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Abstract

Background: Childhood obesity became a severe public health challenge, and

insulin resistance (IR) was one of the common complications. Both obesity

and IR were considered as the basis of metabolic disorders. However, it is

unclear which common key metabolites are associated with childhood obesity

and IR.

Methods: The children were divided into normal weight and overweight/

obese groups. Fasting blood glucose and fasting insulin were measured, and

homeostasis model assessment of insulin resistance was calculated. Liquid

chromatography–tandem mass spectrometry was applied for metabonomic

analysis. Multiple linear regression analysis and correlation analysis explored

the relationships between obesity, IR, and metabolites. Random forests were

used to rank the importance of differential metabolites, and relative operating

characteristic curves were used for prediction.

Results: A total of 88 normal-weight children and 171 obese/overweight chil-

dren participated in the study. There was a significant difference between the

two groups in 30 metabolites. Childhood obesity was significantly associated

with 10 amino acid metabolites and 20 fatty acid metabolites. There were

12 metabolites significantly correlated with IR. The ranking of metabolites in

random forest showed that glutamine, tyrosine, and alanine were important in

amino acids, and pyruvic-ox-2, ethylmalonic-2, and phenyllactic-2 were impor-

tant in fatty acids. The area under the curve of body mass index standard devi-

ation score (BMI-SDS) combined with key amino acid metabolites and fatty

acid metabolites for predicting IR was 80.0% and 76.6%, respectively.

Conclusions: There are common key metabolites related to IR and obese chil-

dren, and these key metabolites combined with BMI-SDS could effectively pre-

dict the risk of IR.
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Highlights

• Childhood obesity was significantly associated with the increased risk of

insulin resistance (IR).

• There were 12 metabolites co-associated with childhood obesity and IR,

including seven amino acid and five fatty acid metabolites.

• The combination of body mass index standard deviation score and key

metabolites could effectively predict the risk of IR.

1 | INTRODUCTION

Childhood obesity is one of the largest public health prob-
lems around the world. The World Health Organization
reported that the number of obese children in the world
had increased more than 10-fold in the last 40 years.1

Recently, China has become one of the countries that
developed the fastest rising rate of childhood obesity. The
report on nutrition and chronic diseases of Chinese resi-
dents (2020) showed that the proportion of overweight
and obesity among children under 6 years old and adoles-
cents between 6 and 17 years old had reached 19.0% and
10.4%, respectively.2 With the prevalence of childhood obe-
sity, metabolic diseases tend to occur at a younger age and
gradually spread to childhood. Childhood obesity not only
affects children's physical health and quality of life, but
also has adverse effects on health in adulthood, which
could increase the risk of obesity, cardiovascular disease,
diabetes, and even death.3 Among them, metabolic abnor-
malities are widely considered as serious issues that
threaten the health of obese children and adolescents, and
insulin resistance (IR) is closely related to metabolic
abnormalities.4 In fact, IR may be an important cause of
type 2 diabetes and cardiovascular disease among obese
population so that it deserves to be paid more attention.

As one of the main characteristics of metabolic syn-
drome, incidence rate of IR is gradually increasing
among children and adolescents, especially for obese
population. It had been considered as an impaired biolog-
ical response to insulin stimulation in target tissues, pri-
marily liver, muscle, and adipose tissue. In addition, IR
may impair glucose metabolism and then lead to a com-
pensatory increase of insulin secretion and hyperinsuli-
nemia in beta cells.5–7 Although genetic causes had also
been identified, IR is primarily an acquired condition
associated with excess body fat. Moreover, once insulin
sensitivity decreased, the aggravation of IR and related
complications would appear as results.

