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SUMMARY
Obesity contributes substantially to the global burden of disease and has a significant heritable component.
Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants
have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified
associations in the UK Biobank study (N�420,000). We identified genes in which rare heterozygous loss-of-
function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes
up to�8 kg/m2. This is complemented by analyses implicating rare variants inOBSCN andMADD for recalled
childhood adiposity. The known functions of these genes, as well as findings of common variant genome-
wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response
mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of
considering sex-specific and life-course effects in the genetic regulation of obesity.
INTRODUCTION

Obesity is a global issue affecting over 650million adults and 124

million children and adolescents.1 It is associated with increased

mortality and morbidity as well as numerous comorbidities, such

as cardiovascular disease and type 2 diabetes (T2D) and repre-

sents an enormous health burden. Obesity prevalence is greater

in women than in men,2 and women tend to have more body fat

that is preferentially stored as subcutaneous fat in lower body

depots, whereas men are more prone to visceral fat accumula-

tion in the abdominal region.3 These sex differences in adiposity

affect risks for several obesity-related comorbidities, such as

hypertension and T2D.4 Yet, sex-specific analysis in research

is uncommon, with most genetic studies adjusting for sex rather

than analyzing data separately for men and women.

It is estimated that around 40%–70% of inter-individual vari-

ability in body mass index (BMI) can be attributed to genetic fac-

tors.5,6 Very large population-based studies (N �700K) have

identified over 900 genetic loci associated with BMI in adults.7

Most of those genetic variants, although common, are located
This is an open access article und
in non-coding regions, and collectively explain only �6% of the

population variance in adult BMI.7 The recent advent of whole-

exome sequencing (WES) in large population-based studies8

has enabled assessment of rare coding variants in disease and

related traits. The largest WES analysis for BMI to date

comprised �620,000 adults9 and identified rare variants in 16

genes associated with adult BMI, including rare loss-of-function

variants in GPR75, where 1:2,500 are heterozygous carriers and

these have 1.8 kg/m2 lower BMI and half the odds of obesity

compared with non-carriers.

The genetic determinants of childhood adiposity are less well

studied due to a relative paucity of data in large-scale childhood

cohorts. However, childhood obesity has an important impact on

child health, and individuals who develop obesity in childhood

generally tend to remain obese as adults.10 Studies of childhood

BMI (combined sample size �56K) reported that many loci for

adult BMI also operate in early life.11,12 Furthermore, some loci

exhibit stronger effects on adiposity in childhood, with less or

even null effect in adulthood.11 Across all these studies, the iden-

tified loci implicate brain-expressed genes, many acting on the
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Figure 1. Gene burden associations of rare variants with adult BMI by sex

(A) Miami plot showing significantly associated genes (Bonferroni corrected p < 7.76 3 10�7) separately in women (upper) and men (lower).

(B) QQ plot of the same data.

(C) Effect estimates and 95% confidence intervals for each identified gene. For further details, see Tables S2 and S3.
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leptin-melanocortin pathway, where rare heterozygous or homo-

zygous loss-of-function of key genes are reported causes of

monogenic obesity manifesting with hyperphagia in early child-

hood.13–15 Furthermore, large-scale genetic studies of pubertal

timing, an event closely coupled with childhood adiposity status,

have also identified loci and biological mechanisms influencing

early growth and development.16–19

Here, we explored two further approaches to identify genes

that regulate susceptibility to obesity: rare coding variants (1)

with sex-specific effects on adult BMI, or (2) associated with

childhood adiposity, using a childhood body adiposity trait that

was subjectively recalled in adults (sample size �400K) from

the UK Biobank study, and was recently reported to show high

genetic correlation (rg = 0.85) with objectively measured child-

hood BMI.20 Sex-specific associations with body size and

metabolic disease have been described for common genetic

variation,21,22 yet few examples exist for rarer variants, which

offer greater opportunity to directly implicate causal genes. Like-

wise, common variant genome-wide association studies

(GWASs) have been performed for recalled childhood adiposity,

yet no similar study exists for rarer variants. To address this, we

undertook a dual exome-wide association study (ExWAS)

approach using data from up to 419,692 individuals from the

UK Biobank study.

RESULTS

Rare variants associated with sex-stratified adult BMI
To identify rare coding variants that exhibit sex-specific effects

on adult adiposity, we performed ExWAS for adult BMI (kg/m2)

separately in 191,864men and 227,828 women from the UK Bio-

bank study. Gene burden tests were performed by collapsing

rare variants (minor allele frequency [MAF] < 0.1%) in individual

genes according to two overlapping predicted functional cate-

gories: (1) high-confidence protein truncating variants (PTVs)

and (2) PTV plus missense variants with a combined annotation

dependent depletion (CADD)23 score R25 (termed ‘‘damaging

variants,’’ DMG).The absence of significant signals (Figure S1)
2 Cell Genomics 3, 100362, August 9, 2023
and inflation of test statistics (Table S1) across different allele

count ranges for synonymous variant burden tests provided

reassurance that our association testing models were well

calibrated.

Five genes were associated with BMI in females (DIDO1,

KIAA1109, MC4R, PTPRG, and SLC12A5) and two genes were

associated with BMI in males (MC4R and SLTM) at exome-

wide significance (p < 7.76 3 10�7; 0.05/64,396 tests (32,536

and 31,860 gene burden tests in females and males, respec-

tively)) (Figures 1 and S2, Tables S2 and S3). Two of these genes,

MC4R and KIAA1109, were reported in previous sex-combined

ExWAS for BMI,9 and showed exome-wide significant or sub-

threshold associations with BMI in both sexes, as did SLTM

(men: beta = 3.34 kg/m2/allele, p = 2.7 3 10�7, n = 38 PTV car-

riers; women: beta = 2.6, p = 9.5 3 10�4, n = 37 PTV carriers;

Psex-heterogeneity = 0.48).

