid
deposition ofmyoblasts, which is regulated by SREBP1c.202
Similarly, activation of WNT/PCP pathway is also related
to an improved insulin sensitivity of skeletal muscle.193
However, another WNT antagonist, secreted frizzled-
related protein 3 (sFRP3), was significantly reduced in
the skeletal muscle of prediabetes and T2DM, leading to
impaired insulin sensitivity in T2DM,203 recapitulating the
distinct roles of different WNT members in adipogenesis.
In summary, the functions of WNT pathways in skeletal
muscle IR may vary with different pathways, as well as
with different contexts.
The WNT pathways are also important for β cell

fate and insulin secretion.204 Several WNT pathways,
such as WNT3a/β-catenin204–206 andWNT4/PCP,207 could
improve β cell proliferation and insulin secretion. In-depth
dissections revealed that the activation of TCF7L2 and
FoxO1 is key to this proproliferation effect of WNT3a/β-
catenin pathway.187,208,209 TCF7L2 is crucial tomaintaining
the normal functions of β cells, and its silencing can inhibit
GSIS through regulating the expression of genes that con-
trol the fusion of secretory granule, such as syntaxin 1A,
and syntaxin-binding protein 1.210 As to the WNT4/PCP
pathway, its promotive effect on β cell proliferation relies
on JNK activation and the increment of NK6 homeobox 1
and PDX1 protein.207 In addition, the WNT/Ca2+ pathway
may contribute to insulin secretion, as inactivation of Ca2+
and NAFT could diminish the biosynthesis of dense core
granule.211 Nonetheless, some WNTs ligands might exert
counteracting effects on β cell proliferation and function,
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raising the possibility that the uncontrolled imbalance of
WNTsmight be responsible for the deficiency of functional
β cells during T2DM progression.185,212

4.5 UPR pathway

The UPR pathway can be activated by the perturba-
tion of ER homeostasis, which is characterized by the
accumulation of unfolded/misfolded proteins, to allevi-
ate the stress of the ER or cause cell death. The UPR
cascade encompasses three upstream branches to sense
the ER transmembrane stress: inositol-requiring enzyme
1 (IRE1), protein kinase R-like ER kinase (PERK), and
activating transcription factor 6 (ATF6) (Figure 8A).213,214
Activated IRE1α could produce a transcriptionally active
XBP1s,215,216 which further overcomes the ER turbu-
lence by inducing the transcription of genes associated
with protein folding, translocating, trafficking, and ER-
associated degradation,217 as well as by interacting with
several signaling pathways, such as p38/MAPK and PI3K
pathways.213 If ER stress is not mitigated, IRE1α would
become hyperactivated and oligomerized to degrade hun-
dreds of ER-localized mRNAs for relieving the fold-
ing burden on ER,213,214 or induce cell death213,214 by
degrading certain miRNAs targeting proapoptotic genes
and activating apoptosis signal-regulating kinases.218 Acti-
vated PERK could phosphorylate eukaryotic translation
initiation factor 2 (eIF2α) to attenuate global protein
translation.213,214 By selectively upregulating the expres-
sion of activating transcription factor 4 (ATF4), the PERK
pathway enhances the transcription of growth arrest and
CHOP/GADD34 to negatively regulate itself and induce
cell death respectively.214,219 During ER stress, ATF6 can
be transported to the Golgi apparatus and then be cleaved
to release the transcriptionally active ATF6(p50) cytosolic
fragment.220 The active fragment is translocated to nucleus
and then regulates the transcription of multiple genes
involved in increasing ER protein-folding capacity, includ-
ing XBP1s, to relieve ER stress.221 To date, the importance
of ER stress in T2DM progression37 has inspired a con-
sensus that activation of UPR pathway is an emblematic
phenomenon inT2DM-associated dysmetabolic outcomes,
which in turn controls peripheral IR and β cell dysfunction
via various mechanisms.
Most UPR components, induced by increased ER stress,

have been observed to be upregulated in peripheral tis-
sues during obesity and T2DM (Figure 8B).39,222,223 Sub-
sequently, the UPR pathway is able to modulate IR
in the liver,224 adipose tissue, and skeletal muscle,224
as well as adipogenesis,225 despite certain inconsistent
roles among different branches. Activated PERK path-
way probably increases hepatic IR, as evidenced by that

liver-specific depression of the PERK/eIF2α/ATF4 path-
way by GADD34 overexpression or ATF4 depletion could
improve IR and glucose intolerance in diet-induced obese
(DIO) mice.226,227 The underlying mechanisms might be
associatedwith transcriptional regulation of numerous tar-
gets, such as tribbles homolog 3 (TRB3) (an endogenous
inhibitor of AKT),228,229 PPARγ,230 and glutamic pyruvate
transaminase 2 (GPT2) (a promotor of gluconeogenesis).231
In addition, PERK may counteract the effect of AKT
by potentiating FoxO1 activity.232 Notably, PERK also
acts as a receptor for the gut-microbe-derived metabo-
lite, trimethylamine N-oxide,233 which is increased in IR
and associated with several complications of metabolic
syndrome in human.234 In contrast, it has also shown
that activation of the eIF2α/ATF4 pathway by the heme-
regulated eIF2α kinase (HRI) can promote the expression
of FGF21, a metabolism-beneficial liver hormone, thereby
reducing glucose intolerance in DIOmice,235 and ensuring
the effects of metformin on appetite and weight loss,236–238
indicative of the ambiguous roles of PERK pathway in
T2DM.
The IRE1α branch is also abnormally activated in

the liver with IR/hyperinsulinemia, along with increased
XBP1s splicing and nuclear localization.239 Intriguingly,
activation of IRE1α by insulin plays protective effects on
hepatic insulin action and glucose homeostasis,240 which
may be related to activating growth differentiation factor
15 (GDF15) transcription,241 driving hepatic autophagy,242
relievingER stress, and/or decreasingFoxO1 expression.243
However, IRE1α/XBP1s activation was also found to blunt
insulin signaling and exacerbate IR in the liver244 by reduc-
ing expression of the proinflammation factor, Bax inhibitor
1 (BI-1),245 and inducing the acetylation of IRS1/2.246
Distinct to the PERK and IRE1α branches, the ATF6 is

decreased in the liver of diabetic mice,247 and potentially
functions protectively in hepatic glucose metabolism.
Indeed, hepatocyte-specific overexpression of ATF6α
reduced hepatic glucose output and steatosis,248 while its
whole-body deletion exacerbated glucose intolerance.249
Mechanistically, ATF6 can suppress the transcription of
gluconeogenic genes by disrupting the interaction between
CREB and CREB-regulated transcription coactivator 2
(CRTC2),250 promote hepatic FA oxidation by interacting
with PPARα,248 and suppress the PERK/eIF2α/ATF4
branch by promoting P58(IPK) expression.228
In obese individuals, chronic ER stress and UPR path-

ways in the adipose tissue can be sustainedly activated
by increased circulating levels of FFAs251 and insulin,252
which in turn impairs insulin signaling of adipose tissue.
For example, the IRE1α/JNK1 axis inactivates IRS1,253 and
the PERK/ATF4/TRB3 axis induces AKT suppression,222
abolishing insulin sensitivity and glucose transport in the
adipose tissue. Adipose UPR pathways also contribute to



16 of 53 CAO et al.

F IGURE 8 The UPR pathway in T2DM. (A) Beneficial and harmful effects of UPR activation in regulating β cell function and survival.
Adaptive UPR plays a role in β cell survival, proliferation, and identity by promoting the transcription of related genes through ATF4/6 and
XBP1s, and by suppressing global translation. Black lines indicate beneficial effects of UPR. Chronical or terminal UPR leads to β cell
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insulin desensitization in other organs, for one reason that
ER stress is linked to reduced adiponectin secretion,254–256
and for another reason that the PERK arm can ele-
vate circulating levels of tumor necrosis factor α (TNFα),
interleukin-6 (IL-6), and IL-1β.251,257 All of these impose
a vicious ER stress feedback and further exacerbate the
adipose tissue per se and systemic IR.258
In the skeletal muscle, aberrant activation of UPR path-

ways is also found in patients with T2DM and pregnant
women with obesity or gestational diabetes.223,259 These
abnormalities impair muscular insulin action via the
mechanisms that resemble those in the adipose tissue.259
That is, both PERK-induced TRB3 activation259 and
IRE1α/JNK-triggered IRS1 phosphorylation can contribute
tomuscular IR.40 Furthermore, transcriptionally activated
ATF6/XBP1s pathway warrants increased expression of
skeletal muscle kidney-enriched inositol polyphosphate
phosphatase (SKIP) to induce muscular IR.260 Of note,
activation of IRE1α/JNK axis also bridges the increased
release of IL-6 and TNFα from skeletal muscle and the
disrupted systemic insulin sensitivity in T2DM.261,262 In
addition, activated PERK is implicated in the secretion of
myokines, including musclin and ceramides,263,264 which
are key to insulin desensitization in peripheral organs.265
In contrast, inhibition of ER stress significantly enhances
the expression of UCP1 in the inguinal WAT and improves
metabolic phenotypes in DIOmice,266 which is linked into
a decrease in the JNK-mediated degradation of PPARγ.
Moreover, the ATF6 branch might regulate multiple pro-
cesses in the skeletal muscle, including exercise training
adaption,267 glucosamine-induced disruption of glucose
uptake268 and apoptosis,269 all of which are closely related
to T2DM.
On the road to T2DM, proinsulin is prone to misfold-

ing, and excess insulin production can aggravate ER stress
in β cells.37 In parallel, dysregulations of UPR pathways,
for example, transcriptional dysregulation related to pan-
creatic aging,270 local inflammation271 and glucotoxicity,37
are also observed in the islets of T2DM patients and

rodents,272 which possibly exert effects on β cell dys-
function by regulating insulin production and cell fate.
Supporting this notion, the PERK pathway is consid-
ered to act as a metabolic sensor to modulate insulin
production and secretion in a delicate way. In detail,
although ablating PERK is shown to impair insulin traf-
ficking and β cell survival, leading to insulin insufficiency
and hyperglycemia,273 partial attenuation of PERK activity
instead enhances GSIS through regulating ER chaper-
ones and Ca2+ transit.274,275 Moreover, both β cell-specific
ablating276 and enhancing phosphorylation277 of eIF2α
cause reduced insulin secretion, increased β cell apopto-
sis and thus severe diabetes. Besides, PERK/ATF4/TRB3
axis acts through inducting CREB inhibition to depress
the transcription of key exocytosis genes, and conse-
quently reduce insulin secretion.278 Meanwhile, the IRE1α
pathway also appears to ensure β cell function. The
IRE1α/XBP1s axis promotes ER protein folding capacity by
regulating the transcription of genes involved in insulin
folding, process and degradation,279,280 and thus improves
insulin production and secretion.281,282 Supporting this,
XBP1s deficiency in β cells markedly blunts GSIS,280
increases β cell apoptosis by deactivating β cell iden-
tity genes,283 and enhances inflammation and oxidative
stress.281 Conversely, prolonged XBP1s production in rat β
cells can inhibit the expression of β cell markers, and even-
tually lead to β cell apoptosis.284,285 The ATF6 pathway has
an essential role in supporting β cell function and survival
by inducing the transcription of target genes, including ER
chaperones,275 disulfide redox enzymes, and several qual-
ity control and degradation factors, as well as XBP1s.37 In
line with this, whole-body deletion of ATF6 impaired glu-
cose intolerance and blunted insulin secretion,249 whereas
ATF6 induction improved β cell insulin secretion and via-
bility under ER stress conditions.286 Furthermore, inhibit-
ing ATF6 could result in embryonic lethality and β cell
receding by arresting cell cycle entry,287 while upregulat-
ing ATF6α activity is able to markedly expand β cell mass
in db/db mice,288 suggesting its importance in the fate