Metabolic change is one of key features of obesity as
well as metabolic abnormalities is also closely related to
IR, dyslipidemia, changes in glucose metabolism and type
2 diabetes mellitus.8–10 Insulin sensitivity changes con-
stantly at different stages of children's growth and develop-
ment. With the development of puberty and the change of
sex hormone secretion, insulin sensitivity decreases signifi-
cantly, accompanied by compensatory insulin secretion,
and returns to normal after puberty.11 As a tool for the
study of human disease, metabolomic approaches have
increased the interest of clinicians and scholars in explor-
ing possible biomarkers for cardiometabolic diseases.12,13

Therefore, we explored the key metabolites associated with
obesity and IR in children based on metabolomics.

In this study, we compared the incidence of IR in nor-
mal weight and obese children and screened for changes
in key metabolites common to obesity and IR. Our study
provided potential biomarkers for progression, diagnosis,
and evaluation of the obesity combined with IR among
children and is also of the great significance for the pre-
vention of IR in obese children.

2 | METHODS

2.1 | Study population

Our study included children and adolescents aged
between 6 and 14 years old as well as treated in the
department of children's health care and endocrinology
of the Children's Hospital of Nanjing Medical University.
We excluded some objects of pathological obesity due to
genetic diseases, metabolic diseases, and neuroendocrine
diseases. The study had been approved by the Ethics
Committee of Children's Hospital of Nanjing Medical
University (201603004-1). The purpose of study was
explained to children's parents before thestart and
informed consent was obtained as well.
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2.2 | Anthropometric measurement

Well-trained medical staff had carried out all of physical
measurements for children, including height, weight, waist
circumference (WC), etc. Height and weight were mea-
sured by electronic post scale. Children were asked to be
upright and wear only underwear. The height and weight
were measured accurately to 0.1 cm and 0.1 kg. Body mass
index (BMI) was calculated as weight (kilograms) divided
by the square of height (meters), and BMI was converted
to SD score of BMI (BMI-SDS), as it corrects for variations
in age and gender in children and allows for pooling of
data. BMI-SDS was grouped as follows: – 2 ≤ BMI-SDS <1
indicates normal weight, 1 ≤ BMI-SDS <2 indicates over-
weight, and BMI-SDS ≥2 indicates obesity. In our study,
the subjects were assigned to normal weight and over-
weight/obese groups. WC was measured to the nearest
0.1 cm at the level of the navel with a flexible inch tape
while the subject was at the end of exhalation. The waist-
to-height ratio was calculated as the WC (in centimeters)
divided by height (in centimeters).

2.3 | Laboratory examination

Venous blood (3 mL) was drawn from the participants in
the morning after fasting for 12 h, the fasting blood glu-
cose (FBG) was measured by hexokinase method, the
fasting blood insulin (FBI) was measured by radioimmu-
noassay, and IR was calculated. Homeostasis model
assessment of insulin resistance (HOMA-IR) = FBI
(mU/L) � FBG ([mmol/L]/22.5) was calculated. IR was
considered with HOMA-IR ≥3.0.14

Liquid chromatography–tandem mass spectrometry
was used to analyze acylcarnitine on dried blood filter
paper. First, venous blood was dripped onto a piece of fil-
ter paper that was about 10 mm in diameter. After drying
at room temperature, the sample was stored for testing in
refrigerator under �20�C. Then, 3 mm of dry blood filter
paper was took and placed in a 96 perforated polypropyl-
ene plate. Then, 100 μL of internal standard methanol
was added into each hole as well as placed at room
temperature for 20 min. After that, acylcarnitine was
extracted from blood filter paper and centrifuged in
another 96 perforated polypropylene plate that was dried
via nitrogen under 55�C. Then 60 μL of hydrochloric acid
(3 mol/L) n-butyl alcohol was added. By covering with
Teflo film and placing in a 65�C incubator for 15 min,
acylcarnitine was converted into acylcarnitine butyl ester,
dried via nitrogen under 55�C, and then resuspended
with 100 μL of 80% acetonitrile for testing. Quantitative
analysis was performed by software (Chem View B5, Bio
Application Systems, USA), which automatically calcu-
lated the concentration of acylcarnitine in the measured
samples according to the ion peak and intensity of inter-
nal standard. The components of organic acids in urine
had determined and analyzed by gas chromatography–
mass spectrometry (GC–MS). GC–MS solution 2.72 data
acquisition software was used for data processing and the
semiquantitative results were obtained.