Rare protein-coding variants in the remaining three genes,

identified for BMI in females (DIDO1, PTPRG, and SLC12A5),

have not previously been implicated in adiposity and appear to

have female-specific effects, with not even nominal association

with BMI in males; in females: DIDO1 (beta = 7.91 kg/m2, p =

9.5 3 10�10, n = 14 PTV carriers, Psex-heterogeneity = 1.2 3 10�3),

PTPRG (beta = 2.62 kg/m2, p = 1.7 3 10�7, n = 92 PTV carriers,

Psex-heterogeneity = 1.53 10�3), and SLC12A5 (beta = 7.50 kg/m2,

p = 2.73 10�7, n = 11 PTV carriers, Psex-heterogeneity = 5.83 10�4)

(Figures 1C, 2A, 2B, and S2A–S2E, Tables S2 and S3). We per-

formed a number of sensitivity analyses to evaluate how robust

these signals were to different analytical approaches

(Table S4, STAR Methods). Test statistics were highly concor-

dant for all reported genes, with the exception of SLC12A5. Plots

along with association results for individual variants in the high-

lighted genes are shown in Figure S2 and Table S3.

To identify potentialmechanismsunderlying theseobserved fe-

male-specific effects, we further explored rare variant sex-strati-

fied associations for DIDO1, PTPRG, and SLC12A5 with free

testosterone, sex-hormone binding globulin (SHBG), and waist-

hip-ratio adjusted for BMI (WHRadjBMI). Female carriers of

PTVs in DIDO1 have a stronger association with circulating free



Figure 2. Distributions of adult BMI by sex

(A) In all UK Biobank participants; (B) among carriers of rare variants (DMG, damaging; PTV, protein truncating) in genes associated with sex-stratified BMI. Mean

and 95% CI for each group are indicated by horizontal bars and boxes. Summarized group data can be found in Table S22.
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testosterone concentrations (beta = 0.51, p = 9.8 3 10�3) than

their male counterparts (beta = 0.001, p = 0.99, Psex-heterogeneity =

2.73 10�2) aswell aswithWHRadjBMI (females: beta =�0.04, p =

1.3 3 10�2; males: beta = 0.02, p = 0.29; Psex-heterogeneity = 3.03

10�4). Conversely, male carriers of PTVs in PTPRG have a stron-

ger association with WHRadjBMI (beta = �0.02, p = 2.4 3 10�3;

Psex-heterogeneity = 8.8 3 10�3) than their female counterparts

(beta = �0.001, p = 0.92) (Table S5). Women carrying PTVs in

SLC12A5 had higher odds of T2D than non-carriers (odds ratio

[OR] 17.1 [4.3–67.5], Pglm = 5.2 3 10�5) with four of nine having

T2D (UK Biobank T2D prevalence in females = 5.6% [12,675/

227,363], PExact = 7.93 10�4, Table S5). In contrast, we identified

only two males (both non-obese and non-diabetic) carrying a

PTV in SLC12A5. Unlike the SLC12A5 BMI association, test

statistics for this T2D association were consistent across sensi-

tivity analyses (Table S5). None of the female-specific BMI-asso-

ciated genes showed an association with menopausal status

(Table S6).

The prevalence of obesity (BMI >30 kg/m2) among carriers of

DMG variants in MC4R was 39% (228 of 591) in females and

38% (195 of 518) in males, with ORs of 2.01 [1.68–2.41] and

1.71 [1.41–2.08], respectively (Figures 3A and 3C, Table S7).

This is substantially lower than previously reported penetrance

ofMC4R variants that cause partial or complete loss-of-function

in vitro.13 By contrast, the prevalence of obesity among female

carriers of PTV variants in DIDO1 and SLC12A5 was more than

80%, albeit there were relatively fewer carriers (12 of 14 and 9

of 11 carriers were obese, respectively) (PHeterogeneity = 9.9 3

10�6 and PHeterogeneity = 2.6 3 10�4, respectively) (Table S7).

In the absence of sufficiently large ExWAS replication cohorts,

we sought supporting evidence for our identified genes by exam-
ining independent common (MAF >0.1%) genetic variant

(GWAS) associations with BMI. Four of our six identified

ExWAS genes (DIDO1, MC4R, SLC12A5, and SLTM) mapped

to within 500 kb of a common GWAS signal for sex-combined

BMI (Figure S3, Table S8) and DIDO1 andMC4R were also sup-

ported by gene-level associations between common non-synon-

ymous variants and BMI (p = 3.8 3 10�5 and p = 5.0 3 10�10,

respectively). Furthermore, the lead GWAS SNP at the DIDO1

locus (rs6011457, p = 2.43 10�10) is intronic in DIDO1, is corre-

lated with known enhancers forDIDO1,24 and exhibits a stronger

association with BMI in women (p = 3.23 10�8) than BMI in men

(p = 4.3 3 10�3, Phet = 0.029). At the SLTM locus, we observed

colocalization between common variant associations for BMI

and SLTM expression (H4 posterior probability = 0.975, see

STAR Methods), where variants that decrease SLTM expression

increase BMI, which is directionally concordant with the rare

variant association (Table S8).

