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Abstract: The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day
divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight
(44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone
bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several
diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson’s, and obesity, among
others. The gut microbiota has been associated with the metabolic conditions of a person and is
regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body
weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing
evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In
addition, the molecular pathways, the role of metabolites, and how microbiota modulation could
be beneficial remain unclear, and more research is needed. The objective of the present article is to
contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition
of individuals with obesity through a literature review describing the latest research regarding the
topic and highlighting which bacteria phyla are associated with obesity and VLCKD.

Keywords: obesity; very-low-calorie ketogenic diet; nutrition; weight loss

1. Introduction

The ketogenic diet (KD) is a nutritional protocol characterized by a high fat and protein
intake and low carbohydrate consumption. There are mainly four types of ketogenic diets:
(1) classical KD, which is usually based on 90% fat, 4% carbohydrate, and 6% of proteins [1].
(2) medium-chain triglyceride, based on 10% long-chain triglycerides fat, 60% medium-
chain triglycerides fat, 20% carbohydrate, and 10% protein [1]. (3) modified Atkins based
on 65% fat, 10% carbohydrate, and 25% protein [1]. (4) low glycemic index diet based on
60% fat, 10% carbohydrate, and 30% protein [1].
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The classical KD had suffered some variations; for instance, the low-calorie KD (LCKD)
with a calorie intake of 800 to 1200 kcal/day based on 58% fat, 13% carbohydrate, and
29% of proteins, and the very-low-calorie KD (VLCKD) characterized by a caloric intake of
under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g
of protein/kg of body weight (44%), and 43% of fat [2]. In these cases, the carbohydrate
intake is reduced, forcing the body to switch to fatty acid oxidation, which induces ketoge-
nesis. Ketogenesis is a metabolic pathway in which the triglycerides are hydrolyzed into
fatty acids, and these into ketone bodies that could be used as alternative mitochondrial
energy [3–5]. VLCKD, fasting, and exercise promote glucose consumption, lowering the
insulin level and converting fatty acids into ketone bodies [3,6]. During ketogenesis, there
are three types of ketone bodies, acetone, acetoacetate (AcAc), and the mainly produced
3-hydroxybutyrate (BHB) [3]. The ketone bodies are broken down in the mitochondria of
metabolically active cells into acetyl-CoA, then to ATP [3,4,6].

There are reports with clinical trials of the metabolic effect of ketone bodies from the
VLCKD implicated in the prevention and treatment of human diseases. Clinical trials have
consistently shown a beneficial effect of VLCKD in improving heart failure [7,8], neuro-
protective properties in schizophrenia, multiple sclerosis, Parkinson’s, and Alzheimer’s
diseases [9–12], improving inflammation [13], reducing obesity [2,14–17], and recovering
muscle force after critical illness [18,19], among others.

Obesity has been described as the accumulation of fat in an individual, causing a direct
impact on a person’s health and daily life [20]. Moreover, the World Health Organization
(WHO) declared obesity a global epidemic when the individual’s body mass index (BMI)
is equal to or greater than 30 kg/m2 [20,21]. Approximately 13% of the adult population
was obese in 2016, and it is expected that almost the majority of the population will be
obese in 2030 [21,22]. There are reports of the adverse health impact or co-morbidities
promoted by obesity, such as heart diseases, hypercholesterolemia, hypertension, and de-
pression [23–28]. Additionally, obesity may cause endothelial, inflammatory, and hormonal
alterations, which may lead to a hypertensive state, increasing cardiovascular disease (CVD)
predisposition [29]. There is increased concern regarding CVD and its correlation with
obesity due to epidemiological data, which have shown a direct linear relationship between
both; hence if the prevalence of obesity increases, the CVD prevalence will also increase [30].
If there is no adequate follow-up and management of people with obesity, the adverse
effects can lead to serious complications and could cause the person’s death [20]. Therefore,
it is important to elucidate the etiology of obesity to develop effective interventions to
diminish the burden of the disease.

In the last few years, the keto diet has gained popularity as an alternative to reducing
weight by lowering appetite through the production of ketone bodies [31]. However,
within the diets, a study by Bezerra Bueno N. et al. (2013) [32] compared the conventional
low-fat diet in the long term and the VLCKD; the authors found that VLCKD led to a more
substantial decrease in weight, making it an excellent alternative for weight loss [32].