2.4 | Statistical analysis

The KolmogorowSmironov tests were used to test the
normality of the quantitative data. Those conforming to

TABLE 1 Children's characteristics

and physical measures.
Control (n = 88) Obesity (n = 171) t/χ 2/z p values

Age (years) 10.53 ± 2.41 10.73 ± 1.98 �0.657 .512

Gender

Male 58 (65.9) 115 (63.7) 0.047 .828

Female 30 (34.1) 56 (32.7)

BMI 15.67 (14.19, 18.06) 27.70 (25.70, 30.40) �13.112 <.001

BMI-SDS �0.62 ± 1.15 3.08 ± 0.62 �28.194 <.001

WHtR 0.42 (0.40, 0.45) 0.60 (0.56, 0.64) �12.757 <.001

IFG

No 84 (95.5) 166 (97.1) 0.455 .751

Yes 4 (4.5) 5 (2.9)

IR

No 78 (88.6) 78 (45.6) 44.896 <.001

Yes 10 (11.4) 93 (54.4)

Note: p values < .05 are bolded.

Abbreviations: BMI-SDS, body mass index-SD score; IFG, impaired fasting glucose; IR, insulin resistance;
WC, waist circumference; WHtR, waist-to-height ratio.
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normal distribution were expressed as mean ± SD and
comparison between groups used t test; The data of
skewed distribution were represented by median (P25,
P75), and compared by Mann–Whitney U test. Qualitative
data were expressed as frequency (%), and chi-square test
was used for comparison. After the exclusion of metabo-
lites with a detection rate <30%, square root transforma-
tion was performed on the data of metabolites to correct
skewed distribution. Orthogonal partial least square dis-
criminant analysis (OPLS-DA) model was used to assess
the difference in metabolites between the normal weight
group and obese group. Nonparametric test and variable
importance in project (VIP) were combined to screen the
differential metabolites between the two groups.

Multiple linear regressions were used for exploring
the relationships between childhood obesity and
metabolites, with the obesity group as the independent
variable and metabolites as dependent variables. Spear-
man correlation was used to analyze the associations
between metabolites and IR among children. When the
univariate correlation analysis coefficient was signifi-
cant, the partial correlation analysis was performed after
adjusting for age, gender, and BMI. Further, the random
forest (RF) model was applied for predicting the impor-
tance of metabolites to childhood IR. RF model is an
ensemble learning model that operates by building
various decision trees during the training period and
identifying the multiple classes depending on majority
vote in the ensemble model. The common differential
metabolites were considered as independent variables
and the childhood IR was taken as dependent variables.
The data set was adopted with 10-fold cross-validation.
The RF model was implemented using the “random
forest” package. The graphical relative operating charac-
teristic (ROC) curve is produced, and the area under the
ROC curve (AUC) is a performance index to measure
the effectiveness of the model. A p value <.05 based on
two-tailed test results should be considered statisti-
cally significant. All analyses were performed with
R. version 3.2.2.

3 | RESULTS

Among the participants in the analysis, 88 of children
with normal weight were 10.53 ± 2.41 years old, and
171 of children with obesity were 10.73 ± 1.98 years old.
There was no significant difference in age and gender dis-
tribution between two groups. In addition, BMI, (WC,
waist-to-height ratio, and hip circumference were signifi-
cantly higher in obese children than those in the control
group. Impaired fasting blood glucose showed no differ-
ence between two groups, but IR did (Table 1).