Rare variants associated with childhood adiposity
We next undertook an ExWAS for childhood adiposity in 414,032

European genetic-ancestry adult UK Biobank study participants

using the variable ‘‘comparative body size at age 10’’ (SAC10),

which comprises responses to the question: ‘‘When you were

10 years old, compared to average would you describe yourself

as thinner, plumper, or about average?’’ Although this is a re-

called and non-quantitative indicator of childhood adiposity, it

is reported to show strong genetic correlation with objectively

measured childhood BMI (rg = 0.85).20 We confirmed this in

data from a larger childhood sample (rg = 0.94, N = 35,668),25

and thus consider it to represent a robust trait for genetic anal-

ysis of childhood adiposity.
Cell Genomics 3, 100362, August 9, 2023 3



Figure 3. Adult and childhood obesity risk in carriers of rare damaging variants in the exome-identified genes

(A) Comparative size at age 10; ‘‘Thinner,’’ ‘‘Average,’’ or ‘‘Plumper’’ was treated as an ordered categorical outcome to indicate childhood obesity. Adult BMI was

similarly split into three categories: <20, >20 but <30, and >30.

(B) These two categorical outcomes were tested in cumulative link models against carrier status for qualifying rare exome variants. Displayed log(OR) with 95%

CIs and underlying data can be found in Table S7.
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In a sex-combined ExWAS, six genes were associated with

SAC10 (CALCR, INHBE, MADD, MC4R, OBSCN, and POMC)

at exome-wide significance (p < 1.47 3 10�6, 0.05/34,127 tests)

(Figures 4, 5, and S4, Tables S2 and S3). Two of these genes

have been reported as disrupted in individuals with severe

early-onset obesity13,14: MC4R (beta = 0.32, p = 3.7 3 10�57,

N = 1,102 DMG carriers; OR 2.42 [2.14–2.74]) and POMC

(beta = 0.12, p = 5.6 3 10�11, n = 1,303 DMG carriers (OR 1.38

[1.23–1.54]) (Figures 3A, 3B, 4C, and 5). Overall gene-level asso-

ciations appeared to be driven by variants within specific sub-

domains, for POMC by variants that encode the a-MSH peptide,

and forMC4R by variants within its intramembrane domains and

particularly helix 1 and 4 (Figure 5, Table S9). We also observed

concordant associations with previously reported gain- and

loss-of-function variants inMC4R26 as well as with gain-of-func-

tion variants in POMC27 (Tables S9 and S10).

Two further genes have previously been implicated in

adiposity phenotypes: CALCR (beta = 0.11, p = 6.7 3 10�11,

n = 1,636 DMG carriers; OR 1.35 [1.22–1.50]) was reported in

an ExWAS for adult BMI9 and INHBE (beta = 0.10, p = 5.0 3

10�7, n = 1,199 DMG carriers; OR 1.26 [1.12–1.42]) was reported

in an ExWAS for WHRadjBMI28(Figures 3A, 3B, and 4C).

Rare variants in the two remaining genes associated with

SAC10 have not previously been implicated in childhood

adiposity or body size: MADD (beta = �0.18, p = 5.9 3 10�7,
4 Cell Genomics 3, 100362, August 9, 2023
n = 327 PTV carriers) and OBSCN (beta = 0.05, p = 1.4 3

10�7, n = 4954 PTV carriers) (Figure 4C). Of the 4,954 individuals

with a PTV inOBSCN, we identified one homozygous and 25 pu-

tative compound heterozygous individuals, who together had

higher odds of being plumper as a child compared with non-car-

riers (OR = 2.45 [1.20–4.97], p = 0.013), which is substantially

higher than the odds of heterozygous carriers compared with

non-carriers (OR = 1.13 [1.07–1.20], p = 3.0 3 10�5)

(Tables S11 and S12).OBSCN encodes one of three giant sarco-

meric signaling proteins and is predominantly expressed in

skeletal muscle29 where it plays a role in the organization of myo-

fibrils during assembly.30 Biallelic loss-of-function variants have

been identified in young and predominantly physically active in-

dividuals with rhabdomyolysis.31 We additionally observed an

association for heterozygous OBSCN mutations with greater

measured hand-grip strength (0.58 kg ± 0.01, p = 3.2 3 10�9,

n = 5,006 PTV carriers, Table S5), which might suggest a pre-

dominant effect on early muscle fiber development rather than

adiposity.

We sought supporting evidence for our identified SAC10

ExWAS genes by assessing common genetic variant associa-

tions with SAC10 in the UK Biobank. Five of the six genes iden-

tified by ExWAS (CALCR, INHBE, MADD, MC4R, and POMC)

map to within 500 kb of a common GWAS signal for SAC10

(Figure S5, Table S8). Furthermore, common non-synonymous



Figure 4. Gene burden associations of rare variants with comparative size at age 10

(A) Manhattan plot showing significantly associated genes (Bonferroni corrected p < 1.47 3 10�6).

(B) QQ plot of the same data.

(C) Effect estimates and 95% confidence intervals for each identified gene. For further details, see Tables S2 and S3.
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variants in four of these genes (CALCR, MADD, MC4R,

and POMC) showed gene-level associations with SAC10

(Table S8).