dysfunction and failure. Chronical PERK activation results in translational suppression of required genes, including chaperones, insulin, and
ER enzymes, as well as induction of cell death through CHOP. Besides, ATF4 can interact with its target TRB3 to inhibit the transcriptional
activity of CREB, leading to the reduction of exocytotic gene expression. Hyperactivation of IRE1α leads to RIDD process, which cleaves
numerous mRNAs including genes related to protein folding, β cell maturation and cell survival, and the activation of JNK and p38. All these
finally lead to excess β cell death. Red lines indicate harmful effects of UPR. (B) Model recapitulating the interplay between UPR and insulin
response in peripheral tissue. During T2DM, elevated circulating factors, such as glucose, cytokines, and FFAs, can trigger ER stress, which
activates the three UPR branches. Activated PERK/eIF2α/ATF4 arm affects insulin sensitivity. On the one hand, the UPR may modulate the
transcription of genes associated with inflammation, ER stress and insulin response, such as TRB3, an endogenous inhibitor of AKT. On the
other hand, activated PERK can directly regulate the expression and activity of FoxO1, thereby enhancing insulin resistance. IRE1/XBP1
impairs insulin signaling through enhancing the activation of JNK and transcription of P300. Both JNK and P300 blunt the activation of
IRS1/2. Inhibition of IRE1α activity by BI-1 increases hepatic insulin sensitivity and glucose homeostasis. ATF6 branch protects organs from
insulin resistance by inhibiting CREB activity, increasing PPARα transcriptional capacity and the expression of chaperones and PERK arm
inhibitor P58(IPK).
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control of β cells.289,290 Of note, ATF6 also participates in
β cell proliferation induced by the salt-inducible kinases
inhibitor, known asHG-9-91-01, and knockdownATF6 can
efficiently reverse such proproliferating effect.291

4.6 Hippo pathway

The Hippo signaling pathway, mainly comprising
macrophage stimulating 1/2 (MST1/2), large tumor
suppressor 1/2 (LATS1/2), and their cofactors such as
salvador homolog (SAV) and MOB kinase activator
1A/B (Mob1A/B), predominantly controls the activity of
YAP/PDZ-binding motif (TAZ), two closely related mam-
malian transcriptional coactivators that shuttle between
the cytoplasm and nucleus (Figure 7B).292–294 Generally,
active MST1/2 phosphorylates LATS1/2, which in turn
phosphorylates YAP/TAZ and thus inhibits the activity
of YAP/TAZ.292 In contrast, dephosphorylation allows
YAP/TAZ to translocate into the nucleus and combine
with its partner transcriptional enhanced association
domain (TEAD) to reprogram gene expression.292 How-
ever, the upstream regulation of YAP/TAZ is beyond the
Hippo pathway, especially when cells are stimulated by
those uncanonical signals such as mechanical stimuli, G
protein-coupled receptor (GPCR) ligands, metabolites,
and cell stresses.292–294 Currently, deciphered regulatory
loops that involve many kinds of metabolic responses
gradually related YAP/TAZ and Hippo pathway to the
peripheral glucose metabolism, insulin signaling, the fate
of β cells, and thus pathological processes of T2DM.293–295
Cells may employ the YAP/TAZ as a coordinator to bal-

ance glucose energy supply and consumption.295 Glucose
deprivation, reduced glucose uptake and inhibited glycol-
ysis could repress the activity of YAP/TAZ, the formation
of the YAP/TEAD complex, and thus suppress the tran-
scription of target genes,296–298 such asGLUT3, hexokinase
2 (HK2) and phosphofructokinase B3 (PFKB3), as well as
to diminish glucose consumption. Mechanistically, defi-
cient glucose metabolism could act through the activation
of AMPK and LAST1/2 to inhibit YAP/TAZ activity, and
could also depress the phosphofructokinase 1 (PFK1) to
prevent the formation of the YAP/TEAD complex.296 In
contrast, high glucose could upregulate HBP-dependent
O-GlcNAcylation of YAP, which enhances YAP activity by
restraining LATS-dependent phosphorylation and protea-
somal degradation.299 Given that blood glucose level after
long-standing fasting and postprandial during T2DM is
associated with dysregulated cellular glucose metabolism,
it is possible that the Hippo pathway may modulate T2DM
progression via regulating cellular glucose metabolism.
YAP is decreased in the skeletal muscle of obese patients

and mice with IR.300 Consistent with this, the YAP/TAZ

pathway might promote peripheral insulin signaling and
repress glucogenesis, whereas the Hippo pathway works
inversely. For example, YAP/TAZ might upregulate the
insulin/AKTpathway by potentiating IRS2 transcription in
the liver of mice with codeleted PTEN and SAV1.301 More-
over, the mutually concordant positive effects between
YAP/TAZ and mTOR pathways also underpin the connec-
tion between YAP/TAZ and the insulin/AKT signaling.302
On the contrary, the Hippo pathway exerts converse effects
on insulin signaling and glucose metabolism. One evi-
dence is that upregulating the upstream Hippo kinase
MST3 could exacerbate IR, hyperglycemia and hyperinsu-
linemia by depressing IRS1 and upregulating the transcrip-
tion of gluconeogenic regulators and enzymes.303 YAP can
also act through PGC1α to suppress the transcription of
hepatic gluconeogenic genes, lower plasma glucose level
and improve glucose tolerance.304 Additionally, glucagon
activates LATS and restrains YAP,305 which in return erad-
icates upregulation of hepatic gluconeogenic genes and
represses gluconeogenesis.304
The Hippo pathway may also serve as an essential regu-

lator in the capacity of adipose tissue to endure metabolic
stress.306 To deal with the increasing stress during obe-
sity, WAT might rely on YAP/TAZ to resist apoptosis and
ameliorate T2DM.38,306 Additionally, it has shown that the
impairments of FA oxidation and consequent enhanced
adiposity of skeletalmuscle in obese patients or prediabetic
mice are caused partially by reduced YAP.300 Intriguingly,
the Hippo pathway may also participate in inflammatory
responses300,307 andmitochondrial maintenance, bringing
about an attractive notion that dysregulation of YAP/TAZ
and Hippo pathway might influence the advancement of
T2DM in the manners beyond our imagination.
The Hippo pathway and YAP/TAZ also modu-

late pancreatic cell differentiation, proliferation and
apoptosis.293,308 Overall, YAP/TAZ could render expan-
sion of early embryonic pancreas epithelium, but hamper
endocrinogenesis of pancreatic progenitor cells.308 In
harmony with this, YAP/TAZ in adult pancreatic β cells
remains low expression level,308 indicating that silencing
of YAP/TAZ is critical for the maturation of β cells. In
contrast, the Hippo pathway309 tends to induce apoptosis
of β cells, as MST1 is activated to empower β cell apoptosis,
while its deletion pronouncedly restores β cell function
and mass, attenuating diabetic conditions in mice with
T2DM.

4.7 HIFs pathway

HIFs are a family of DNA binding transcription factors
activated by hypoxia in mammalian, among which HIF1α
and HIF2α are best-studied and have been reported to
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play critical roles in several diseases, such as T2DM,
atherosclerosis and cancer.310 Under hypoxic conditions,
HIF1αmaintains stability via limited oxygen and could be
translocated to the nucleus to bind to HIF1β and other
response elements,311 thus augmenting the activation of its
target genes transcriptionally, such as vascular endothelial
growth factor (VEGF), angiopoietin, and platelet-derived
growth factor.
Previous evidence demonstrated that the impaired HIFs

signaling pathway acts as one of the key pathogenic factors
of T2DM, and is involved in IR.310,312 In hepatocytes, HIF1α
modulates glucose transport and fructose production by
regulating its downstream targets, such as GLUT1 and
PDK1.310 HIF2α could regulate gluconeogenesis and HGP
through the IRS2/PI3K/AKT pathway.313 Activated HIF2α
by refeeding is also able to attenuate postprandial glucagon
signaling through upregulating cAMP level and inhibit-
ing CREB activity, ultimately repressing the expression of
PEPCK and G6Pase.314 Meanwhile, intestine HIF2α could
inhibit the expression of neuraminidase 3 (Neu3), thus
substantially ameliorating hepatic steatosis, glucose intol-
erance and IR.315 Adipocyte-specific knockout HIF1α and
HIF1β inHFD-fedmice can enhance glucose tolerance and
insulin sensitivity by inducing tyrosine phosphorylation of
signal transducer and activator of transcription 3 (STAT3)
and suppressor of cytokine signaling 3 (SOCS3)-mediated
increase of adiponectin.316 Consistently, decreased insulin
sensitivity and glucose intolerance could be observed in
mice with WAT-specific HIF1α overexpression.317 Notably,
as essential mediators of adaptation to hypoxia, HIFs path-
ways also play a key role in controlling mitochondrial
functions and ROS production, which potentially compli-
cate the interactions between mitochondrial dysfunction
and glucose metabolism and T2DM.318
Disruption of HIFs homeostasis affects insulin

secretion.319 HIF1β is significantly down-regulated in
islets of T2DM.320 Specific knockout of HIF1α in β
cells impaired insulin secretion and decreased glucose-
stimulated ATP production.319 However, overload of HIFs
could also lead to β cell dysfunction. For example, deletion
of von Hippel–Lindau factor, a regulator of HIF hydrol-
ysis, markedly impaired insulin secretion and glucose
homeostasis in mice, accompanied with increased HIFs
levels.321 These results suggest that proper levels of HIFs
might be critical to maintaining β cell homeostasis and
function, which awaits further investigation.