The chromatogram showed stable retention time with
good reproducibility, which means the metabolomic
analysis had outstanding reliability. A total of 195 metab-
olites were detected, and 111 of metabolites were
included in the analysis, with a detection rate higher
than 30%. OPLS-DA made the results be more intuitive.
The results showed that there was no crossover of

TABLE 2 Associations between obesity and metabolites in

children.

Metabolites β (95% CI) p value

Amino acid

Phenylalanine 0.744 (0.505, 0.983) <.001

Alanine 1.706 (1.215, 2.196) <.001

Glutamic acid 1.147 (0.684, 1.610) <.001

Glutamine �1.675 (�1.936, �1.414) <.001

Citrulline �0.415 (�0.545, �0.284) <.001

Argine �1.210 (�1.510, �0.910) <.001

Tyrosine 0.951 (0.743, 1.160) <.001

Leucine 1.016 (0.661, 1.371) <.001

Valine 1.008 (0.698, 1.319) <.001

Histidine �3.828 (�4.420, �3.236) <.001

Fatty acid

Octadecadienyl
carnitine

0.048 (0.029, 0.066) <.001

3-Hydroxyhexyl
carnitine

0.028 (0.020, 0.037) <.001

2-Hexenedioic-2 �0.646 (�0.826, �0.467) <.001

5-Oxoproline-2 �0.420 (�0.548, �0.292) <.001

Phenyllactic-2 0.809 (0.717, 0.900) <.001

Pyruvic-ox-2 1.241 (0.912, 1.570) <.001

Oxalic-2 �0.403 (�0.505, �0.300) <.001

Glyceric-3 0.744 (0.528, 0.959) <.001

Succinic-2 �0.717 (�0.936, �0.498) <.001

Hippuric-2 �3.444 (�3.902, �2.986) <.001

Ethylmalonic-2 0.130 (0.040, 0.220) .005

Glyoxylic-ox-2 �0.864 (�1.053, �0.675) <.001

Palmitic-1 1.472 (1.081, 1.863) <.001

Propionyl carnitine 0.125 (0.056, 0.193) <.001

Octadienyl carnitine 0.031 (0.020, 0.043) <.001

Oleylcarnitine 0.099 (0.069, 0.128) <.001

Octenyl carnitine 0.076 (0.050, 0.103) <.001

Palmitoleyl carnitine 0.045 (0.033, 0.057) <.001

Palmitoyl carnitine 0.076 (0.046, 0.106) <.001

N-Acetylaspartic-2 0.145 (0.081, 0.210) <.001

Note: p values < .05 are bolded.
Abbreviation: CI, confidence interval.
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metabolites between normal and obese group, which
could be well distinguished and had statistical signifi-
cance (R2 = 0.864, Q2 = 0.824) (Figure S1).

Combined with VIP values, Mann–Whitney U test
was determined markers of difference between two
groups. VIP value was identified the relative contribution
of each metabolite in order to distinguish different
groups. In addition, the VIP value was proportional to its
contribution, and the threshold was set as VIP >1. Never-
theless, p values of the Mann–Whitney U test had

reflected statistical differences in the level of metabolic
small molecules. The results showed that there were sig-
nificant differences in 30 metabolites between the normal
weight group and obese group (Table S1).

Table 2 showed that children's obesity was associated
with 30 types of metabolites. Among the amino acid
metabolites, childhood obesity was significantly negatively
correlated with glutamine (β = �1.675, 95% confidence
interval [CI]: �1.936, �1.414), citrulline (β = �0.415, 95%
CI: �0.545, �0.284), and argine (β = �1.210, 95% CI:

TABLE 3 Correlation between

metabolites and IR in children.
Metabolites Coefficient 1a p value Coefficient 2b p value