Comparison of rare variant associations between
childhood adiposity and adult BMI
Previous work reported substantial overlap in common variant

associations between childhood and adult BMI,12,25,32 consis-

tent with the strong tracking of childhood overweight into adult-

hood10 with all monogenic forms of obesity reported to date

already manifesting in early childhood and persisting to adult

life.33 We observed that rare variants in eight genes show

concordant effects between SAC10 and adult BMI: two genes

(MC4R and CALCR) are associated at exome-wide significance

with both traits; and six genes (INHBE, POMC, PTPRG,

KIAA1109, OBSCN, and DIDO1) show concordant effects

across childhood and adult phenotypeswith at least nominal sig-

nificance (Table S2). Four of these genes (CALCR, INHBE,

MC4R, andPOMC) show apparent stronger effects on childhood

adiposity (despite its weaker mode of assessment) than on adult

BMI (Figure 6, Table S13).

One gene, MADD, identified for SAC10, appears to have

specific effects on childhood adiposity with not even nominal

association with adult BMI in either sex (Figure 6, Tables S2

and S13). MADD is also the only gene we identified in which

loss-of-function confers lower adiposity. MADD is proximal

to a reported common variant signal for fasting glucose34;

that lead GWAS variant (rs7944584-A) is moderately corre-

lated (R2 = 0.28) with the genome-wide significant common

variant for SAC10 in our analysis (Figure S5C, Table S8) and

is also an expression quantitative trait loci (eQTL) for MADD

in several tissues.35 This eQTL association is consistent with

the PTV association—the allele associated with lower MADD

expression is associated with lower SAC10 and lower fasting

glucose levels.

Conversely, two genes identified for adult BMI (SLC12A5 and

SLTM) appear to have adult-specific effects on adiposity (Fig-

ure 6, Tables S2 and S13). In a further subgroup analysis, their

effects on adult BMI were not further modified by age at BMI

measurement (Table S14).

Overall, apart fromOBSCN, we observed no more than one or

two individuals with homozygous or possible compound hetero-
zygous rare PTV or DMG variants in any identified genes

(Table S11). Therefore, the observed effect estimates reflect

the effects in heterozygous variant carriers.

Exploring DNA damage response processes in adiposity
regulation
Several of the genes identified above (MADD,DIDO1, andSLTM)

have been implicated in apoptosis,36–38 with DIDO1 and SLTM

also being linked to DNA damage.39,40 We explored further evi-

dence for DNA damage response (DDR) processes in suscepti-

bility to obesity by performing common variant genome-wide

pathway enrichment analyses for SAC10 and adult BMI (STAR

Methods). We observed enrichment for adult BMI (Pmin =

3.0 3 10�3), but not SAC10, for two established DDR gene

sets (‘‘Gene Ontology DNA repair’’ and ‘‘Gene Ontology Cellular

response to DDR stimulus’’) and with a third custom-curated

DDR gene set (Table S15). Furthermore, 38 genes in these

DDRgene sets could be annotated as the nearest gene to a com-

mon variant signal for adult BMI (Table S16). Notable examples

include BRCA1 and TP53, which encode key DNA damage

repair and checkpoint proteins41,42; ALKBH3, ASCC3, FTO,

and MGMT, which are involved in the repair of DNA alkylation

damage43–45; and PRMT6, HUWE1, and NTHL1, which are

involved base excision repair.46–48 Genes encoding components

of the Fanconi anemia pathway (such as FANCD2) have also

been shown as critical for the regulation of adiposity, as well

as genes involved in the cellular response to DNA damage via

programmed cell death mechanisms (BAD, BCL2, and

RBBP6).49–52

As DDR is implicated in biological aging,53 we tested whether

DDR processes might be specific, or more relevant, to adult

rather than childhood adiposity. To test this, we identified 843

common variant genome-wide significant signals for adult BMI

and 349 GWAS signals for SAC10 in the UK Biobank. Of these,

114 signals were categorized as ‘‘adult-specific’’ (no effect on

childhood adiposity-related traits) and 15 signals as ‘‘child-

hood-specific’’ (no association with adult BMI). The remaining

753 of 882 (85%) independent signals with complete look-up

data were classified as ‘‘life-course-acting’’ (both childhood

and adult effects) (Tables S16 and S17, STAR Methods).

We next mapped each GWAS signal to its closest gene,

linking the 114 adult-acting signals to 112 genes, the 15
Cell Genomics 3, 100362, August 9, 2023 5



Figure 5. Exome associations between the

functional domains of POMC, MC4R and

SAC10 in the UK Biobank

Included variants in the POMC (A) and MC4R (B)

genes from our discovery analyses had a minor

allele frequency (MAF) smaller than 0.1% and were

annotated to be either high-confidence protein

truncating variants or missense variants with a high

CADD score (R25). Each variant is presented as an

individual line extending to its association p value

(�log10), in the direction indicating the direction of

effect on SAC10 in carriers of the alternate allele,

while the point size indicates the comparative

number of carriers of each variant (i.e., allele count),

as indicated in the figure legend. Domain-level as-

sociation statistics can be found in Table S9.
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childhood-specific signals to 16 genes and the 753 life-

course-acting signals to 708 genes (Tables S16 and S17,

STAR Methods). We used these gene lists to perform gene-

centric pathway analyses using STRING.54 No DDR pathway

was significantly enriched among either the ‘‘adult-specific’’

or ‘‘childhood-specific’’ gene sets, whereas the ‘‘life-course-

acting’’ genes showed enrichment for DDR and apoptosis

processes, especially neuron death (Wiki: ‘‘DNA damage

response (only ATM dependent)’’ (false discovery rate

[FDR] = 0.011); GO:BP: ‘‘Apoptotic process’’ (FDR = 0.022)

GO:BP ‘‘Regulation of neuron death’’ [FDR = 0.003])

(Table S18). The observed DDR effect could therefore not be

attributable to a metabolic senescence phenotype that only

begins in later life.

