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Adipose tissue lipid metabolism: lipolysis
Chung Hwan Cho1, Sanil Patel1 and Prashant Rajbhandari1,2

White adipose tissue stores fatty acid (FA) as triglyceride in the 
lipid droplet organelle of highly specialized cells known as fat 
cells or adipocytes. Depending on the nutritional state and 
energy demand, hormonal and biochemical signals converge 
on activating an elegant and fundamental process known as 
lipolysis, which involves triglyceride hydrolysis to FAs. Almost 
six decades of work have vastly expanded our knowledge of 
lipolysis from enzymatic processes to complex protein 
assembly, disassembly, and post-translational modification. 
Research in recent decades ushered in the discovery of new 
lipolytic enzymes and coregulators and the characterization of 
numerous factors and signaling pathways that regulate lipid 
hydrolysis on transcriptional and post-transcriptional levels. 
This review will discuss recent developments with particular 
emphasis on the past two years in enzymatic lipolytic pathways 
and transcriptional regulation of lipolysis. We will summarize the 
positive and negative regulators of lipolysis, the adipose tissue 
microenvironment in lipolysis, and the systemic effects of 
lipolysis. The dynamic nature of adipocyte lipolysis is emerging 
as an essential regulator of metabolism and energy balance, 
and we will discuss recent developments in this area.
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Introduction
White adipose tissue (WAT) triacylglycerol (TAG) is the 
primary energy reserve in higher eukaryotes [1]. During 
times of energy deprivation, WAT undergoes a shift 

toward the hydrolysis of TAG to generate fatty acids 
(FAs) and glycerol, a lipolysis process that is released for 
internal use and into the vasculature for use by other 
organs as energy substrates [2,3]. TAG is hydrolyzed 
sequentially to form diacylglycerol (DAG), then mono-
acylglycerol (MAG), with the liberation of a FA at each 
stage. MAG is hydrolyzed to release the final FA and 
glycerol. This lipid pool is in a constant state of flux, 
resulting from a largely futile cycle of lipolysis and re- 
esterification [2].

There are diverse fates of FAs inside and outside of 
adipocytes. FAs undergo oxidation to yield Adenosine 
triphosphate or heat production, re-esterification into 
TAGs, translocating as a cell membrane composition, or 
acting as signaling molecules to activate cellular meta-
bolic and transcriptional programs. Adipocytes act as 
a signaling molecule, energy substrate in muscles and 
the liver, and utilization by white and brown adipose 
tissue (BAT) to activate thermogenic programs.

Although FAs are necessary for cellular energy as me-
tabolic substrates for metabolic homeostasis, excessive 
amounts can lead to harmful effects by accumulating 
toxic lipid metabolites. This condition, known as lipo-
toxicity, can cause various negative processes, such as 
inflammation and insulin resistance when FAs overflow 
from adipocytes into nonadipose tissues. Lipotoxicity 
can induce cellular stress and dysfunction, leading to 
multiple forms of cell death. Hence, lipolysis is a highly 
controlled and dynamic cellular process for lipid and 
energy homeostasis, and dysregulation of lipolysis is 
detrimental and leads to metabolic pathogenesis.

Enzymatic control of lipolysis
Generation of FA and glycerol from stored TAG in-
volves a series of highly coordinated enzymatic actions of 
lipases at the Lipid droplet (LD). The discovery of 
hormone-sensitive lipase (HSL) as a crucial hydrolase of 
TAGs was the first in a series of identification of other 
enzymes involved in lipolysis [4]. Along with HSL, 
Steinberg and colleagues also reported MAG hydrolysis 
by monoacylglycerol lipase (MGL) in adipocytes [4]. 
The maintenance of hormone-induced FA release in 
adipocytes of mice with HSL deficiency led to the 
concept of additional enzymes in the lipolytic pathways 
and led to the discovery of adipose triglyceride lipase 
(ATGL) or phospholipase-A2-ζ and α-/β-hydrolase do-
main-5 (ABHD5); also called comparative gene identi-
fication-58 (CGI-58) (Figure 1).
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Hormone-sensitive lipase 
HSL exhibits the highest hydrolase activity against 
DAGs and Cholesterol esters, followed by TAG and 
MAG. Langin and colleagues recently published an ex-
tensive review on the function and regulation of HSL 
protein and expression of Lipe, a gene encoding HSL [5]. 
Humans and mice with HSL deficiency develop partial 
lipodystrophy associated with reduced Peroxisome Pro-
liferator Activated Receptor Gamma (PPARγ) signaling 
in adipose tissue [6]. A recent report showed that ad-
vanced lipodystrophy and the reversed fatty liver phe-
notype in aged mice lacking adipocyte HSL were 
accompanied by improved glucose homeostasis com-
pared with age-matched obese control mice [7]. The 
study suggests that inhibiting adipocyte HSL activity 
provokes adipocyte dysfunction, leading to tissue-spe-
cific insulin resistance, inflammation, and fat mass re-
duction. These progressive deteriorations of adipose 
tissue mass and function provoke fatty liver without af-
fecting glucose homeostasis at this stage. When lipody-
strophy advances, further blunting adipose tissue 
lipolysis, fatty liver reverses, and glucose homeostasis 
improves [7]. FA esters of hydroxy fatty acids (HFAs) 
called FAHFAs belong to oligomeric FA esters, known 
as estolides, and HSL was recently shown to hydrolyze 
estolide bonds on both TAG estolides and free FAHFAs  
[8]. Mice lacking HSL accumulate DAG in various tis-
sues such as muscles, adipose tissue, and testis, de-
monstrating reduced FA mobilization and impaired 
PPARγ signaling [9]. A recent report by Kotzbeck et al. 
showed that HSL loss promoted Endoplasmic reticulum 