Furthermore, the gut microbiota is regulated by diet interactions and has been corre-
lated with the metabolic conditions of a person [33]. Hence, the microbiota composition is
variable depending on the environment and dietary patterns of the subjects. For instance,
research has shown that the human virome could be correlated to disease development,
principally due to its influence on the microbiota [34]. This gut microbiota variability
between individuals may make it difficult to identify differences in the composition when
comparing diets in people with obesity [35,36]. However, the essential role of the mi-
crobiome in the body weight homeostasis maintenance, regulating metabolism, appetite,
and energy, has been demonstrated by producing compounds derived from bacteria and
influencing the metabolic pathways of the individual [37,38].

The objective of the present article is to provide an overview of the impact that VLCKD
has on the intestinal microbiota composition of individuals with obesity through a literature
review describing the latest research regarding the topic and highlighting which bacteria
are associated with obesity and VLCKD.
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2. Gut Microbiota in Obesity

There are reports that changes in the gut microbiota composition of individuals with
obesity compared to healthy individuals are not a consequence of obesity. For instance,
Turnbaugh P. et al. (2008) [39] showed that colonization of germ-free mice with microbiota
associated with obesity led to an increase in fat deposition and total body fat. Hence, the
gut microbiota is a contributing factor to obesity pathophysiology [39,40].

The Human Microbiome Project has reported that healthy gut microbiota is mainly
composed of Firmicutes, Bacteroidetes, Actinomycetes, Proteus, Fusobacteria, and Verru-
comicrobia [41]. Based on these findings, several studies have compared the differences in
the microbial community in healthy and individuals with obesity. The first reports are from
observational studies performed on animal models. For instance, Ley R.E. et al. (2006) [41]
showed fewer Bacteroidetes and more Firmicutes abundance compared to their not obese
mice controls. Moreover, the coexistence of both microorganisms minimized the competi-
tion for resources, but uncharacterized properties increased the Firmicutes proportion [42].
Similarly, another study by Turnbaugh P. et al. (2006) [40] demonstrated in animal models
that the microbiota associated with obesity increases the ability to obtain energy from the
diet, and the increase in the Firmicutes/Bacteroidetes ratio in the microbiota was associated
with an obese phenotype [39].

Bifidobacterium species are an important and beneficial compound of gut microbiota;
they may be used as probiotics due to their role in producing acetate and lactate after
glucose fermentation. For instance, Waldram A. et al. (2009) [43] performed a study using
spectroscopy, fluorescence in situ hybridization (FISH), and electrophoresis to identify the
structural differences between obese and lean mice. The authors identified a reduction in
the abundance of Bifidobacterium compared to healthy individuals, suggesting a possible
inverse association between Bifidobacterium and obesity [43].

Similar dysbiosis has been described to occur in humans, Duan M. et al. (2021) [44]
showed significant differences in the gut microbiota between a control group and adults
with obesity. The authors found a clear reduction in the gut microbiota diversity of the latter.
The results in the obesity group, at the phylum level, exhibited a decrease in Firmicutes, an
increase in Bacteroidetes, and a reduction in the Firmicutes/Bacteroidetes ratio. Similarly,
Actinobacteria and Fusobacteria had significantly different proportions. At the species
level, nine species, including Fusobacterium mortiferum, Faecalibacterium prausnitzii,
Bacteroides uniformis, and Barnesiella intestinihominis, were markedly distinct. Moreover,
the lipid and carbohydrate metabolism pathways were abnormal. According to the au-
thors, the changes in Firmicutes and Bacteroidetes could be related to the environmental
conditions of the individuals, as the diet of the obese group under study preferred food
made of flour [44].

Likewise, Schwiertz A. et al. (2010) [45] performed a study to evaluate the differences
in gut microbiota and short-chain fatty acid (SCFA) concentration between adults with obe-
sity and lean subjects in Germany. Regarding the SCFA concentration, the authors found a
higher concentration in the obesity group in comparison with the control group. They also
reported smaller proportions of Firmicutes and an increased abundance of Bacteroidetes in
adults with obesity in contrast with other reports, for instance, the previously mentioned
study by Duan M. et al. (2021) [44]. Furthermore, bacteria from the Euryarchaeota phylum
(Methanobrevibacter) and Actinobacteria (Bifidobacterium) were detected in lower con-
centration proportions in the obesity group. Bacteria from Firmicutes and Bacteroidetes
produce SCFA, mainly butyrate and propionate, which may perform an important role in
obesity. Additionally, SCFA can avoid digestion in the small intestine and be an additional
energy source [45].