DISCUSSION

Here, we identify several genes in which rare, heterozygous loss-

of-function confers a large effect on adult BMI either in men or

women separately or affects recalled childhood adiposity. These

findings highlight putative roles for DDRmechanisms in the etiol-

ogy of obesity across the life-course, in addition to highlighting

an intriguing pattern of adult-onset effects for some common

and rare variants.

Our sex-stratified analysis of adult BMI identified rare loss-of-

function variants in DIDO1 and SLC12A5, which in this study

confer higher risks of obesity than variants in the known mono-

genic causes of obesity, MC4R and POMC. However, it is un-

clear why their effects are specific to females. While rare variants

in DIDO1 also influenced free testosterone concentrations and/

or WHRadjBMI specifically in females, these associations were
6 Cell Genomics 3, 100362, August 9, 2023
weaker than those with BMI. SLC12A5 en-

codes the potassium-chloride co-trans-

porter, KCC2, which is highly expressed

in the brain and moderately expressed in

the pancreas,55 where it modulates cal-

cium-dependent insulin secretion.56

Consistent with our observed sex-specific

associations, female (but not male) mice

heterozygous for Slc12a5 gene deletions

are reported to display impaired glucose
tolerance57 (Table S19). However, the very low carrier count in

males, which could be explained by strong selective constraint

at SLC12A5 (pLI = 1, o/e = 0.05 [0.02–0.14]) as assessed by gno-

mAD58 and which could indicate a deleterious effect on early life

survival, makes it difficult to confidently conclude on an effect of

rare loss-of-function variants in SLC12A5 in males. We note that

although the mouse model and common variant association at

this locus are supportive for the SLC12A5 rare variant associa-

tion, strength of significance was inconsistent across a range

of sensitivity analyses.

In our age-stratified analyses of SAC10 and adult BMI, most

rare and common variants appear to influence obesity risk

across the life-course. Eight of the 11 genes highlighted by

ExWAS and 85% of the common genetic signals showed asso-

ciations with both child and adult adiposity traits. Rare variants in

only one gene,MADD, showed childhood-specific associations.

MADD encodes an MAPK-activating protein59 with highest

expression in the brain.60 Homozygous or compound heterozy-

gous mutations in MADD underlie a multisystemic disorder

(developmental delay with endocrine, exocrine, autonomic,

and hematologic abnormalities [DEEAH syndrome]), character-

ized by poor weight gain, hypoglycaemia, and growth retarda-

tion.61,62 We found no association between MADD rare variant

carrier status with any adult trait.

Rare loss-of-function variants in MC4R and POMC appear to

have larger effects on adiposity in childhood than in adulthood.

Rare functionally disrupting mutations in these genes are mono-

genic causes of severe early-onset obesity associated with

uncontrolled appetite. Some case reports describe some atten-

uation with age in the hyperphagia that is typical of MC4R car-

riers.63 This could be explained by the previously reported



Figure 6. Comparison of rare variant gene-

level effects on adult BMI and comparative

size at age 10

For each identified exome gene, the adjusted R2 for

carrier status of qualifying rare exome variants

against residual variance in the outcome phenotype

after adjusting for covariates. For each gene, the

‘‘discovery’’ trait-sex combinations are shown. Un-

derlying data can be found in Table S13.
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physiological reduction inPOMC expressionwith age,64,65 which

might weaken the effect of loss-of-function variants. Alterna-

tively, affected individuals might gradually develop more effec-

tive strategies to resist their appetitive drive to excess food

intake and weight gain.

Emerging evidence indicates that the accretion of senescent

cells is linked to metabolic disorders. Several cross-sectional

studies have consistently related higher BMI to greater levels

of DNA damage, chromosomal instability, and reduced DDR ca-

pacity,66–69 but with the hypothesis that obesity may induce DNA

damage and limit DDR processes causing inflammation and

oxidative stress. For example, previous research identified

genetic determinants that predispose to obesity and also pro-

mote DNA damage.70,71 By contrast, our findings of selected

genes highlighted by rare variants and of biological pathways

enriched for common variant associations highlight neuron

death, apoptosis, and DDR in the susceptibility to obesity risk

across the life-course, rather than only being a downstream

consequence.

DNA repair has been recognized as important in the regulation

of adipocyte metabolism and senescence,72,73 with DNA dam-

age in obese adipocytes thought to trigger p53-dependent

signals, altering of adipocytemetabolism, and secretory function

leading to adipose tissue senescence, inflammation, dysfunc-

tion, and insulin resistance. The elimination of these senescent

adipocytes has been shown to alleviate adipose tissue inflam-

mation and improve insulin resistance.73 Our findings suggest

that disturbed DDR capacity previously associated with aging-

related health outcomes could represent a potential marker of

broader genomic instability and disease susceptibility, including

obesity-related health outcomes. We found that DDR processes

influence adiposity across the life-course, from childhood to
adults, rather than increasing with age or

being specific to late-onset adiposity.

However, we acknowledge that most com-

mon variant signals for adiposity were

categorized as ‘‘life-course acting’’ and

we were likely underpowered to show

effects on adult-onset adiposity.