4.8 TGFβ pathway

The TGFβ superfamily contains a number of subfamily
proteins, such as bone morphogenetic proteins (BMPs),
activins and TGFβs (Figure 7D). Activation of TGFβ recep-

tors could further activate small mothers against decapen-
taplegic homolog (SMADs), a class of second messen-
gers, and other signaling pathways, such as MAPK, RHO
GTPase, and PI3K/AKT pathways.322 The TGFβ pathway
connects contextual determinants with specific cellular
responses by controlling SMAD-dependent transcription
programming and integrating with other pathways. These
fundamental mechanisms underlie the function of TGFβ
pathway in controlling peripheral insulin signaling and
pancreatic β cell biology during T2DM pathogenesis.
An increasing body of evidence supports that the TGFβ

pathway can affect glucose homeostasis. It is increas-
ingly clear that several members of the TGFβ superfamily,
including activin A and B, GDF11, BMP2-4, and TGFβ1-3,
have emerged as novel regulators in the insulin signaling of
adipose tissue, skeletalmuscle, and liver.323 Amongwhich,
the bioactivity of the activin/GDF11 is reported to bemodu-
lated by the antagonists follistatin (FST) and follistatin like
3 (FSTL3), which could increase fat mass and adipose IR,
and therefore disrupt glucose homeostasis.324 Specifically,
overexpression of fstl3 in obese mice is capable of improv-
ing muscle insulin sensitivity and reducing fat accumu-
lation, but enhancing hepatic glucagon sensitivity.325 By
contrast, genetic removal of fst enhancedWAT insulin sen-
sitivity and suppressed HGP, thereby ameliorating glucose
tolerance in obese mice.326 BMPs, particularly BMP4, 6,
and 7, are also involved in the control of glucose homeosta-
sis. Specifically, BMP7 promotes, while BMP4 decreases
insulin sensitivity in the adipose and muscle of T2DM
mice, respectively.327 Mechanistically, BMP7 can activate
PDK1 and AKT to boost GLUT4 translocation to the
plasma membrane and in turn increase glucose uptake,
while BMP4 counts on the activation of PKCθ to induce
IR. BMP6 may restore the levels of blood glucose and
lipids in T2DM mice via reducing hepatic gluconeogene-
sis and glucose output.328 However, the dysregulation of
TGFβ pathway in the diabetic peripheral tissues remains
incompletely understood and awaits further study.
The discoveries about the roles of TGFβ in pancreatic

development and functions establish another strong link
between the TGFβ pathway and T2DM,329 regardless of the
diversity of TGFβ pathway in controlling the proliferation,
apoptosis and differentiation of β cells. To be specific,
activin A could inhibit β cell proliferation, but facilitate
the generation of β cells from adult stem cells, human
embryonic stem cells, ductal cells, human amniotic
epithelial cells),330 and α cells.331 Activin A and activin
B potentiate the dedifferentiation of β cells by depressing
and upregulating the transcription of crucial genes associ-
ated with β cell maturity and immaturity, respectively.332
Activation of SMADs is key to the regulation of TGFβ
signaling on β cell fate. In detail, SMAD7 is believed to
enhance proliferation,333 while SMAD2 and SMAD3 block
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proliferation of β cells by regulating the nuclear
localization of p27, a cell-cycle modulator inhibiting
cyclin-dependent kinase (CDK). Otherwise, activation
of TGFβ/SMAD3 signaling also has a role in β cell
apoptosis.334 Furthermore, SMAD2, 3, and 7, particularly
SAMD7, connect the dedifferentiation and proliferation of
β cells together.335 Recently, the roles of TGFβ pathway in
controlling β cell functions are also emerging. For instance,
activin A/B, TGFβ1, FST, GDF11, and BMPs, have been
demonstrated to enhance GSIS,336–338 while the addition
of FSTL3 is able to reverse these effects in both functional
and nonfunctional islets.338 Mechanistically, these effects
may be predominantly attributed to the activation of
SMAD2, since its disruption could compromise insulin
secretion under high glucose and diabetic conditions.337
Furthermore, the effects of TGFβ pathway on GSIS may be
associated with themodulation of KATP and calcium chan-
nels activity,337 as well as the altered expression of essential
genes governing insulin secretion, such as the GLUT2 and
calcium voltage-gated channel subunit alpha1 D genes.338

4.9 FGFs pathway

The human FGF superfamily consists of 22 structurally
related signalingmolecules.339 FGFs exert their pleiotropic
effects by dimerizing, activating and phosphorylating FGF
receptors, leading to the activation of the RAS/MAPK,
PI3K/AKT, Ca2+, PKC, and STAT signaling cascades in
a cellular context-dependent manner (Figure 9).340 Most
FGFs family members canonically present in the extracel-
lular matrix (ECM) and act in autocrine and/or paracrine
manners to activate FGFRs.341 While FGF19 subfamily
members, including FGF19 (the mouse ortholog FGF15),
FGF21, and FGF23, are liberated from the ECM into the
bloodstream and thus work in an endocrine manner.342
Tremendous efforts throughout the past decades have
ascertained the pleiotropic effects of FGFs pathways on
T2DM progression, potentiating the development of engi-
neered FGF analogs and mimetics targeting T2DM.343–345
Several subclasses of FGFs pathways have been dis-

closed to impose beneficial impacts on peripheral insulin
action and glucose homeostasis. Among them, FGF21
has obtained the most interests owing to its power-
ful effects on favoring insulin sensitivity and glucose
metabolism within the liver and adipose tissue.343,346 As
a stress-inducible hormone, FGF21 is strongly induced
by starvation, amino acid restriction, ketogenic diet and
HFD treatment in the liver. In the liver, by binding to
FGF receptor 1c (FGFR1c) and the coreceptor β-Klotho,347
FGF21 can elicit the FGF signaling to increase insulin
sensitivity by suppressing mTORC1,348 reduce lipid accu-
mulation by promoting PGC1α-induced FA oxidation349

and repressing SREBPB1c-mediated lipogenesis,350 and
block TG-enriched very-low-density lipoprotein (VLDL)
uptake by decreasing VLDL receptor expression.351 In
the adipose tissue, FGF21 may stimulate glucose uptake
in an insulin-independent manner but instead through
inducing GLUT1 expression, inhibit lipolysis by sequential
activation of ERK1/2 and serum response factor/Ets-like
protein-1 (SRF/Elk-1),352–354 and promote adiponectin pro-
duction and secretion from adipocytes through a PPARγ-
dependent mechanism.355,356 Paradoxically, the endoge-
nous expression and circulating level of FGF21 are
increased in obese humans andmice, which is likely linked
to the chronic mild mitochondrial dysfunction.357
The FGF15/19 signaling is another important pathway

for peripheral insulin action and glucose metabolism.
After feeding, FGF15/19 is released postprandially from
the small intestine to serum and arrived at other
organs.358 In the liver, FGF15/19 binds to its corecep-
tors, FGFR4 and β-Klotho, to trigger ERK pathway and
consequently phosphorylate and inactivate GSK3 in an
insulin-independent manner, ultimately increasing the
hepatic GS activity.359 Meanwhile, FGF15/19 can sup-
press gluconeogenesis through amechanism involving the
inactivation of CREB and subsequent downregulation of
PGC1α.358 Additionally, FGF15/19 is strongly induced by
the nuclear receptor farnesoid X receptor (FXR) in the
small intestine to repress hepatic BAs synthesis.360 Beyond
these, FGF15/19 also regulates postprandial glucose and
energy homeostasis361 through modulating the synthesis
of proteins, glycogen and glucose.
In addition to aforementioned FGFs, FGF1 is emerged

as a potent regulator in peripheral glucose homeostasis.344
Both acute and chronic treatment with recombinant
FGF1 can normalize blood glucose concentration, at least
partially attributed to suppressing HGP and promoting
insulin-dependent glucose uptake in skeletal muscle.362
At the same time, FGF1 may activate the phosphodi-
esterase 4D (PED4D) and then repress cAMP/PKA axis
to inhibit lipolysis in adipose tissue and suppress HGP.363
Of note, FGF1 expression in adipose tissue has been
reported to be controlled by PPARγ,364,365 suggesting that
the PPARγ/FGF1 axis might be another crucial mech-
anism for systemic insulin sensitivity. Similar to FGF1,
FGF4 may also function as a potent anti-hyperglycemic
factor, and paracrine FGF4 exhibits higher hypoglycemic
capacity even than endocrine FGF21.366 Correspondingly,
FGF4 treatment is able to effectively improve IR in genetic-
induced obese mice through many potential mechanisms,
for example, activating AMPK in the skeletal muscle to
promote GLUT4 expression and its translocation to cell
membrane.366
The FGF pathway also confers metabolic benefits in

β cells function and survival, as well as central neural
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F IGURE 9 Crosstalk among bile acids, FGFs, and GLP-1 pathways in T2DM. Several important signaling pathways are interacted in
multiple metabolic tissues. In hepatocytes, FXR induces SHP, subsequently inhibits CYP7A1 transcription and BA synthesis. Under BAs
stimuli, FXR inhibits the transcription of PEPCK and G6Pase to suppress gluconeogenesis, represses GSK3 to suppress hepatic glycogen
production (HGP), and suppresses SREBP1C to regulate de novo lipid synthesis (DNL). In the ileum, BAs are reabsorbed into enterocytes and
then enter circulation induced by intestinal FXR. Together, activated FXR could reduce serum glucose level. In addition, FGF15/19 is secreted
to the blood and then circulates to the liver, where FGF15/19 binds to its receptors, subsequently inhibiting BA synthesis and meanwhile
regulating downstream molecules in metabolic tissues, including ACC1, GSK3, CREB, and SREBP1c. However, FGF21 stimulates glucose
uptake in the adipose tissue, but inhibits β‑cell proliferation in pancreatic islets. Interestingly, activated TGR5 promotes the secretion of
FGF19 and GLP-1 to blood and mediates downstream functions. PPARs have been characterized as core lipid sensors that modulate
whole-body energy metabolism. Collectively, the cooperation among BAs receptors, FGFs, GLP-1, and PPARs maintains the glycolipid
metabolic responses in T2DM. The online resource inside this figure was quoted or modified from Scienceslide2016 plug-in.

regulation.344 For instance, FGF21 knockout mice dis-
play islet hyperplasia and distort morphology, along with
increased β cell proliferation and a larger α-cell popula-
tion, while islets and cultured β cells treated with FGF21
are partially protected from apoptosis possibly due to the
activation of PI3K/AKT signaling.367 In addition, FGF15/19
could reduce food intake and improve glucose tolerance by
inhibiting the hypothalamic–pituitary–adrenal axis.368–370
Moreover, glucose can induce the release of FGF1 into
the cerebrospinal fluid, which further initiates feeding

suppression and glycemic control by interrelating with
tanycytes, astrocytes and glucose-sensing neurons of the
hypothalamus.344