On the other hand, Koliada A. et al. (2017) [46] carried out a study to understand the as-
sociation between the gut microbiota, with a special focus on the Firmicutes/Bacteroidetes
ratio and BMI in a sample from the Ukranian population. The authors compared the fecal
concentrations of the Actinobacteria, Firmicutes, and Bacteroidetes phyla. The results
showed differences in the proportion of each bacterial group between the groups. The
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abundance of Firmicutes increased with a higher BMI, whereas the proportion of Bac-
teroidetes decreased with an increasing BMI. The Firmicutes/Bacteroidetes ratio also grew
with a higher BMI. These results may be explained by the fact that Firmicutes are better
energy sources than Bacteroidetes, leading to higher calorie absorption and subsequent
weight gain [46].

Similarly, Zhang H. et al. (2009) [47] studied the gut microbiota in people with
obesity, after a gastric bypass, and in normal-weight adults. The phylogenetic analyses
showed that the Firmicutes phylum was highly abundant in the normal-weight and obese
groups; however, after a gastric bypass, the abundance markedly decreased. Moreover,
there was a significant increase in the Prevotellaceae family, mainly associated with H2
production, in adults with obesity. The findings led to the hypothesis that the interspecies
H2 transfer is an important mechanism for increasing energy uptake in individuals with
obesity. Furthermore, the results also indicate the impact that a surgical procedure may
have on microbiota [47].

A study by Bervoets L. et al. (2013) [48] identified the differences in the gut microbiota
composition between obese and lean children. The authors found that children with obesity
had a higher Firmicutes/Bacteroidetes ratio and a higher concentration of Lactobacillus spp.
(Firmicutes phylum) [48]. Interestingly, the Lactobacillus genus has been positively and
negatively associated with obesity. For instance, Million M. et al. (2013) [49] showed that
Lactobacillus reuteri was correlated with a higher BMI [49], whereas Karlsson F.H. et al.
(2013) [50] found that Lactobacillus casei was negatively related to obesity [50]. These
results suggest a possible strain-specific role of the Lactobacillus genus in obesity [48,49,51].

Xu Z. et al. (2022) [52] performed a systematic review correlating microbiota, obesity,
and metabolic disorders, analyzing 2390 reports and including 60 studies. The authors
found that Proteobacteria was the most associated phylum with obesity, followed by
Firmicutes. Furthermore, the authors also described Bacteroidetes and Actinobacteria
as lean-associated phyla [52]; for instance, Bai J. Hu Y. Bruner DW. (2019) found that an
increase in the Proteobacteria phylum was correlated with a higher BMI in a cohort of
7–18 years old children [53].

Finally, Moreno-Navarrete J.M. et al. (2018) [54] analyzed the correlation between gut
microbiota, insulin sensitivity, and gene expression in subcutaneous and visceral tissue in
subjects with obesity. The authors found that the individuals with insulin resistance had an
increased abundance of Bacteroidetes and Proteobacteria; and a decrease in the Firmicutes
proportion. They also identified that the relative abundance of Firmicutes was associated
with markers of brown adipocytes in subcutaneous obesity but not visceral obesity [54].

Obesity has not been associated with a specific bacteria or pathogen, but it may be
directly related to dysbiosis in the ecosystem, which is directly influenced by diet and the
environment in which the individual develops. For this reason, differences in the abundance
of several bacterial strains have been identified in models and patients with obesity.