Amino acid

Phenylalanine 0.352 <.001 0.224 <.001

Alanine 0.395 <.001 0.222 <.001

Glutamic acid 0.206 .001 0.192 .002

Glutamine �0.397 <.001 �0.286 <.001

Citrulline �0.222 <.001 �0.091 .146

Argine �0.280 <.001 �0.093 .136

Tyrosine 0.366 <.001 0.199 <.001

Leucine 0.386 <.001 0.208 .001

Valine 0.345 <.001 0.165 .008

Histidine �0.230 <.001 �0.044 .481

Fatty acid

Octadienyl carnitine 0.229 <.001 0.128 .041

3-Hydroxyhexyl carnitine 0.179 .004 0.042 .500

2-Hexenedioic-2 �0.172 .016 �0.005 .937

5-Oxoproline-2 �0.170 .016 �0.027 .665

Phenyllactic-2 0.395 <.001 0.227 <.001

Pyruvic-ox-2 0.413 <.001 0.192 .002

Oxalic-2 �0.161 .009 0.019 .760

Glyceric-3 0.236 <.001 0.191 .002

Succinic-2 �0.190 .002 0.037 .560

Hippuric-2 �0.308 <.001 �0.026 .677

Ethylmalonic-2 0.189 .002 0.163 .009

Glyoxylic-ox-2 �0.222 <.001 �0.036 .563

Palmitic-1 0.273 <.001 0.100 .110

Propionyl carnitine �0.047 .453 / /

Octadecadienyl carnitine 0.053 .393 / /

Oleylcarnitine 0.071 .255 / /

Octenyl carnitine 0.095 .128 / /

Palmitoleyl carnitine 0.055 .380 / /

Palmitoyl carnitine 0.063 .310 / /

N-Acetylaspartic-2 0.025 .690 / /

Note: p values < .05 are bolded.
Abbreviations: BMI, body mass index; CI, confidence interval.
aUnivariate correlation.
bPartial correlation, adjusted for child's age, gender, and BMI.
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�1.510, �0.910). In terms of fatty acid metabolites, child-
hood obesity increased the concentration of octadecadie-
nyl carnitine (β = 0.048, 95% CI: 0.029, 0.066),
oleylcarnitine (β = 0.099, 95% CI: 0.069, 0.128), and
palmitic-1 (β = 1.472, 95% CI: 1.081, 1.863), etc.

Furthermore, Spearman correlation and partial ana-
lyses explored the correlation between 30 types of metab-
olites and IR. Coefficient 1 was the result of univariate
correlation analysis, and coefficient 2 adjusted potential
variables. The results showed that 12 metabolites had sig-
nificant correlation with IR, including seven amino acid
metabolites and five fatty acid metabolites (Table 3).

A total of differential metabolites co-associated with
childhood obesity and IR were divided into amino acid
metabolites and fatty acid metabolites. The RF models
were used to explore the effects of amino acid metabolites
(Figure 1A) and fatty acid metabolites (Figure 1C) on IR,
and their importance was ranked. The combined efficacy
of BMI-SDS and the top three amino acid metabolites

including glutamine tyrosine and alanine in predicting
IR in children reached 80.0% (95% CI: 0.746, 0.854)
(Figure 1B). In terms of fatty acid metabolites, The AUC
of BMI-SDS combined with pyruvic-ox-2, ethylmalonic-2,
phenyllactic-2 was 76.6% (95% CI: 0.709, 0.824).
(Figure 1D). Finally, the combined efficacy of BMI-SDS
with the top three amino acid metabolites and the top
three fatty acid metabolites in predicting IR reached
80.4% (AUC = 0.804, 95% CI: 0.750, 0.857) in children
(Figure S2).

4 | DISCUSSION

This study showed that there were significant differences
in 30 types of metabolites between obese and normal
children, 12 of which also associated with IR. In fact,
the key metabolites were associated with increased risk
of IR among obese children. Based on the importance

FIGURE 1 Importance ranking

of differential metabolites and

efficacy of predicting IR. (A).

Random forest model for importance

ranking of amino acid metabolites.