4.10 Bile acids

BAs, the major components of bile, are synthesized from
cholesterol in liver via the classical pathway regulated
by cholesterol-7α-hydroxylase (CYP7A1).371 BAs play
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important roles in facilitating the absorption of dietary
lipids, maintaining cholesterol homeostasis and activating
hormones (Figure 9). Over the past decades, BAs have
been regarded as critical regulators in glucose, lipid
and energy metabolism, as well as potential targets for
preventing cardiovascular complications and improving
glycemic control in T2DM patients.372
BAs act primarily through activating intracellular

ligand-activated receptors, among which the best-studied
are FXR and G protein-coupled BA receptor (TGR5). FXR
(also known as NR1H4) is a member of nuclear recep-
tor family and expressed in many tissues.373 FXR located
in the intestine and liver, could be activated directly by
BAs and forms a heterodimer with retinoid-X-receptor
(RXR). FXR exerts effects on the expression of downstream
genes and the inhibition of BAs synthesis through two
ways: (1) inducing the small heterodimer partner (SHP)
to inhibit CYP7A1 in the liver; (2) increasing circulating
FGF19/15 in the gut to repress CYP7A1. TGR5, belong-
ing to the rhodopsin-like superfamily of G protein-coupled
receptors, is a cell membrane receptor for secondary BAs
and moderately expressed in nearly all tissues. BAs could
regulate glucolipid metabolism via binding to FXR and
TGR5.374 For example, activated FXR is able to repress
hepatic DNL375 and gluconeogenesis376 by inhibiting the
expression of SREBP1c, PEPCK, and G6Pase. Moreover,
systematic knockout of TGR5 could aggravate IR and glu-
cose intolerance through miR-26a and the subsequent
cAMP/PKA pathway.377,378 Furthermore, both FXR and
TGR5 are capable to regulate GSIS in pancreatic β cells
through inducing the relocalization of GLUT2 on the
membrane.379
TGR5 is coexpressed with FXR on L cells in the intes-

tine, and the activation of FXR could facilitate the release
of GLP-1,380 which then enhances insulin secretion and
improves glucose homeostasis. Intriguingly, hyocholic acid
has been shown to promote GLP-1 secretion through syn-
chronously activating TGR5 and inhibiting FXR, which
exerts profound effects on glucose metabolism in the
pig and diabetic mouse models.381 As well, a recent
study showed that soluble dietary fiber oligofructose could
activate TGR5 to enhance GLP-1 activity by stimulat-
ing 6α-hydroxylated BAs, thus improving host glucose
metabolism and maintaining glucose homeostasis.382 All
of above suggest that BAs signaling pathways mediated by
intestinal GLP-1 have strong potential for T2DM therapeu-
tic applications.
The gut microbiota has been showed to regulate the

level and composition of BA metabolites through secret-
ing enzymes to catalyze the dehydroxylation of BAs, thus
influencing the function of BAs in regulating glycolipid
metabolism. In turn, BAs also interact with and affect the
gut microbiota,383 thus creating a dynamic equilibrium

between them. Interestingly, metformin has been reported
to decrease the abundance of species of B. fragilis in the
intestine to upregulate the bile acid glycoursodeoxycholic
acid in the gut, thus improving metabolic dysfunction
and hyperglycemia in T2DM patients.384 Adjustment of
BAs homeostasis has been applied to optimize glycaemia
parameters and improve pathological conditions in various
diabetic animal models and human patients,385,386 which
implies potential therapeutic roles for BAs signaling in the
treatment of T2DM.

4.11 Ca2+ signals

Ca2+ signals are finely tuned by a huge group of pro-
teins, including channels, pumps, transporters, and bind-
ing proteins,387,388 which underpin the accurate influx
and reflux of Ca2+.387 Ca2+ homeostasis is key to the
well-proceeding of many cellular processes,387,388 includ-
ing insulin secretion, β cell mass, insulin sensitivity, and
glucose sensing and disposing. Disruption of Ca2+ home-
ostasis, which has been witnessed in the peripheral tissues
and β cells of the diabetic mice and human patients, is
widely considered to be a critical regulator of IR, β cell
dysfunction, and T2DM.
Cellular Ca2+ pool encompasses several subcellular

pools, primarily including the cytosolic, ER, mitochon-
dria, Golgi apparatus, and even lysosomes ones, which
intimately and dynamically communicate with each other
as well as extracellular space.387,389,390 A range of extra-
and intracellular signal stimuli could act through various
signaling pathways to activate divergent Ca2+ channels on
different membranes, resulting in Ca2+ influxes and thus
producing specific Ca2+ signatures in distinct subcellular
compartments.387,388 Among them, several Ca2+ channels
are extensively studied, such as channels voltage-
dependent Ca2+ channels (VDCCs) and ligand-gated
channels and transient receptor potential (TRP) channels
on plasma membrane,387,388 ORAI1 channel and sarco/ER
Ca2+-ATPase (SERCA) pumps on ER membrane,391 and
voltage-dependent anion channels (VDACs)387,389,392 and
mitochondrial calcium uniporter complex on the inner
and outer mitochondrial membranes.392–395 Elevated
Ca2+ concentration could initiate multiple signaling
cascades by interacting with and activating the Ca2+
sensor protein calmodulin (CaM), which subsequently
induces numerous downstream targets in various ways.
The major downstream targets of Ca2+-bound CaM are
Ca2+/calmodulin-dependent protein kinases (CaMKs),
which in turn elicit the phosphorylation of CERB or the
activation of calcineurin (CaN)/NFAT1 pathway,396,397
thereby regulating glucose sensing, insulin exocytosis,
and insulin transcription.398 In addition, many other
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metabolism-related pathways and transcription factors are
tightly regulated by the Ca2+ signaling, such as MAPK,
nuclear factor-κB (NF-κB), myocyte enhancer factor 2,
and FoxO1.399–401 Meanwhile, to avoid overflow of Ca2+
and cytotoxicity, other signaling pathways, such as the
PLC/PIP2/IP3 pathway, could trigger various pumps and
exchangerfFs, including the Na+/Ca2+ exchanger,392,402
the plasma membrane Ca2+ ATPase,389,391 IP3 receptor
(IP3R), and ryanodine receptor (RyR),387,389 to remove
Ca2+ outward, thus restoring Ca2+ concentrations. Addi-
tionally, mitochondria-associated ERmembranes (MAMs)
hinge on an IP3R1/GRP75/VDAC1 complex-dependent
mechanism to take charge of Ca2+ transport from the
ER to mitochondria.403 Besides, the Golgi apparatus and
lysosomes also participate in Ca2+ homeostasis by acting
as Ca2+ stores, which have been elaborately reviewed
elsewhere.404 Cumulatively, attributed to this subtle
regulatory network, cellular Ca2+ concentrations remain
lively balanced, which is central to the fine progressing of
many cellular behaviors and states.
Actually, previous studies suggested that hyperglycemia

relies on a Ca2+-dependent mechanism to activate glu-
cose transport in skeletal muscle.405 Additionally, it is
well established that insulin stimulation induces a rapid
and transient increase in cytoplasmic and mitochondrial
Ca2+ through RyR and IP3R activation, which is required
for GLUT4 translocation and glucose uptake.406,407 Ca2+
signals also play important roles in controlling insulin
secretion408,409 and β cell proliferation.410–412 For example,
during GSIS, fusion of insulin granules with the plasma
membrane requires an increase in intracellular Ca2+.413
Consistent with the essential role of Ca2+ in insulin action
and secretion, it was defined that Ca2+ dysregulation is
linked to the progression of T2DM.
Dysregulation of ER Ca2+ concentration is notably

implicated in the progression of IR in peripheral tis-
sues. For instance, SERCA2b has been widely observed
to be dramatically reduced in the liver,414 WAT,415 and
skeletal muscle416 from obese and diabetic mice, caus-
ing the reduction of ER luminal Ca2+ concentration
and therefore aggravating IR.417,418 Consistently, liver-
,417 adipocyte-,415 or muscle-specific419 restoring SERCA
in obese and diabetic mice could improve systemic
insulin sensitivity and glucose homeostasis, ameliorate
hepatosteatosis, reduce adipose mass, but increase BAT
energy expenditure and UCP1/3 expression, in which
reduced ER stress and decreased PKCδ activation may
contribute to these observed effects. Reduced intracel-
lular and ER Ca2+ storage capacity, resulting from the
accumulation of cholesterol,420–422 has also shown to be
linked to PKC activation,423,424 as well as the develop-
ment of hepatic IR.425,426 Mechanistically, activated PKC
may mediate the phosphorylation of ORAI1 and inhibit its

activity, thereby decreasing the refilling of the ER Ca2+
stores and further aggravating hepatic IR.427 Of note, it
has been reported that ER-mitochondria interactions and
interorganelle Ca2+ exchange are reduced in high-fat high-
sucrose diet-induced obese mice, while a healthy diet
could effectively restore the communication between ER
and mitochondria that improves hepatic insulin sensitiv-
ity and glucose homeostasis,428 whichmight depend on the
activation of PKCε.429
Obesity and diabetic conditions bring about mitochon-

dria Ca2+ turbulence and thus resulting in mitochondria
dysfunction,430,431 which collectively aggravate T2DMpro-
gression by abolishing insulin signaling.430–432 For exam-
ple, obesity is reported to drive the increased localization
of IP3R1 at the MAMs, leading to an overload of mito-
chondrial Ca2+ influx, grievous oxidative stress and IR
in the liver.433,434 Furthermore, disruption of MAMs and
mitochondrial Ca2+ have been viewed as early events pre-
ceding mitochondrial dysfunction and IR in the liver and
skeletal muscle.430,432 For example, in mice fed a HFD,
the mitochondrial dysfunction arising from the down-
regulation of glucose-regulated protein 75 (GRP75), an
important regulator for mitochondrial Ca2+ homeostasis,
can aggravate systemic IR, while induction of GRP75 in
mice could inverse such effects.435 Furthermore, reduced
mitochondrial Ca2+, resulting from the mutation and
acute deletion of seipin, a protein modulating mitochon-
drial Ca2+ by interacting with SERCA,436,437 has been
pointed out to impair tricarboxylic acid cycle cycles and
subsequent reduction in citrate,438 leading to the defects
in lipid storage and lipogenesis. Similar to mitochondrial
Ca2+ deficiency, mitochondrial Ca2+ overload caused by
excessive MAM content has also been shown to induce
IR and fat deposition in hepatocytes.439,440 Meanwhile, in
the skeletal muscle, MAM formation is also found to be
augmented by obesity in a PDK4-dependent way, thereby
leading to increased mitochondrial Ca2+ accumulation,
mitochondrial dysfunction, ER stress, and consequent
IR.434
Furthermore, other regulators and signaling path-

ways responsible for whole-cellular Ca2+ homeostasis
also play critical roles in regulating peripheral IR pro-
gression. For instance, obesity can upregulate CaMKII
activity via enhancing ER stress,441,442 which further
compromises the insulin signaling in the liver.228 While,
abolishing CaMK1D significantly improves periph-
eral insulin sensitivity and glucose control in DIO
or HFD-fed mice by reprograming glyceraldehyde
3-phosphate dehydrogenase-/peroxisomal biogene-
sis factor 3 (PEX3)-mediated metabolic processes.443
Besides, the capsaicin-activated TRPV1 is repressed
in the adipose tissue from HFD-fed mice,444,445 and
involved in CaMKII/AMPK/SIRT1/PPARγ-mediated WAT



24 of 53 CAO et al.