3. Impact of a Very-Low-Calorie Ketogenic Diet (VLCKD) on the Microbiota of
Subjects with Obesity

VLCKD involves carbohydrate deprivation, which is associated with a decrease in
glycolysis and an increase in lipolysis, glycogenolysis, and gluconeogenesis for energy gen-
eration [55]. During lipolysis, ketone bodies (acetone, 3-β-hydroxybutyrate, acetoacetate)
are generated and used as an energy source [55]. Interestingly, ketone bodies can produce
more energy than glucose because of the ketosis metabolic effects [36]. KD has also been
related to a decrease in the synthesis of reactive oxygen species and the upregulation of
energy metabolism genes, mitochondrial biogenesis, and KATP channels [55]. Research has
analyzed the impact that VLCKD has on obesity. For instance, Barrea L. et al. (2023) [30]
performed a study on 137 women that agreed to participate in the clinical trial. The authors
found that after 45 days of VLCKD, all the women in the project experienced a signifi-
cant weight reduction and improvement in body composition parameters. Furthermore,
research regarding VLCKD, and microbiota modulation is lacking [30].
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Gutiérrez-Repiso C. et al. (2019) [56] performed a nutritional intervention clinical trial
to determine the effects of a VLCKD and symbiotic on the microbiota of thirty-three adults
with obesity [56]. The authors found an association between VLCKD and weight loss. They
also reported a significant difference in the gut microbiota diversity by analyzing the Shan-
non Index, which is a measure of species diversity at distinct levels [56,57]. At the genus
level, Butyricimonas and Oscillospira abundance increased. Oscillospira, belonging to the
Firmicutes phylum, has been positively associated with high-density lipoprotein, butyrate,
leanness, human health, and microbial diversity [58,59], whereas the Butyricimonas genus
(Bacteroidetes phylum) has been positively correlated to energy metabolism, promoting the
homeostasis between microbiota and the host [60,61]. On the other hand, the proportion
of Erwinia, Serratia, and Citrobacter decreased. Interestingly, an increased abundance of
Serratia and Citrobacter has been associated with obesity [62,63]. The authors concluded
that VLCKD could restore the microbiota after obesity-associated dysbiosis [56].

Additionally, in another study by Gutierrez-Repiso A. et al. (2021) [64], the authors
compared the microbiota of subjects with different weight loss interventions (Mediter-
ranean diet, VLCKD, and sleeve gastrectomy bariatric surgery) [64]. They found that
VLCKD patients had an increased abundance of Alistipes and Parabacteroides. Correlations
between the decreased proportion of Alistipes and Parabacteroides and obesity have been de-
scribed [44,65]. On the contrary, the authors found a decrease in Lactobacillus [64]. The effect
of the Lactobacillus genus on obesity appears to be strain dependent. For instance, studies
have associated decreased visceral fat, BMI, and waist circumference with an increased
abundance of L. gasseri [66]. Similarly, Wang M. et al. (2020) [67] described a correlation
between the presence of L. fermentum, L. acidophilus, L. casei, L. paracasei, and L. rhamnosus
and a decrease in body weight [67], whereas strains, such as L. reuteri, have been positively
associated with obesity [68].

Basciani S. et al. (2020) [69] analyzed the effects of VLCKD on body composition
parameters and gut microbiota of subjects with obesity. The authors enrolled forty-eight
subjects and divided them into three groups: (1) VLCKD with whey protein, (2) VLCKD
with vegetable protein, and (3) VLCKD with animal protein [69]. All groups showed a
significant reduction in total fat mass, body weight, total and low-density lipoprotein choles-
terol, BMI, triglycerides, and waist, thigh, and hip circumference. Moreover, at baseline,
they found a higher abundance of Firmicutes, followed by Bacteroidetes, Proteobacteria, and
Actinobacteria. However, at day 45 of the VLCKD, the authors found a decreased proportion
of Firmicutes and Actinobacteria and an increased abundance of Bacteroidetes and Proteobac-
teria [69]. Alterations in the Firmicutes/Bacteroidetes ratio have been broadly associated
with several diseases, including obesity [44,70]. For instance, Palmas V. et al. (2021) [65]
described a positive association between obesity and an increased Firmicutes/Bacteroidetes
ratio, reporting values more than twice in comparison with the microbiota of subjects with
standard weight [65]. Similarly, an increased abundance of the Actinobacteria phylum has
been correlated with obesity [71,72]. Moreover, the Proteobacteria phylum has been related
to obesity as a potential inflammation driver [52]. Additionally, the authors found that the
whey and vegetable protein groups showed the highest decrease in Firmicutes abundance,
whereas the whey protein group had the highest increase in Bacteroidetes proportion [69].

Likewise, Deledda A. et al. (2022) [73] analyzed the dynamics of the gut microbiota
by comparing the effect of a Mediterranean diet (MD) and a VLCKD [73]. The authors
described that both diets influenced weight reduction, BMI, and waist circumference, and
identified an increased abundance of the Verrucomicrobiota phylum, and characterized
the Akkermansiaceae and Christensenellaceae families as microbial markers associated with
VLCKD [73]. Interestingly, members of the Akkermansiaceae family as the A. municiphila have
been correlated with anti-obesogenic effects in rodents and humans [74–76]. Even though
the Christensenellales family belongs to the Firmicutes phylum, its abundance has been
described as enriched in individuals with normal BMI in comparison with subjects with
obesity [77]. The authors also described a depletion in the abundance of the Actinobacteria
phylum, which has been associated with obesity [71,72]. In addition, the strongest gut
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microbiota positively associated pathways included non-homologous end-joining pathways
and steroid and carotenoid biosynthesis. On the other hand, cephalosporin, penicillin
biosynthesis, pinene, limonene, and ethylbenzene degradation were negatively associated
with VLCKD. No significant taxa or pathway differences were found for the MD group [73].