(B) The combined efficacy of

BMI-SDS and the top three amino

acid metabolites in predicting IR in

children reached 80.0%

(AUC = 0.800, 95% CI: 0.746, 0.854).

(C). Random forest model for

importance ranking of fatty acid

metabolites. (D) The combined

efficacy of BMI-SDS and the top

3 fatty acid metabolites in predicting

IR in children reached 76.6%

(AUC = 0.766, 95%CI: 0.709, 0.824).

AUC, area under the curve;

BMI-SDS, body mass index-SD score;

CI, confidence interval; IR, insulin

resistance.
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of key metabolites for IR, we ranked the importance of
metabolites and evaluated their performance in predict-
ing IR, and confirmed the outstanding predictive efficacy.

Human metabolism had a close relationship with
obesity. A recent meta-analysis of obesity and metabo-
nomic had shown that the level of leucine, isoleucine,
valine, tyrosine, phenylalanine, glutamate, lysine, and
alanine increased among obese individuals, whereas gly-
cine levels decreased. This is similar to our results, indi-
cating that there were significant differences in amino
acid levels between obese and normal populations.15 In
obese subjects, the increase of some amino acid levels
may be related to the low expression of L-type amino acid
transporter 1 protein, which transports large neutral
amino acids such as ranched-chain amino acids, phenyl-
alanine, and tyrosine.16 Regarding changes in the num-
ber of aromatic amino acids including phenylalanine and
tyrosine in obese individuals, it was proposed that the
metabolic disorder caused by obesity would lead to liver
dysfunction, accompanied by the reduction of phenylala-
nine and tyrosine metabolism and ultimately increase
their levels in the blood.15 Glutamic acid is a basic sub-
stance for energy metabolism associated with metabolic
diseases. The high levels of glutamate in obese individ-
uals are due to lower absorption of the tricarboxylic acid
cycle. In addition, glutamic acid may also be triggered by
glucagon release from alpha-pancreatic cells, aggravating
metabolic diseases.17 As a kind of ester compound syn-
thesized by carnitine and fatty acid, acylcarnitine can
reflect the metabolism of fatty acid. We also found that
obese children had higher concentrations of pyruvic-ox-2
and glyceric-3. As an important intermediate in the
metabolism of sugar, lipid, and amino acid, pyruvate is
mainly derived from carbohydrates. It is also an accelera-
tor of gluconeogenesis and increases the content of glu-
cose in the blood.18 In addition, as one of the common
organic acids, glyceric acid can be used in cooking of
bread and other foods, children who are overweight or
obese tend to consume high-calorie foods, so the glyceric
acid derivative phosphoglyceric acid is enhanced in
the body.

IR is the basis of metabolic disorders and complica-
tions caused by obesity. Childhood IR is more likely to
accelerate the occurrence and development of nonalco-
holic fatty liver disease, type 2 diabetes, and cardiovascu-
lar disease, and their potential mechanism involves
complex metabolic pathways.10,19,20 A cohort study indi-
cated that significant changes in branched-chain amino
acids, phenylalanine, alanine tyrosine, and tryptophan
among children with IR.21 In terms of the relationship
between key amino acids and IR, it had been reported
that the levels of elevated glutamate are positively associ-
ated with BMI, childhood obesity,22 and IR,23 whereas

glutamine was lower among children with obesity.24 This
is consistent with our study as well. Because of changing
in gut microbiota environment of obese children, metab-
olism of glutamate and glutamine in the body might be
affected so that lead to changes in plasma amino acids.
Gluconeogenesis would cause increased hepatic glucose
output as well as causes IR. Childhood obesity and IR
individual participant based meta-analysis showed that a
sphingomyelin was positively associated with obesity,
whereas increased alanine and tyrosine had been corre-
lated with HOMA, suggesting their roles in gluconeogen-
esis and insulin resistance. Tyrosine is biosynthesized
from the indispensable amino acid phenylalanine, and
elevated tyrosine concentrations may be due to elevated
tyrosine transaminase activity caused by increased insu-
lin secretion.25 Studies showed that leucine, glutamine,
and alanine are responsible for amino acid hypersensitiv-
ity in islets26; amino acid oxidation via glutamate dehy-
drogenase produces ATP and triggers insulin secretion.
The signaling effect of amino acids amplifies insulin
release after β-cell depolarization and elevation of cyto-
solic calcium.27 Inhibition of glutamate dehydrogenase
activity is involved in regulating insulin secretion in spe-
cific fatty acid oxidation disorders.26