browning.444 Moreover, activation of TRPV1 may also
contribute to enhanced metabolic function of BAT,445
possibly through mediating SIRT1/PPARγ axis,445 as well
as controlling clock gene oscillations, indicating a pro-
tective role of TRPV1 in metabolic diseases.446 However,
these studies might be challenged by other results that
genetic deletion or pharmacological inhibition of TRPV1
protected mice from obesity, IR, hypertension, inflam-
mation, or leptin resistance.447,448 Additionally, another
TRP channel, TRPM2, is able to mediate angiotensin
II-induced IR in adipocytes.449 Moreover, silencing of
herpud1, an ER membrane protein maintaining intra-
cellular Ca2+ homeostasis under stress conditions, has
an ability to decrease insulin-dependent glucose uptake,
GLUT4 translocation, and AKT activation in myotubes via
increasing the IP3R-dependent cytosolic Ca2+ response
and CaN activity.450 Accordingly, correcting the SR lipid
composition and thus Ca2+ handling in the skeletal
muscle can lead to an improvement in IR in DIO mice.451
During the pathogenesis of T2DM, Ca2+ homeostasis

in the pancreatic β cells is also discerned to be broken,
which in turn aggravates the dysfunction of β cells in terms
of their insulin secretion and fate decision. For example,
due to reduced transcription,408,409 changed location452
and depressed activity of VDCCs,453,454 Ca2+ influx across
VDCCs is decreased in the diabetic β cells, leading to
reduced Ca2+ influx near insulin granules docked sites,
inhibited fusion of insulin granule with the plasma
membrane, and thus impaired GSIS.452 Specifically, it is
reported that IR can induce a reduction in PIP2, and impair
VDCC activity and subsequent insulin secretion.453 Fur-
thermore, depletion of other critical Ca2+ signaling medi-
ators, including CaMKII, CREB, CaM, CaN, and CRTC2,
in mouse β cells, can impair insulin secretion and sys-
temic glucose homeostasis.455–457 On the contrary, specific
deletion of Ca2+/CaM-dependent serine protein kinase in
mouse β cells results in reduced blood glucose, hyperinsu-
linemia, and IR in HFD-fed mice. Short-term stimulation
of Ca2+ signaling pathways might yield positive effects for
β cells, whereas chronic Ca2+ stimulation instead presents
deleterious effects on β cell mass. Transient activation of
CaMKIV/CREB,458–460 CaN/NFAT,461 and CaN/TFEB462
pathways promote glucose-mediated β cell proliferation
and survival by reprogramming gene transcription, con-
sistent with the positive roles of WNT/Ca2+ pathways in β
cell survival. However, mice overexpressing constitutively
active CaN or CaMKIIα in β cells instead, develop glucose
intolerance and diabetes with decreased β cell mass,463
which is due to increased apoptosis and decreased prolifer-
ation of β cells. Furthermore, aberrantly elevated cytosolic
Ca2+ is also required for β cell de- or trans-differentiation
processes, resulting in the exacerbation of T2DM.464 One
notable example is that overexpression of CaM caused

the trans-differentiation of β cells into glucagon-expressing
cells and thus T2DM progression,464 while blocking β cell
depolarization or Ca2+ influx markedly reduced trans-
differentiation of β cells into gastrin-expressing cells in
both diabetic mice and isolated islets.465 Additionally, β
cell deletion ofATPbinding cassette subfamilyCmember 8
(ABCC8), a subunit of the ATP-sensitive potassium (KATP)
channel, results in increased cytosolic Ca2+ and loss of β
cell maturation, accompanied by enhanced expression of
dedifferentiationmarker aldehyde dehydrogenase 1 family
member A3 (ALDH1a3).466

4.12 Other pathways

4.12.1 PPARs pathway

PPARs, including PPARα, PPARβ/δ, and PPARγ, have
been characterized as core lipid sensors that modulate
whole-body energymetabolism (Figure 9).467 PPARα is the
predominant PPAR isoform in the liver andplays an impor-
tant role in regulating fatty acid transport, ketogenesis,
and β-oxidation.468 In addition to lipid regulation, while,
PPARβ/δ could increase the production of GLP-1 to stim-
ulate insulin secretion and reduce IR.469 PPARγ mainly
functions as a core regulator of adipogenesis, improving
insulin sensitivity and glucose metabolism. In terms of
mechanisms, deletion of IRF3 can increase the expression
of PPARγ, leading to severe IR and glucose intolerance.470
As opposed to IRF3, TAZ could protect mice from HFD-
induced IR and glucose intolerance through upregulating
the expression of PPARγ.471 Furthermore, PPARγ may
induce the enhanced level of FGF1 in the adipose tissue,
and considering the aforementioned protective function
of FGF1 in insulin sensitivity and glucose metablism,363
PPARγ/FGF1 axis may be indispensable in maintaining
insulin sensitization an metabolic homeostasis.364

4.12.2 SIRTs pathway

As highly conserved NAD+-dependent protein
deacetylases,472 SIRTs are composed of seven subtypes
and have been shown to regulate insulin secretion and
affect hepatic insulin signaling and glucose homeostasis.
SIRT3 expression is significantly decreased in the islets
of T2DM patients and diabetic mice, which contributes
to increased ROS level, mitochondrial dysfunction, and
impaired insulin secretion.473 Furthermore, SIRT1 could
repress the transcription of UCP2, which promotes the
conversion from glucose to ATP and Ca2+ influx, thus
initiating insulin secretion and augmenting the sensi-
tivity of pancreas to glucose.474 What’s more, SIRT1 and
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SIRT6 may deacetylate PGC1α and FoxO1 to facilitate the
transcription of gluconeogenic genes,475,476 ultimately
regulating GSIS in the islets477 and ameliorating glucose
homeostasis in the liver. Of note, SIRT1 could also react
with PPARγ to reduce the activity of PPARγ in WAT, thus
inhibiting insulin signaling and adipogenesis.478

4.12.3 IL-6 pathway

By binding to membrane receptors, IL-6 leads to the acti-
vation of multiple downstream signaling pathways inside
target cells, such as PI3K/AKT, MAPK, and janus kinase
(JAK)/STAT.479 IL-6 is reported to inhibit IRS, AKT2
and ERK phosphorylation directly or indirectly in the
liver, leading to impaired insulin signaling pathway and
IR.480–483 Besides, IL-6 is able to suppress glucose transport
by affecting adiponectin and GLUT4,484 repress lipogene-
sis by inhibiting PPARγ,485 and stimulates lipolysis by acti-
vating AMPK in the adipose tissue,486 which may link the
IL-6 pathway to the progression of IR and T2DM.However,
there are also some conflicting results. For instance, in the
case of HFD feeding, deletion of IL-6 and IL-6R promoted
the development of hepatic IR.487,488 In addition, the role of
IL-6 in pancreatic islets appears to be contradictory. Several
studies have shown that IL-6 contributes to the induction
of low grade inflammation in the islets, which ultimately
results in impaired insulin secretion.489–491 Paradoxically,
acute exposure of IL-6 does not seem to exert its poten-
tial hazardous effects on the islets,492 or affect the normal
functioning of β cells.480,493–495

4.12.4 JAK/STAT pathway

Depending on the cytokine or growth factor signals, dif-
ferent combinations of JAKs and STATs are activated with
a high degree of specificity. Multiple JAK/STAT pathways
have been implicated in glucose metabolism, including
the IL-6/STAT3, GH/JAK2/STAT5/IGF1, and IL-4/STAT6
axes. Specifically, liver-specific knockout of STAT3 in mice
blocked the IL-6 signaling pathway, leading to increased
IR and gluconeogenesis,496,497 via the induction of toll-like
receptor 4 expression.498 Knockout of the genes encoding
growth hormone receptor, JAK2 or STAT5 in the liver and
muscle also enhanced lipid accumulation and IR,499,500
possibly due to increases in FFAs flux and DNL.500 How-
ever, the role of JAK2/STAT5 in the adipose tissue still
remains controversial.501,502 What we do know is that the
IL-4/STAT6 pathway has been shown to increase glucose
oxidation by inhibiting PPARα activity in hepatocytes,
while knockout of STAT6 promotes hepatic steatosis and
IR.503

The JAK/STAT pathway also plays a role in lipid
metabolism. Mice with adipose-specific jak2 knockout
had impaired lipolysis in response to growth hormones
and leptin.501,504 Likewise, loss of either STAT3 or
STAT5505,506 significantly impaired lipolysis, probably
resulting from repression of essential lipolytic genes.
Muscle-specific deletion of stat5 leads to increased
accumulation of lipids in skeletal muscle, dyslipidemia,
hepatic steatosis, and hyperglycemia, accompanied by
altered expression of genes involved in lipogenesis, lipid
uptake, lipolysis, insulin signaling, and glucose uptake.507

4.12.5 NLRP3 inflammasome

The NOD-like receptor (NLR) family pyrin domain-
containing 3 (NLRP3) inflammasome is a cytosolic
multiprotein complex composed of the innate immune
receptor NLRP3, the adapter apoptosis-associated speck-
like protein containing card (ASC), and the inflammatory
protease caspase-1. Several endogenous ligands related to
metabolic stress, such as lipopolysaccharide (LPS),508,509
palmitic acids, oleic acid,510 homocysteine and ROS,511,512
have been reported to activate NLRP3 inflammasome
in metabolic organs. Activated NLRP3 inflammasome
induces the maturation and release of IL-1β and IL-18,
responding to microbial infection, endogenous danger
signals, and environmental stimuli.513 IL-1β has been
demonstrated to induce IR by reducing IRS1 phospho-
rylation and expression514 and inducing IL-6 release.515
The deficiency of NLRP3, caspase-1, or IL-1β in the liver
and adipose tissue can result in reduced inflammasome
activation, improved lipid metabolism, enhanced insulin
sensitivity, and reduced blood glucose in DIO mouse
models.516–518 Additionally, IL-1β can influence the activa-
tion of MAPK519 and NF-κB,520 which in turn dysregulates
the expression of genes involved in β cell death. Likewise,
NLRP3 knockout is able to protect β cells from damage,
rescue HFD-induced β cell loss, and increase insulin
secretion.521,522

4.12.6 NF-κB pathway

NF-κB is an important transcription factor controlling
different biological processes, such as immune activation,
cell survival and stress response.523 In canonical NF-kB
signaling, cytokines and PAMPs stimulate cell surface
receptors to initiate activation of the inhibitory κB proteins
(IκB) kinase (IKK) complex composed of IKK1 (IKKα) and
IKK2 (IKKβ) and the regulatory subunit NEMO (IKKγ),
ultimately driving transcription of target genes. IKKβ has
been shown to phosphorylate and inactivate TSC1 in the



26 of 53 CAO et al.

F IGURE 10 Signaling pathways in T2DM complications. Hyperglycemia causes macrovascular and microvascular lesions, contributing
to diabetic complications such as diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiovascular disease.
Targeting the major pathological features of different complications, some signaling pathways have been discovered. These signaling
pathways play important roles in promotion or inhibition of disease development, contributing to the treatment of diabetic complications.

mTOR pathway,524 as well as IRS,525 and S6K1526 in the
PI3K/AKT pathway, to promote IR. In both genetic- and
DIO mice, deficiency of IKKB can prevent the advance-
ment of IR and glucose intolerance.527,528 Besides, NF-kB
may drive the expression of a plethora of inflammatory
chemokines and cytokines inmultiple metabolic tissues529
and regulate numerous genes involved in insulin signal-
ing, such as SOCS3 and protein tyrosine phosphatase
1B (PTP1B).530,531 In the pancreas, inhibition of IKKβ
is sufficient to provide protection against cytokine-
induced β cell apoptosis in both human and mouse
diabetic islets,532 thus regulating β cell mass and insulin
secretion.533

5 THERAPEUTIC TARGETS IN T2DM
COMPLICATIONS

T2DM causes a number of long-term complications in the
neural, macrovascular and microvascular systems, which
are instrumental for death and disability of patients with
T2DM (Figure 10).10,534 These complications encompass
the damages to the coronary and cerebrovascular arteries,
the kidneys, the eyes, and the nerves.10,534 In the following
section, we will revisit the potential signaling pathways,
as well as their associated therapeutic targets, underlying
T2DM complications.