The VLCKD Is an excellent alternative for weight loss on obesity management. Ad-
ditionally, research has shown how VLCKD could improve microbiota homeostasis, pro-
moting the abundance of bacteria associated with good health. Figure 1 and Supple-
mentary Table S1 compare the reported effects that obesity and VLCKD have on gut
microbiome abundance.
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4. Discussion

Researchers consider the gut microbiota a “hidden metabolic organ” because of its
role in host brain function, immunity, inflammation, nutrition, and metabolism [78,79].
Estimates suggest that there are around 500 to 1000 bacterial species at any given time in
our gut, with each strain having a unique genome [80,81]. The bacteria in the microbiota
produce an extensive range of metabolites, such as short-chain fatty acids (SCFAs), sero-
tonin, and nitric oxide, which, based on their chemical structure similarity, can bind to host
cell receptors and trigger hormonal signaling. For instance, it has been shown that strains
of Lactobacilli can produce γ amino butyric acid (GABA), an inhibitory neurotransmitter
whose modulation can influence depression and anxiety [82,83].

The human gut microbiota is mainly composed of Firmicutes and Bacteroidetes, which
are the most abundant, followed by Proteobacteria and Actinobacteria phyla. Moreover,
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the principal enterotypes include Ruminococcus, Bacteroides, and Prevotella [84]. Inter-
estingly, it has been shown that the host’s diet determines which genus is the most
abundant [85]. Furthermore, microbiome dysbiosis has been correlated with several dis-
eases, including epilepsy, Alzheimer, inflammatory bowel syndrome, and obesity [55,69].
Cuevas-Sierra A. et al. (2019) [86] reported a significant difference in gut microbiota be-
tween lean and subjects with obesity [86]. The gut microbiota is influenced by various
factors, such as antibiotic use, genetics, age, and diet [33,36,73,80]. Additionally, this
microbiota modulation could potentially help to treat these diseases [69].

Obesity has been associated with various metabolic diseases as hypertension and
diabetes, among others. Several factors promote the pathogenicity of obesity as an energy
imbalance, low-grade inflammation, and gut microbiota dysbiosis [87–89]. For instance,
an increased Firmicutes/Bacteroidetes ratio is considered one of the hallmarks of obesity,
although this statement has been disputed. Moreover, it has been shown that an altered
microbiota increases gut permeability, which could lead to the passage of endotoxins,
such as lipopolysaccharides (LPS). LPS may trigger a constant inflammatory and immune
response [73,84,90]. In addition, Meijnikman AS. et al. (2020) [91] found that subjects
with a higher BMI had a lower gut microbiota alpha diversity compared to non-obese
individuals [91]. The authors also described a positive correlation between gut microbial
amino acid metabolism and obesity [91].

The impact of diet on the microbial population has been well described; however, re-
cent studies have highlighted that the microbiome may also influence nutritional status via
their secreted metabolites, such as SCFAs, secondary bile acids (Bas), and indole metabolites,
which could alter appetite regulation by modifying the activity of the enteric nervous sys-
tem and the gut-brain axis, generating bi-directional crosstalk [84,92]. Enteroendocrine cells
are located in the stomach, pancreas, and gut epithelium, and they can respond to nutrients,
metabolites, and mechanical stimuli by secreting neurotransmitters, such as glucagon-like
peptide 1, ghrelin, serotonin, and peptide YY. These neurotransmitters are associated with
several essential functions in metabolism and can modulate gut motility, insulin and bile
acids secretion, and food intake [84,92]. For instance, Modasia A. et al. (2020) [93] showed
that the gut bacterium Bacteroides thetaiotaomicron could influence enteroendocrine cells in
the gastrointestinal tract of a murine model [93].

Studies have compared the impact of different diets on the microbiome. For instance,
as previously mentioned, Deledda A. et al. (2020) [73] compared the effects of a VLCKD
and an MD. The authors found that, in addition to a reduction in body weight and BMI, the
VLCKD had a statistically significant impact on gut microbiota, promoting the abundance
of leanness-associated bacterium, such as A. municiphila [73]. Similarly, MD is based on the
reduced consumption of red meat, and unprocessed and industrial foods may influence
body weight and BMI. However, the effect on the microbiota before and after the nutritional
intervention did not achieve statistically significant differences [73].