In addition, pyruvate is a precursor for gluconeogenesis
and the biosynthesis of glycerol, fatty acids, and nonessen-
tial amino acids. The elevated pyruvate level suggests a
deficiency of pyruvate dehydrogenase, which is required
for acetyl-CoA production.28 It has also been observed that
increased lactate reflects dysregulation of central carbon
metabolism and that obesity is closely associated with adi-
pocyte hypertrophy, which is associated with local hypoxia
promoting lactate production.29 Thus, increased pyruvate
and lactate levels may form characteristic markers of obe-
sity and IR in children.28 Existing evidence has shown that
high-fat diet promoted fructose metabolism and increased
the levels of glyceric acid, damaging the secretion and func-
tion of islet β-cells and accelerating the occurrence of type
2 diabetes.30

Notably, adolescent development is one of the impor-
tant physiological factors affecting IR. At this stage, the
increase of growth hormone and sex hormone levels is
accompanied by a transient decrease of insulin sensitivity
and compensatory increase of insulin secretion. There-
fore, after adjusting for age, gender, and BMI, we identi-
fied common metabolites associated with childhood
obesity and IR and predicted IR based on key common
metabolites, including glutamine, tyrosine, alanine,
pyruvic-ox-2, ethylmalonic-2, and phenyllactic-2, which
likely have the potential to be early markers of the onset
of IR. Ethylmalonic-2 is a major and potentially cytotoxic
metabolite associated with short-chain acyl-CoA dehy-
drogenase deficiency,31 yet its role of the relationship
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between obesity and IR is still unclear. Our study pro-
vides new ideas for exploring the relationships between
ethylmalonic-2 and IR, and further research is needed to
verify this in the future.

Major strengths of this study include that we compared
the differences in IR between obese and normal weight chil-
dren by taking into account age, and we explored the key
metabolites associated with childhood obesity and IR,
which may have implications for the prevention of child-
hood obesity and complications. Second, we jointly pre-
dicted IR based on the results of RF machine learning,
which provides promising prospects for the diagnosis and
treatment of IR. Indeed, our findings highlighted the needs
for comprehensive consideration variables in studies of IR
children as well as more mechanism experiments to
approve the results of epidemiological studies.

There were some limitations in our study. As a
cross-sectional study, the causal relationships between
metabolites and IR cannot be established in this study. We
cannot ignore other possible confounders that were associ-
ated with IR, and it requires further confirmation in follow-
ing longitudinal studies. In addition, the number of control
group is less than that of obese children in this study. How-
ever, it had shown that the comparison results between the
two groups were still stable. Future studies needed to fur-
ther verify the potential mechanisms of the key metabolites
and the occurrence of IR, as well as how to coordinate and
modify the levels of these metabolites in the body.

5 | CONCLUSION

In summary, the risk of IR significantly increased among
obese children. Multiple linear regression models and
correlation analyses were applied for assessing the associ-
ations between key metabolites and obesity as well as
IR. By giving the results of these two models, we con-
cluded that key metabolites were associated with IR
among obese children, just like the combination of key
metabolites, including three amino acid metabolites (glu-
tamine, tyrosine, alanine) and three fatty acid metabolites
(pyruvic-ox-2, ethylmalonic-2, phenyllactic-2), have good
efficacy in predicting IR. This study provides a reference
for predicting IR among children.
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