5.1 Diabetic nephropathy

Diabetic nephropathy is perhaps among the most devas-
tating T2DM complications, which bedevils up to 40% of
T2DM patients and leads to kidney failure, CVD, and pre-
mature death.535 The pathological changes of DN mainly
include renal fibrosis and podocyte injury,536 which are
linked to various signaling pathways, particularly the
TGFβ and mTOR pathways.
Dysregulation of TGFβ pathway is widely considered

playing a key role in renal fibrosis, which is character-
ized by excessive deposition of ECM. Correspondingly,
targeting TGFβ was also identified to be of therapeu-
tic potential for DN.537,538 Considerable evidence has
revealed increased expression and activation of TGFβ
pathway components, such as TGFβ1 and SMAD2/3, in
the fibrotic kidney.537,538 Consistently, inhibition of TGFβ1
or its downstream pathways substantially restrained
renal fibrosis in DN, whereas overexpression of TGFβ1
prompted renal fibrosis, suggesting a profibrotic role of
TGFβ pathway in DN.537,538 TGFβ pathways can induce
the activation of myofibroblasts, apoptosis of endothe-
lial cells and podocytes, overproduction of ECM, and
impairment of ECM degradation via multiple downstream
mechanisms.538–541 These downstream mechanisms
include the imbalance between upregulation of profi-
brotic SMAD3 and downregulation of antifibrotic SMAD7,
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interplays with other signaling pathways (e.g., MAPK,
WNT/β-catenin, ERK, PI3K/AKT, mTOR pathways), and
the involvement of miRNAs, lncRNAs and epigenetic
modifications.538 Accordingly, numerous approaches
blocking TGFβ signaling, including TGFβ neutralizing
antibodies, antisense TGFβ oligodeoxynucleotides, soluble
human TGFR2, and specific inhibitors to TGFR1 kinases
can effectively halt the progression of renal fibrosis and
DN.537,538,542 However, due to the side-effects of TGFβ inhi-
bition in autoimmune diseases, direct targeting of TGFβ1
is barely possible to be a viable strategy against renal
fibrosis and DN.538 Alternatively, indirect approaches to
antagonizing TGFβ signaling might hence be promising
to yield effective therapeutic agents for DN. In addition to
TGFβ signaling, other signaling pathways may be of ther-
apeutic potential in renal fibrosis and DN. For example,
it has shown that high glucose can trigger the JAK/STAT
signaling cascade to stimulate excessive proliferation of
glomerular mesangial cells and aggravate DN,543 and the
small-molecule inhibitor of JAK/STAT, baricitinib, has
been demonstrated to decrease albuminuria in patients
with T2DM and DN.544
Podocyte injury is another important pathological fea-

ture of DN, in which themTOR pathway is hyper-activated
due to high concentrations of glucose.545,546 Enhanced
mTORC1 signaling may trigger podocyte injury and DN
by stimulating podocyte hypertrophy, mesangial expan-
sion, glomerular basement membrane thickening, foot
process effacement, podocyte loss, and albuminuria.546,547
In line with this, restoration of mTORC1 activity is a
critical therapeutic approach for the prevention of DN.
For example, rapamycin, a specific and potent inhibitor
of mTOR, markedly ameliorated mesangial expansion
and proteinuria.548 Moreover, the mechanism by which
metformin and SGLT2 inhibitors exert kidney-protective
effects may be also related to the mTOR pathway, albeit it
is currently unclear.546

5.2 Diabetic retinopathy

Nearly 60% of T2DM patients are expected to have DR
in the first decade after diagnosis.549,550 DR is charac-
terized by early pericyte loss, vascular leakage, retinal
ischemia, and an overcompensatory retinal neovascu-
larization, which is highly related to the regulation of
signaling pathways.551
Due to the local ischemia/hypoxia, the expression

of VEGF is enhanced in ocular fluid of patients with
DR.552–554 Upregulated VEGF can increase the phosphory-
lation of occludin/zonula occludens-1 (ZO-1) to augment
endothelial paracellular permeability, and cause activa-
tion of MAP to promote the proliferation of endothelial

cells, thereby exacerbating the development of DR.555,556
In parallel, intravitreal injection neutralizing antibody of
VEGF, such as Ranibizumab, Pegaptanib, and Afliber-
cept, has been clinically used to treat proliferative diabetic
retinopathy.550,557,558
As endogenous ligands for the vascular endothelial

receptor tyrosine kinase 2 (Tie2), angiopoietin1/2 (Ang1/2)
are involved in the regulation of vascular permeability
and angiogenesis in DR.559 Current evidence showed that
Ang1 promotes the formation of Tie2/PTP/VE-cadherin
complexes at cellular membrane to decrease vascular
permeability,560 but Ang2 enhances vascular leakage in
DR through activating VEGF/β1-integrin and regulating
VE-cadherin-containing cell-cell junctions.561–563 Mean-
while, Ang2 could reduce pericyte capillary coverage and
increase intraretinal neovascularization via the inhibition
of Ang1/Tie2 interactions, suggesting that modulation of
Ang1/2 is an attractive therapeutic target for the prevention
and treatment of DR.564
Emerging evidence suggests an essential role of circular

RNAs (circRNAs) and miRNAs in DR.565,566 For exam-
ple, diabetes-related stress upregulates the expression of
cPWWP2A, a novel circRNA, to sequester and inhibit
miR-579 activity, thus alleviating T2DM-induced retinal
vascular dysfunction.565 cZNF532 is another circRNA that
could regulate pericyte biology by sequesteringmiR-29a-3p
and activating chondroitin sulfate proteoglycan 4 (CSPG4),
lysyl oxidase like 2 (LOXL2), and CDK2, which indi-
cates that overexpression of cZNF532 or inhibition of
miR-29a-3p could ameliorate DR.567

5.3 Diabetic neuropathy

Among diabetes neuropathy, distal symmetric polyneu-
ropathy is very common and defined as a loss of sensory
function beginning distally in the lower extremities.568
Approximately 30–50% of patients with diabetic neuropa-
thy develop neuropathic pain called painful diabetic neu-
ropathy (PDN).569 PDN is characterized by neuropathic
pain, small-fiber degeneration, and dorsal root ganglion
(DRG) nociceptor hyperexcitability.570
DRGs are important neurons that comprise thermore-

ceptors, mechanoreceptors, and itch sensors. Nav1.8, an
α-subunits of voltage-gated sodium channels, is impor-
tant for the development of abnormal pain sensation.571
Methylglyoxal, a reactive metabolite increased in diabetes,
could posttranslationally modify Nav1.8 and enhance
the activity of the nonselective cation channel TRPA1,
respectively resulting in Nav1.8 gain of function pain
and neuron hyperexcitability.572,573 In addition, excita-
tory CXCR4/CXCL12 signaling in Nav1.8-positive DRG
neurons plays a critical role in the pathogenesis of
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mechanical allodynia and small-fiber degeneration in a
mouse model of PDN.570 In T2DM, Ca2+ channels have
also been implicated in PDN. For example, CaV3.2 activity
is enhanced through the glycosylation of extracellular
arginine residues, resulting in hyperexcitability pain in
DRG neurons.574

5.4 Cardiovascular complications

Macrovascular complications of T2DM include coronary
heart disease, cardiomyopathy, arrhythmias and sudden
death, cerebrovascular disease, and peripheral artery
disease, among which CVD is the primary cause for
death in diabetic patients. The development of diabetic
cardiovascular complications also relates to the dysreg-
ulation of signaling pathways. A prominent example is
that hyperglycemia can induce the formation of nonen-
zymatically glycated proteins or lipids, called advanced
glycation end-products (AGEs), which is closely related
to the pathogenesis of CVD. AGEs have been shown
to activate NF-κB and increase vascular cell adhesion
molecule1 (VCAM1) expression, initiating the first step of
atherogenesis.575 Besides, glycated low-density lipoprotein
(LDL) is recognized and taken up by AGE receptors or
macrophage scavenger receptors, resulting in lipid-laden
foam cells in the arterial intima and the promotion
of atherosclerosis.576 In vascular smooth muscle cells
(VSMC) and aortas from db/db mice, miR-504 might
participate in metabolic memory of CVD,577 as evidenced
by that miR-504 in VSMC can inhibit contractile genes
and enhance the activation of ERK1/2 and its target
genes (Grb10 and Egr2), inhibiting proinflammatory
response. Additionally, quaking (QKI) is one of the
RNA-binding proteins related to diabetic cardiomyopathy
and atherosclerosis. QKI-7 is highly expressed in human
coronary arterial ECs in T2DM patients and is able to dis-
rupt cell barrier, compromise angiogenesis, and enhance
monocyte adhesion by binding and promoting mRNA
degradation of downstream targets.578

5.5 T2DM and COVID-19

Recent evidence showed a mutual interplay between
COVID-19 and T2DM.579 On the one hand, COVID-19
patients with diabetes are more likely to develop severe
condition of higher death incidence compared with
those without diabetes.580,581 On the other hand, new-
onset hyperglycemia, ketoacidosis, diabetes, and severe
metabolic complications of preexisting diabetes have been
observed in patients with COVID-19.582–584 There is an
intricate interaction network existing between diabetes

and COVID-19. Common pathogenetic processes between
COVID-19 and diabetes mellitus discovered by differen-
tial gene expressions pattern analysis are related to the
mRNA metabolism, subcellular organelle organization,
nucleotide synthesis, immune responses, and autophagy
process. Other studies revealed that five biomarker
genes (CP, SOCS3, AGT, PSMB8, and CFB) and 4 miRNAs
(hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p, andhsa-
miR-5196-5p) closely bridge T2DM and COVID-19.585–587
Severe COVID-19 is associated with worse glycemic

control,588 and the reason for this may partly lie in
increased expression of ACE2, a key receptor for severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2),
in lungs of T2DM patients.589 Growing evidence suggests
that elevated glucose level and glycolysis may directly
increase and sustain SARS-CoV-2 replication.590 Mean-
while, diabetes can affect immune response to SARS-CoV-
2. Hyperglycemia and IR are capable of increasing syn-
thesis of AGEs and proinflammatory cytokines to mediate
tissue inflammation.591 Additionally, hyperglycemia may
also impede type I interferon production and signaling591
to augment inflammatory responses to SARS-CoV-2 infec-
tion, leading to extreme systemic immune responses.592,593
The precise mechanisms underlying the development

of new-onset T2DM in people with COVID-19 are still
not known, but may involve a number of complex eti-
ologies. On the one hand, SARS-CoV-2 could directly
infect β cells and lead to β cell dysfunction and metabolic
dysregulation.594 SARS-CoV-2 could also bind to NRP1,
thus attenuating insulin secretion and inducing β cell
apoptosis through the JNK/MAPK pathway.595 Mean-
while, SARS-CoV-2might downregulateACE2 activity and
subsequently activate macrophages and trigger NF-κB sig-
naling in the pancreas, leading to excessive synthesis and
secretion of inflammatory cytokines, eventually damaging
islets and β cells.596,597 On the other hand, IR, resulting
from viral infection seems to be another cause of hyper-
glycemia upon COVID-19. Infection of SARS-CoV-2 may
induce an inflammatory state,598,599 in which IL-6 might
play a primary albeit not exclusive role in inducing IR and
β cell dysfunction.579,600

6 ANTIDIABETIC DRUGS

Poor control of hyperglycemia results in markedly
increased microvascular, macrovascular and metabolic
complications, and therefore, optimal glycemic manage-
ment is the first priority in T2DM patients.601 Although
diet control and exercise could partly alleviate hyper-
glycemia, almost all T2DM patients still need antidiabetic
drugs and/or insulin to maintain standard blood glucose.
With the in-depth study of T2DM signaling pathways,
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effective glucose-lowering drugs often work by acting on
important targets in signaling pathways. In the following
section, we will summarize glucose-lowering drugs in
clinical application and clinical trials, as well as promising
agents and targets, describing their action mechanisms
and related signaling pathways (Figure 11 and Table 1).