One mechanism by which DIDO1 vari-

ants may increase adiposity is by influ-

encing cell cycle progression, and thus in

enabling neuronal cell proliferation. The

hypothalamus integrates signals from the

periphery, and cells continue to proliferate

in the adult hypothalamus to maintain en-

ergy homeostasis and enable metabolic
flexibility.74 Local mitotic blockade in rodents leads to increased

food intake, body weight, and adiposity.75 Furthermore, neuro-

genesis in the mouse hypothalamic arcuate nucleus is blocked

in diet-induced obesity,76 suggesting that reduced cell prolifera-

tion might contribute to the impaired control of energy balance

that leads to obesity. DIDO1 has anti-apoptotic functions

and is necessary for cell proliferation and survival in many types

of cancer cells.77,78 Furthermore,Dido1 regulates self-renewal of

mouse embryonic stem cells.79 N-terminal truncation of DIDO3,

the most widely expressed DIDO1 isoform, leads to aneuploidy,

centrosome amplification, centromere-localized breaks, and

chromosomal instability.80,81 Similarly, homozygous deletion of

exon 16 of DIDO3 induces defects in RNA transcriptional termi-

nation, which contributes to genomic instability, DNA damage,

and replication stress.39 Another gene product, SLTM, has

been reported to localize to sites of DNA damage40 and has

closely related family members with known DNA repair func-

tions,82 suggesting it might also function in DDR and DNA repair

pathways.

MADD acts as both an RAB3 guanine nucleotide exchange

factor (GEF), and an RAB3 effector playing a role in formation

and trafficking of synaptic vesicles. MADD-deficient fibroblasts

display impaired exocytosis and increased susceptibility to acti-

vation of apoptosis pathways.62 As seen for MADD, Dido loss-

of-function mice have neuro-developmental alterations.83 Previ-

ous studies have shown that genetic alterations leading to

disrupted development in key regions of the brain required for

energy homeostasis, such as the hypothalamus, are causative

of obesity in humans.84 The neuro-developmental abnormalities

reported in Dido1 mutant mice may be related to the reported

role of Dido1 in regulating cilium length.83 Defects in genes

required for ciliary function have been shown to cause obesity
Cell Genomics 3, 100362, August 9, 2023 7
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in humans and rodents.85 Interestingly, compound heterozygous

mutations in KIAA1109, highlighted in our analysis for adult BMI

in both sexes, have also been reported to affect cilia structural

dynamics.86

Limitations of study
We acknowledge several limitations of our study. Independent

replicationwas restricted by the limited availability of similar large

WES studies, although common variant associations at CALCR,

DIDO1, INHBE,MADDMC4R, POMC, SLC12A5, and SLTM pro-

vide someconfirmation that these genes are involved in adiposity

etiology. Furthermore, these analyses were restricted to individ-

uals of Europeanancestry, so their relevance toother populations

is unclear. Last, our observation regarding a potential role of DNA

damage in obesity etiology should be viewed as hypothesis

generating, and we recognize that experimental studies will be

required to confirm its biological relevance.

In conclusion, these findings highlight the importance of

considering sex-specific and life-course effects in the genetic

regulation of obesity. Our findings suggest that apoptosis and

DDR, possibly through reduced neuron proliferation and greater

neuron death, may contribute to obesity risk across the life-

course. Further studies examining the roles of MADD and

DIDO1 in neuronal cells, both neurons and glial cells, may help

to understand these mechanisms.
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çalves Soares, A., Wade, K., Sweeney, P., Bedenbaugh, M.N., Porter,

D.T., et al. (2021). MC3R links nutritional state to childhood growth and

the timing of puberty. Nature 599, 436–441. https://doi.org/10.1038/

s41586-021-04088-9.

20. Richardson, T.G., Sanderson, E., Elsworth, B., Tilling, K., and Davey

Smith, G. (2020). Use of genetic variation to separate the effects of early

and later life adiposity on disease risk: mendelian randomisation study.

BMJ 369, m1203. https://doi.org/10.1136/bmj.m1203.

21. Randall, J.C., Winkler, T.W., Kutalik, Z., Berndt, S.I., Jackson, A.U.,
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Data and code availability
Rare variant burden testing summary statistics are included in the supplemental information of this paper. Protected UK Biobank

participant data will be returned to the UK Biobank resource and be accessible via application number 9905. This paper does not

report original code. Any additional information required to reanalyse the data reported in this paper is available from the lead contact

upon request.

METHOD DETAILS

Exome-wide gene burden associations with BMI and SAC10
To identify genes associated with sex-stratified adult adiposity, we performed an ExWAS using WES data derived from 419,692 Eu-

ropean genetic-ancestry UKBiobank participants (191,864males and 227,828 females).8 As our outcome, we used adult BMI (kg/m2)

from field 21001. Sex in our study was defined using the ‘genetic sex’ parameter by Bycroft et al.,87 and provided on UKBiobank field

22001. To identify genes associated with sex-combined childhood adiposity, we performed an ExWAS usingWES data derived from

414,032 European genetic-ancestry UK Biobank participants (188,777 males and 225,255 females).8 As our outcome, we used

SAC10 from field 1687, which is based on the question, ‘‘When you were 10 years old, compared to average would you describe

yourself as thinner, plumper or about average?’’ and treated it as a continuous variable (0 = thinner, 1 = average, 2 = plumper).