Likewise, Simões CD. et al. (2013) [94] analyzed the effects of a very low-energy
diet (VLED) on gut microbiota. The authors found a two-fold decrease in Bifidobacterium
after the nutritional intervention [94]. Interestingly, although Bifidobacterium belongs to
the Actinobacteria phylum, which has been positively correlated to obesity, this genus is
considered a probiotic associated with leanness and good health [94,95]. Moreover, the
study also showed that the changes in gut microbiota were promoted by diet and not due
to weight changes [94]. In comparison with VLCKD, the VLED changes in gut microbiota
were only significant for one genus, whereas, for the VLCKD, the changes were significant
in the increased or decreased abundance of different phyla. However, the approaches to
evaluate the microbiome were different due to Simões CD. et al. 2014 used qPCR and FISH
methods for VLED, and the VLCKD analyses mentioned in this paper were performed
using next-generation sequencing. More research is needed to understand the differences
in gut microbiota modulation between a VLED and a VLCKD.

Furthermore, Remely M. et al. (2015) [96] analyzed the effect of intermittent fasting
(IF) on the microbiota. The authors did not report significant changes in total bacteria
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abundance; however, they found an increased proportion of the Faecalibacterium prausnitzii
species and the Akkermansia and Bifidobacterium genera [96]. A decline in Faecalibacterium
prausnitzii abundance has been associated with chronic inflammation and obesity [97].
Similarly, a reduction in the Akkermansia and Bifidobacterium genera has been correlated
with obesity in different studies [95,98]. Similar to VLCKD, the influence of IF on gut
microbiota looks promising; however, further studies should be conducted to identify the
role of IF on the microbiome.

Miao Z. et al. (2022) [99] studied the effect of a plant-based diet on gut microbiota. The
authors found an increased alpha and beta diversity after a healthy plant-based diet [99].
Similarly, Losasso C. et al. (2018) [100] compared the gut microbiota of three groups
(vegetarian, vegan, and omnivore). The group found an increased microbiome diver-
sity, increased Bacteroidetes abundance, and a decreased Firmicutes proportion. Although
disputed, an increased microbiota diversity has been positively associated with greater
functional diversity and host health [100]. In comparison with the VLCKD, a plant-based
diet appears to have a stronger influence on the Firmicutes/Bacteroidetes ratio. More studies
evaluating plant-based and VLCKDs must be conducted to associate the effect of diet on
the microbiome.

5. Conclusions

There are several factors associated with the etiology of obesity, primarily associated
with genetics, diet, and lifestyle. The prevalence of obesity is increasing and is estimated
to affect half of the population in the future, which is immensely alarming. There is
increasing evidence of an association between some bacterial strains and weight. VLCKD is
a remarkable option for weight loss because, due to carbohydrate deprivation, triglycerides,
and fatty acids are catabolized into ketone bodies, which are a more efficient energy source
than glucose. Furthermore, besides the impact that VLCKD has on weight loss, it has been
shown that VLCKD could significantly modulate gut microbiota and restore its homeostasis,
which has been an essential and integral part of the treatment for several diseases, such
as epilepsy, Alzheimer, inflammatory bowel syndrome, and obesity, as mentioned in the
review. Additionally, by comparing the VLCKD with other types of diet, only the plant-
based diets had a similar beneficial effect on gut microbiota, highlighting the impact that a
VLCKD has on the microbiota.

6. Future Directions

Currently, there is increasing evidence of an association between gut microbiota
dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the
role of metabolites, the interactions with viruses, and how microbiota modulation could be
beneficial remain unclear, and more research is needed. Developments in the metagenomics
field have allowed us to characterize each person’s microbiome, the metabolites produced,
and their related pathways. This new information is vital to understand the association
between microbiota and host health by identifying new disease biomarkers and how they
can be modulated to promote homeostasis. However, there is a discrepancy regarding the
“good” microbiota. For instance, some studies associate a decrease in the abundance of
Firmicutes with a reduction in BMI, whereas others have related this effect to a drop in the
Bacteroidetes proportion. Hence, it is highly important to elucidate which bacterial strains
are beneficial for our health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15122728/s1, Table S1: Gut microbiota microorganisms’ abun-
dance in individuals with obesity compared to individuals on a VLCKD.
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