6.1 Clinical drugs

6.1.1 Biguanides

As a first-line drug for T2DM, metformin has been shown
to have pleiotropic effects on glucose metabolism.602 The
core glucose-lowering effect of metformin is the inhi-
bition of hepatic gluconeogenesis by repressing mito-
chondrial respiratory chain complex 1 and increasing
AMP level.603,604 In addition, metformin can bound to
PEN2 and form a complex with ATP6AP1 to inhibit v-
ATPase and activate AMPK.15 Metformin can also directly
act on the intestine to activate muscarinic M3 receptor,
WNT and AMPK to stimulate GLP-1 secretion, thereby
altering glucose absorption.602 Additionally, metformin
could prevent the reabsorption of active BAs by modula-
tion of the transcription of FXR via an AMPK-mediated
mechanism in enterocytes, ultimately increasing GLP-1
secretion.605 Moreover,metformin has beneficial effects on
alleviating chronic low-grade inflammation in T2DM.606
It not only inhibits monocyte-to-macrophage differenti-
ation via inhibiting STAT3,607 but also suppresses LPS-
induced inflammatory response in macrophages via the
AMPK/ATF3 pathway.608

6.1.2 PPARγ agonists

Thiazolidinediones (TZDs), a kind of classic glucose-
lowering drugs, are the ligands for PPARγ. PPAR agonists
primarily stimulate WAT remodeling and modulate lipid
flux to improve insulin signaling and glucose homeosta-
sis. TZDs binding to PPARγ could promote FFAs storage
and reduce lipid ectopic accumulation in subcutaneous
fat tissue.609 Rosiglitazone and pioglitazone are the rep-
resentatives of TZDs. Due to the potential for serious
adverse cardiovascular effects, the United States Food
and Drug Administration adds a "black box warning"
to the rosiglitazone label,610 while pioglitazone can sig-
nificantly lower risk of death, myocardial infarction, or
stroke among patients with diabetes.611 In order to make
good use of PPARγ, some studies focused on the potential
effects of posttranslationalmodifications (PTMs) of PPARγ
on treating T2DM in terms of phosphorylation, acety-
lation, ubiquitination, SUMOylation, O-GlcNAcylation,
and S-nitrosylation. PTMs have shed light on selective

activation of PPARγ, which shows great potential to cir-
cumvent TZDs’ side effects while maintaining insulin
sensitization.612

6.1.3 K+ channel inhibitors

Changes in membrane potential are critical for insulin
secretion, and SUs are a class of drugs that can depolarize
cell membrane and promote insulin secretion.613 By bind-
ing to the sulfonylurea receptor that is tightly linked to K+
channels, SUs can lead to the closure of KATP channels and
the depolarization of β cell membrane, thereby stimulat-
ing insulin secretion.614,615 In addition, SUs may enhance
the GSIS by increasing intracellular cAMP level,613 which
further activates Epac2, a protein that has an ability to
exchange guanine nucleotide with Rap.616 Gliclazide is a
representative of SUs,while Repaglinide is a representative
drug in non-SUs insulin secretagogues. With a different
structure with SUs,617 Repaglinide binds to its receptors
and closes KATP channels to depolarize β cells, induc-
ing Ca2+ influx and promoting Ca2+-dependent insulin
granules exocytosis.618

6.1.4 GLP-1R agonists and DPP4 inhibitors

GLP-1 is an incretin hormone and exerts its action by bind-
ing to GPCRs to stimulate insulin secretion through rapid
increases of cAMP and intracellular Ca2+.619 In β cells,
the binding of GLP-1 and its receptor leads to activation
of adenylate cyclase (AC) and a subsequent increase in
cAMP. cAMP activates PKA, thereby inducing the closure
of K+ channel and the opening of Ca2+. The subsequent
Ca2+ influx promotes exocytosis of insulin granules and
acute secretion of insulin into the circulation.620 GLP-
1 also contributes to the control of blood glucose by
inhibiting glucagon secretion, gastric emptying, and food
ingestion.619,621 GLP-1R agonists also have a role in the
treatment of neurodegenerative diseases,622 nonalcoholic
fatty liver disease623 and obesity.624 Given that GLP-1 is
mainly inactivated by dipeptidyl peptidase4 (DPP4) within
3minutes in the circulation,625 DPP4 inhibitors are applied
to provide prolonged effects in vivo.626 Notably, recent
studies suggested DPP4 as a functional receptor forMERS-
CoV and SARS-COV-2, and its inhibitors have been found
to inhibit infection with coronavirus.627,628

6.1.5 SGLT2 inhibitors

SGLT2, a high-capacity transporter in the proximal tubule,
is the major pathway for renal glucose reabsorption.
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F IGURE 11 Clinical and potential drugs in T2DM therapy. In the plasma, DPP4 inhibitors, such as Linagliptin, increase the plasma
content of GLP-1 by inhibiting the degradation of GLP-1 by DPP4. In pancreatic β cells, the agonists of GLP-1R (GLP-1, Liraglutide), GIPR, and
GPR40 (LY2922470) promote insulin secretion through different signaling pathways. The inhibitor of KATP (Gliclazide) and the agonist of
Ca2+ channel also promote the secretion of insulin. In metabolic organs, MLR-1023 activates the Lyn kinase, leading to tyrosine
phosphorylation of IRS1. Then a cascade of signaling events lead to increased glucose uptake and utilization. Metformin could bind to PEN2
to forms a complex with ATP6AP1, a subunit of the v-ATPase8, leading to the inhibition of v-ATPase and the activation of AMPK. Inhibition
of the mTORC1/2 pathway may enhance insulin signaling at the IRS level and improve glucose tolerance. The activation of glucagon receptor
results in increased glycogenolysis and gluconeogenesis via cAMP/PKA pathway. In the kidney, Ertugliflozin and Dapagliflozin promote
urinary glucose excretion by inhibiting SGLT2. In the intestine, the agonist of TGR5 (SB-756050) and GPR40 (LY2922470) promotes the
secretion of GIP and GLP-1.
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TABLE 1 Agents for T2DM in clinical or clinical trials

Agent Target or pathway Phase NCT number
Metformin hydrochloride AMPK/PI3K/AKT/mTOR; autophagy; mitophagy US FDA approved NA
Ertugliflozin SGLT2 US FDA approved NA
Dapagliflozin US FDA approved NA
Chlorpropamide Na+ K+-ATPase US FDA approved NA
Acarbose Glucosidase inhibitor US FDA approved NA
Voglibose US FDA approved NA
Miglitol US FDA approved NA
Saxagliptin DPP4 US FDA approved NA
Linagliptin US FDA approved NA
Alogliptin IV NCT03042325
Trelagliptin IV NCT02771093
DBPR108 III NCT04218734
Retagliptin III NCT05054842
Gliclazide K+ channel US FDA approved NA
Glipizide US FDA approved NA
Glyburide US FDA approved NA
Glimepiride US FDA approved NA
Repaglinide US FDA approved NA
Mitiglinide IV NCT02143765
MSDC-0160 II NCT00760578
Liraglutide GLP-1R US FDA approved NA
Semaglutide US FDA approved NA
Taspoglutide III NCT00909597
Pioglitazone PPAR US FDA approved NA
Rosiglitazone US FDA approved NA
FK614 II NCT00036192
LY3298176 GLP-1R/GIPR III NCT03882970
AZD1656 Glucokinase II NCT01152385
Dorzagliatin II NCT04531631
MK-0941 II NCT00824616
PF-04937319 II NCT01475461
LGD-6972 GCGR II NCT02851849
LY2409021 II NCT01241448
PF-06291874 II NCT02554877
Cotadutide GLP-1R/GCGR II NCT04208620
MEDI0382 II NCT03745937
SAR425899 II NCT02973321
GSK1292263 GPR119 II NCT01119846
GSK256073 GPR109A II NCT01376323
MLR-1023 Insulin receptor II NCT02317796
AZD7687 Acyltransferase I NCT01217905
LY2922470 GPR40 I NCT01746017
MK-8666 I NCT01971554
LY2405319 FGF21 receptor I NCT01869959
SB756050 Bile acid receptor I NCT00607906
Coenzyme Q Electron transport chain II NCT00703482
MitoQ NA NCT04558190

This table summarizes agents used to treat diabetes by targeting different signaling pathways, in clinical and preclinical.
Data source: U.S. National Library of Medicine ClinicalTrials.gov.
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SGLT2-inhibition prevents the reabsorption of filtered glu-
cose and sodium, resulting in glycosuria and natriuresis.629
SGLT2 inhibitors (SGLT2is) therefore are developed as
a new class of antidiabetic drugs in T2DM, reduc-
ing plasma glucose levels in an insulin-independent
manner.630 Canagliflozin, a representative SGLT2i, was
reported to promote mitochondrial oxidative phospho-
rylation and FA oxidation via the AMPK/SIRT1/PGC1α
pathway.631 SGLT2is could also reduce cardiovascular
events and protect kidney,632,633 but increase the risk for
diabetic ketoacidosis by promoting the production and
reabsorption of ketone.634

6.1.6 AGIs

Alpha-glucosidase is an intestinal brush border enzyme
responsible for the hydrolysis of disaccharides into
monosaccharides, which is necessary for carbohydrate
absorption.635 Inhibition of alpha-glucosidase results in
reduced carbohydrates absorption and increased GLP-1,
thus decreasing the postprandial blood glucose.636,637
Alpha-glucosidase inhibitors that are currently used in
clinic include acarbose, voglibose, and miglitol, as well as
a variety of natural products such as hypericin, oleanolic
acid and ursolic acid.638