Although this phenotype is a proxy measure of childhood adiposity based on recalled data, it shows a strong genetic correlation

with childhood BMI (rg = 0.94)25 and only a moderate correlation with adult BMI (rg = 0.55) as calculated with LDSC.88

Data processing and quality control were performed as described in Gardner et al.89 Individual gene burden tests were performed

by collapsing exome variants according to their predicted functional consequence. We defined two functional categories of exome

variants with a MAF<0.1% 1) high-confidence protein truncating variants (HC_PTV) and 2) damaging variants (DMG) which contain

both high-confidence PTVs and missense variants as defined by a CADD score threshold of R2523. We defined Protein Truncating

Variants (PTVs) as Variant Effect Predictor consequence of stop gained, frameshift, or splice acceptor/donor. To define ‘high-con-

fidence’, we used the LOFTEE algorithm.58 We analyzed a maximum of 18,107 protein-coding genes with a minimum of >10 rare

allele carriers in any of the tested categories. The burden association tests were conducted using BOLT-LMM.90 Our results are sta-

tistically well-calibrated as indicated by the absence of significant associations with synonymous variant burden (Figure S1,

Table S1).

Sexual dimorphism was ascertained by comparing the association effect sizes between the male- and female-only analyses, as

outlined below (where f denotes the female association summary statistics and m denotes the male ones)91:

z =
bf � bmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

f +se
2
m

p

Associations were deemed dimorphic if their Bonferroni-corrected P value for the above z-statistic was <0.05 and the association

did not reach nominal significance (R0.05) in the opposite sex.

Carriers of genes highlighted in ExWASwere classified as homozygous carriers if they carried two copies of the samemutation and

compound heterozygous if they carried two mutations in the same gene >5 basepairs apart (Table S11).

For all exome-wide significantly associated genes, the following further models were conducted.

Sensitivity analyses

Several sensitivity analyses were conducted to corroborate the identified associations. To validate our BOLT-LMM results, we

additionally conducted burden association tests using STAAR92 as described in Gardner et al.,89 testing the same protein-coding

transcripts as in our primary analyses. We also used an inverse-rank normalised BMI variable in the above-described BOLT-LMM

framework to reduce the positive skew. We validated our associations by using linear models in R in the White-European unrelated

subsample of UK Biobank for the equivalent discovery phenotypes and for T2D. To these models, we also applied heteroscedastic-

ity-robust standard error calculations using the sandwich R package (3.0–2), to address case-control imbalances (Table S4). Further-

more, to test whether age at recruitment (field 21022) influencedBMI, we calculated themeanBMI of carriers of genes identified in the

BMI ExWAS stratified by age (R58 years and <58 years, with 58 years being the median age at recruitment for all UK Biobank

participants). To determine a difference in means, we used the same formula as above91 and used a P value threshold of 0.05

(Table S14).

Finally, to ascertain whether the gene-level associations with DMG variants in POMC and MC4R might be driven by variants in

known functional domains, we conducted domain-level burden tests (Table S9). To do this, variants were separated into the different

functional domains within POMC using information from UniProt,93 while MC4R domains were also annotated using GPCRdb.94

Domain-level burden tests with sex-combined SAC10 were then performed using linear models, for domains that included at least

2 variants. We also tested known functionally implicated variants within these two genes (Table S10). To do this we used functionally

validated loss- or gain-of function variants in MC4R reported by Lotta et al.,26 where 31/61 described variants were found in UK

Biobank and in POMC by Shah et al.,27 where 15/1576 variants were found in UK Biobank.
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Exome lookup in related metabolic traits

The exome-wide significantly associated genes were further tested for associations toward T2D risk, SHBG and free testosterone

levels and WHRadjBMI within UK Biobank using BOLT-LMM, as described above (Table S5). For WHRadjBMI, waist-hip ratio

was calculated using fields 48 and 49 and BMI from field 21001 from the first available instance where they were all available. For

T2D, the phenotype was derived as described in Gardner et al..89 Using this trait, we performed logistic regressions in the unrelated

white European subsample of UK Biobank to derive odds ratios (in R, v4.2.1). For SHBG, hormone levels were extracted from the first

instance data of field 30830 and log-transformed, after removing participants taking hormone-influencingmedications, including cur-

rent reported use of HRT or oral contraception. For free testosterone, testosterone levels were extracted from the first instance data

of field 30850 and the Vermeulen method was used in conjunction with data on SHBG, total testosterone levels and albumin (from

field 30600) to calculate free testosterone levels. Thesewere then log-transformed, after removing participants taking hormone-influ-

encingmedications. Finally, we tested for associations between genes identified in the female-only BMI analysis and a derived binary

menopausal status phenotype, as described in Stankovic et al.,95 using linear models in the white-European unrelated subsample of

the discovery cohort (Table S6). Interactions betweenmenopause- and carrier-status for qualifying variants in these genes were also

tested for BMI, using R.

Comparison of variance explained in childhood versus adult body size

To understand whether any of the exome-wide significantly associated genes may exert stronger effects in childhood than in adult-

hood or vice versa, we compared the variance explained across the two traits (BMI and SAC10) by being a carrier of qualifying

mutations in any of the identified genes. Using R, BMI and SAC10 were first adjusted for the standard covariates (sex, age, age,2

exome-sequencing batch and the first 10 principal components) and the residual trait variance was tested against binary carrier

status for each gene. The resulting model adjusted R2 was used as a scaled and comparable indication of the effect magnitude

across the two outcomes.

Ordered logit models of obesity outcomesand carrier status of OBSCN

We conducted cumulative link models using childhood and adult obesity as ordered categorical outcomes, to quantify the relative

risk of obesity conferred by carrying qualifying variants in any of the exome-wide significantly associated genes. To do this, we used

the three levels of comparative size at age ten; ‘‘Thinner’’, ‘‘Average’’, ‘‘Plumper’’ andwe similarly split adult BMI into three categories;

BMI less than 20, BMI between 20 and 30, and BMI over 30. To estimate the effect of carrier status of OBSCN PTVs on SAC10, we

used four levels; ‘‘homozygous’’, ‘‘compound heterozygous’’, ‘‘heterozygous’’, and ‘‘non-carriers’’ (Table S12). Analyses were

conducted using the ‘‘clm’’ function in the ‘‘ordinal’’ R package (v2019.12–10).

All data manipulations were conducted in R (v4.2.1) and plots were generated using ggplot2 (v3.3.6).

Common variant GWAS
GWAS signals proximal to the exome-identified genes

Common variant associations at the exome-identified genes were queried using the equivalent common variant GWAS (MAF>0.1%)

in UK Biobank (adult BMI, N = 450,706, or SAC10, N = 444,345). Signal selection was performed as follows: genome-wide significant

signals (p < 53 10�8) were initially selected based on proximity, in 1Mbwindows. Secondary signals within these windows were then

identified using the approximate conditional analysis in GCTA,96 using an LD reference panel derived from 25,000 participants of the

UK Biobank study. Only secondary signals that were uncorrelated (R2<5%) with each other and did not exhibit an overt change in

their association statistics between the baseline and conditional models (b changed by less than 20% or p value changed by less

than four orders of magnitude) were kept. The lists of primary and secondary signals were further checked for pairwise LD within

10Mb windows, using plink (v1.90b6.18)97 and only independent signals (R2<5%) were kept, prioritising the distance-based ones

in the case of linkage. The subsequent regions were plotted using LocusZoom (v1.4)98 and any identified GWAS signals were

also queried in a GWAS meta-analysis of T2D.99

Signals were then annotated with their closest gene (within 500kb up- or downstream of the signal), using the NCBI RefSeq gene

map for GRCh37 (via http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/). As most GWAS signals are intronic or inter-

genic, we overlayed these associations with other datasets to understand whether the GWAS variants can be causally linked to

changes in the exome-identified genes’ regulation. For genes with proximal GWAS signals, we calculated genomic windows of

high linkage disequilibrium (LD; R2 > 0.8) for each given signal using plink and mapped these to the locations of known enhancers

for the target genes, using the activity-by-contact (ABC) enhancer maps.24 Any seen overlaps indicate whether the genomic variants

associating with the traits of interest directly changed the sequence of enhancers for the genes in question. We also performed co-

localization analyses between the GWAS and eQTL data using the ABF function within the R package ‘‘coloc’’ (v5.1.0)100 and the

cross-tissue meta-analysed GTEx eQTL data (V7, available via https://gtexportal.org and using the fixed-effects summary statis-

tics).35 For this, variants within a 500kb window of each gene that were common between the GWAS and eQTL data were used

and an H4 posterior probability (the probability of a single, shared causal variant) R0.75 was used as a colocalization threshold.

Finally, outwith transcriptional changes, we performed a gene-level Multi-marker Analysis of GenoMic Annotation (MAGMA,

v1.09) analysis,101 to collapse all observed genomic variants within each of the identified genes and calculate aggregate gene-level

associations to the phenotypic traits. To do this, we specifically used common (MAF>0.1%) exonic variants within each gene

(Table S8).
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DDR pathway enrichment analyses

To ascertain the signal enrichment in genes related to DDR processes at the genome-wide level, we used the MAGMA gene-level

associations as described above. We then collapsed this gene-level data into three pathways; GO cellular response to DNA damage

stimulus (GO:0006974), GO DNA repair (GO:0006281) and an expert-curated broad DDR pathway (Table S20) and tested for enrich-

ment against them under the MAGMA gene-set analysis functionality (Table S15).

Definition of GWAS signal trajectories

‘Adult-specific’ signals were defined as associated with adult BMI in UKBB with independent confirmation (p < 0.05) in GIANT con-

sortium data102 but not associated (p>=0.05) with SAC10 and female pubertal timing (asmeasured by recalled age atmenarche in UK

Biobank) (which is sensitive to childhood adiposity103) and without a reported stronger association with a related lifestyle (e.g.,

alcohol consumption) or mental health trait (in PhenoScanner104,105 or Open Target Genetics106,107) (Tables S16 and S21). ‘Child-

hood-specific’ signals were defined as being associated with SAC10 in UK Biobank with independent confirmation (p < 0.05) in

EGG consortium childhood BMI data25 and female pubertal timing (as measured by recalled age at menarche in UK Biobank) but

not associated with adult BMI in UK Biobank (p>=0.05) (Table S17). Life-course-acting signals were defined as influencing both adult

and childhood adiposity as measured adult BMI and SAC10 (p < 0.05). Furthermore, since a large number of BMI and SAC10 signals

are expected to be the at the same locus, we only considered SAC10 signals that were independent of any BMI signal (R2 < 0.05)

calculated as described above. For signals with missing data in the look-up GWAS, we identified proxies using an LD reference panel

derived from 25,000 participants of the UK Biobank study (within 1 megabase of the reported signal and R2 > 0.6), choosing the

variant with the highest R2 value.

We performed a gene-centric pathway analyses based on the closest gene for the ‘adult-specific’, ‘childhood-specific’ and ‘life-

course-acting’ SNPs using STRING (https://string-db.org/).54 We tested for enrichment against all ‘Gene Ontology Biological

Process (GO:BP)’ terms as well as KEGG, REACTOME and WikiPathway pathways. Any term with an adjusted p value <5%

(Benjamini-Hochberg method) was considered to be statistically significantly (Table S18).
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