6.2 Preclinical drugs

6.2.1 GK activators

GK elicits GSIS in β cells and promotes hepatic glycogen
production and storage.639 Under raised glucose concen-
trations, GK dissociates from the GK regulatory protein, a
competitive inhibitor of glucose, and phosphorylates glu-
cose to G6P, thus reducing serum glucose and promoting
HGP.24 Thus targeting GKmay have therapeutic effects on
T2DM, and several GK activators have been tested in ani-
mal experiments, in which a few have reached the clinical
trials phase.639

6.2.2 GCGR antagonists and agonists

The glucagon receptor (GCGR) is a GPCR. Its activation
results in increased glycogenolysis and gluconeogenesis
via the cAMP/PKA pathway,640 while its antagonization
improves glucose control in T2DM. Nevertheless, adverse
events stopped the development of GCGR antagonists
(GRA). Although with new approaches, none of GRA has
progressed to phase III clinical trials so far.641 Addition-
ally, glucagon signaling has been associatedwith increased

energy expenditure. GCGR agonists can increase energy
expenditure and reduce hepatic fat by promoting HGP.
Although this may cause a spike in blood glucose, which
can be effectively offset by GLP-1R agonists.642 Thus,
GCGR has become a focus as a pharmaceutical target in
the context of bi- or tri-modal peptide agonists for the
treatment of metabolic diseases.643

6.2.3 TGR5 agonists

TGR5 agonists have been proposed as a potential treat-
ment for T2DM.644,645 Activated TGR5 not only stimulates
GLP-1 secretion, but also induces activity of type 2 iodothy-
ronine deiodinase, resulting in increased thermogene-
sis and energy expenditure.646,647 SB-756050, a selective
TGR5 agonist, could produce a significant enhancement
of glucose-induced GLP-1 secretion in combination with
DPP4, improve glucose disposal rate, and enhance insulin
secretion.648 Unfortunately, SB-756050 did not show con-
sistent efficacy in clinical trials.648 Interestingly, it has
recently been reported that a FXR/TGR5 dual agonist
prevents progression of nephropathy in diabetes and
obesity,649 suggesting an attractive strategy for the therapy
of T2DM and its complications.

6.2.4 GPR40 agonists

The G protein-coupled receptor 40 (GPR40), also known
as free fatty acid receptor 1 (FFAR1), is highly expressed in
the pancreas and enteroendocrine cells in the gastrointesti-
nal tract. When glucose level elevates, GPR40 facilitates
insulin secretion through the PLC/IP3/PKC pathway.650,651
GPR40 could also promote incretin secretion, such as
GLP-1 and gastric inhibitory polypeptide.652 LY2922470 is
a GPR40 agonist that has shown an effective and per-
sistent dose-dependent reduction in glucose levels and
a significant increase in insulin and GLP-1 secretion in
preclinical trials.653 GPR40 agonists might also regulate
inflammatory responses and thus play a role in improving
the development of diabetes complications.654,655

6.2.5 Lyn kinase activators

Activation of Lyn kinase can directly induce tyrosine phos-
phorylation of IRS1, resulting in increased GLUT4 translo-
cation, and enhanced glucose uptake and utilization.656
MLR-1023 is a highly potent and selective Lyn kinase acti-
vator, as well as a novel non-PPARγ insulin sensitizer,
which could reduce plasma glucose levels without the risk
of hypoglycemia or weight gain.656,657
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6.2.6 Mitochondria-targeted antioxidants

Several mitochondria-targeted antioxidants and peptides
have been found to reduce oxidative stress and mito-
chondrial damage, so as to exert therapeutic effect on
some chronic diseases such as diabetes and Alzheimer’s
disease. These antioxidants include SkQ1, MitoQ, and
Coenzyme Q.658 Both SkQ1 and MitoQ are ubiquinone
derivatives. Ubiquinone can serve as electron carriers and
antioxidants to profoundly prevent lipid peroxidation.659
Interestingly, Coenzyme Q is a lipid-soluble molecule,
one of the key components of electron transport chain.
After being oxidized, Coenzyme Q needs to undergo
a self-reducing process before it can continue to func-
tion as an antioxidant.660 Szeto-Schiller (SS) peptide is
a novel mitochondrial-targeted peptide.661 The water-
soluble tetrapeptide SS-31 concentrates in the inner mito-
chondrial membrane andmay exert radical-sweeping abil-
ity without reliance onmitochondrial membrane potential
and energy.662 Given that administration of mitochondria-
targeted antioxidants may restore mitochondrial function
and alleviate symptoms, further examination and analysis
of treatment efficacy and safety are suggested to prepare
for clinical trials.

6.3 Potential therapeutic targets and
drugs

In addition to the antidiabetic drugs mentioned above,
some potential targets and compounds are emerging to
improve T2DM pathology. Although no effective target
drugs have been developed, targeting these potential tar-
gets or modifying compounds could provide new ideas
and possible therapeutic strategies for treating T2DM
and its complications. For example, FGFs, especially
FGF1 and FGF21, have emerged as a promising solu-
tion to the diabetes dilemma. Central injection of FGF1
can improve central glucose sensing and peripheral glu-
cose uptake through restoring glucose-sensing neurons,
inducing neurogenesis, suppressing reactive astrocytes
and restoring synaptic functionality.344 While FGF21 plays
important roles in regulating energy balance and glucose
and lipid homeostasis through a heterodimeric receptor
complex comprising FGFR1 and β-klotho.343 Imidazole
propionate is a microbially produced histidine-derived
metabolite that impairs glucose tolerance by inhibit-
ing insulin signaling at the level of IRS through acti-
vation of the p38γ/p62/mTORC1 pathway.663 Inhibition
of imidazole propionate may be effective in controlling
blood glucose. Similarly, β-aminoisobutyric acid (BAIBA)
is a natural catabolite of thymine. It was previously
reported that BAIBA attenuated inflammation and IR

in HFD-fed mice, and these effects were negated by
siRNA-mediated suppression of AMPK.664 Other potential
drugs/targets, such as catalpol (a natural product iso-
lated from the root of rehmannia glutinosa), thioredoxin-
interacting protein (TXNIP, a cellular redox regulator
upregulated in diabetes),665 and transient receptor poten-
tial vanilloid 4 (TRPV4, a Ca2+-permeable nonselective
cation channel)666 have been reported to be involved in the
development of T2DM, including but not limited to affect-
ing insulin production and secretion,667 β cell function,143
IR,668 and glucose homeostasis.665,669

7 CONCLUSION AND PERSPECTIVES

Throughout the past decades, the surged prevalence of
T2DM and its vicious complications has coined an urgent
craving for better understanding the mechanisms under-
pining the pathogenesis of T2DM and how to manage
T2DM efficiently, particularly through drug administra-
tion. As amultifactoral disease, T2DM is driven by genetic,
epigenetic, and nongenetic mechanisms, among which
a substantial fraction are interdependent signaling path-
ways. A highly possible paradigm for various signaling
pathways acting in T2DM, is where they serve as both
the causes and consequences of T2DM progression and,
function in an interacted manner rather than separately.
In particular, environmental factors, together with genetic
risks correlated to T2DM, are prone to elicit vibrations of
the signaling pathways in the peripheral tissues and pan-
creatic islets. Interfering with these signaling pathways
seems to engender outcomes that are conducive or obstruc-
tive to the pathological pertubances of T2DM, especially
IR and β cell dysfunction. In terms of IR, modifications
in these signaling pathways are likely to rely on their
multifaceted interplays with the insulin/AKT to fluctu-
ate the peripheral susceptibility to insulin action, despite
the discrepancies in the specific roles of individual path-
ways. In terms of β cell dysfunction, signaling pathways
also converge to regulating insulin secretion and fate of
β cells, so intrinsic or acquired traits of these signaling
pathways appear to partially dictate the adaptive capacity
of β cells in response to metabolic demands. Importantly,
manymedications that normalize blood glucose levels and
prevent or inverse diabetic complications have been iden-
tified to establish their pharmaceutical benefits via the
mechanisms involving signaling pathways. One promi-
nent example is the extensively used clinical antidiabetic
drug, metformin, which acts through the AMPK pathway
to powerfully improve metabolic disoders.15 Neverthe-
less, a fraction of drugs or compounds targeting signaling
pathways have unexpected side-effects or inadequate effec-
tiveness, owing to additional pathophysiological roles or
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minor metabolic effects of signaling pathways. For exam-
ple, TGFβ-specific therapies have been witnessed to exert
inevitable effects on immune system, thus slowering the
progress in employing them for treating DN. For these
reasons, discerning the functions and mechanisms of sig-
naling pathways in T2DM would help ease the road to
well-managing T2DM with drugs.
However, there are several obstacles in studying sig-

naling pathways and interventions of T2DM. Firstly, an
unfortunate trend is excessively highlighting the patholog-
ical significance of a sole molecule in signaling pathways,
which is intensified by the dramatic progress in genetic
manipulation technologies. This misfortune of trend in
large part relates to concerns that manipulating genes
could inevitably cause adaptive or compensatory effects
concealing the real effects of certainmolecules or pathways
in T2DM progression. Luckily, considerable progresses
in omics methods, such as, spatially resolved genomics,
transcriptomics, and metabonomics, make it available to
rectify this trend. In particular, devising ways to assess
genomic, proteomic, and metabolic status in prediabetic
and diabetic tissues while preserving spatial informa-
tion and single cell resolution, is of great propensity to
delineate the inclusive but accurate molecular mecha-
nisms of T2DM. Furthermore, biomolecular condensates
or droplets have been increasingly identified as an inter-
action basis for the molecules in signaling pathways,670
which is less emphasized in the past studies of T2DM.
Hence, it might be urgent to highlight the roles of liquid
condensates or liquid–liquid phase separation in T2DM,
which is possibly linked to abnormal protein aggrega-
tion. In addition, another important question to purse for
the accurate roles of signaling pathways in T2DM, is to
create in vitro models that sincerely mimic the real pro-
gression of T2DM. Nevertheless, feasible approaches to
address this problem might be involved in the organoid
technologies, which may largely recapitulate essential fea-
tures of in vivo organ development and biological function.
As such, they offer tractable and faithful in vitro tools for
disentangling molecular mechanisms of T2DM and devel-
oping regenerative pancreatic islets, as well as confer a
promising strategy that compensates for pharmacological
therapies in advanced T2DM. Importantly, we anticipate
that systematic application of these novel methodologies
and notions in basic research and clinical translation of
signaling pathways in T2DM would have a promising
impact in contributing to the discovery of antidiabetic
drugs with enhanced effectiveness and safety. This is pos-
sibly because precise interventions usually derive from
precise investigations.
In summary, remarkable insights over the past few

decades have gained vital understandings of signaling
pathways related to T2DM and therapeutic interventions.

Efficient management of T2DM and its complications is
still challenging, but these understandings available now,
together with more discoveries in the future, hold the
potential to achieve more potent and specific drug inter-
ventions for T2DM and its complications. Hence, we hope
that the knowledges summarized here can provide differ-
ent ideas for researchers working in the field of T2DM,
ultimately helping identify new therapeutic targets that
could break the vicious development of this disease.
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