(ER) stress in both epididymal WAT (eWAT) and in-
guinal WAT of HSL knockout mice [10]. Still, in-
flammation and macrophage infiltration occurred mainly 
in eWAT, implicating fat-depot-specific function of 
HSL. Also, PPARγ activation reversed inflammation but 
not ER stress and DAG accumulation. These data in-
dicate that neither reduction of DAG levels nor ER 
stress contribute to change in eWAT inflammation in 
HSL knockout mice [10]. 

Adipose triglyceride lipase 
ATGL is a 54-kDa hydrolase belonging to the family of 
patatin-like phospholipase domain-containing proteins 
(PNPLA) with specificity for TAG as a substrate. 
ABHD5, also known as CGI-58, plays an indispensable 
role in regulating the movement and activation of ATGL 
and other members of the PNPLA domain-containing 
family. The G0/G1 switch gene-2 (G0S2) encodes a 
protein discovered as a selective controller of ATGL, 
lowering its action in both cells and mice. G0S2 is pri-
marily expressed in adipose tissue and mature adipo-
cytes and interacts with ATGL to specifically prevent its 
TAG hydrolase activity. Similarly, hypoxia-induced lipid 
droplet-associated protein (HILPDA), also known as 
hypoxia-induced gene-2, is a peptide consisting of 63 
amino acids and is related to G0S2 [11]. HILPDA has 
been found to obstruct ATGL activity, just like G0S2. 

A recent report showed that ATGL and HSL participated 
in the metabolism of estolides and TAG estolides in dis-
tinct manners [8]. The researchers uncovered that ATGL 
could release FAHFAs from TAG estolides with high ef-
ficiency, either working alone or in conjunction with CGI- 
58. ATGL also played a crucial role in transesterification 
and remodeling reactions, creating TAG estolides with di-
verse acyl compositions. Few studies have also demon-
strated the anabolic function of ATGL [12]. A recent paper 
from Patel et al. elegantly showed that ATGL transacylase 
activity was responsible for the biosynthesis of FAHFAs  
[13]. The authors showed that when both triglycerides and 
HFA are present, ATGL’s transacylation activity can 
transfer an acyl chain from a triglyceride to HFA, forming 
FAHFA. ATGL mediates FAHFA release from FAH-
FA–TGs during lipolysis [13,14] and their research findings 
indicate that ATGL exhibits both catabolic and anabolic 
responses in mice and humans to regulate lipid metabolism. 

Mutations that impair the function of the Pnpla2 gene 
result in a condition called neutral lipid storage disease 
with myopathy in humans [15], characterized by the 
abnormal accumulation of lipids in numerous tissues. 
Adipocyte-specific ATGL deletion reduces adipocyte 
lipolysis, serum lipids, systemic lipid oxidation, and ex-
pression of Peroxisome Proliferator Activated Receptor 
Alpha (PPARα) and PPARα target genes involved in 
lipid oxidation in adipose tissue and liver [16,17]. 

Figure 1  
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Generation of FA and glycerol from stored TAG involves a series of 
highly coordinated enzymatic actions of ATGL, HSL, and MGL at the LD. 
Enzymatic activity of ATGL is enhanced by CGI-58.   
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Monoacylglycerol lipase 
MGL is an enzyme with a molecular weight of 33 kDa that 
functions as a serine hydrolase [4]. It hydrolyzes both the 1- 
and 2-ester bonds of MAG and does not show catalytic 
activity against DAG, TAG, or CE in vitro. MGL has a 
structure containing an alpha-/beta-hydrolase fold, typical of 
known lipases. α-/β-hydrolase domain 6 (ABHD6) is also 
known to hydrolyze MAGs [18]. The absence of MGL in 
mice results in the accumulation of MAGs in various tissues 
and causes impaired intestinal lipid absorption, which 
moderately protects against the development of diet-in-
duced obesity and hepatic steatosis in mice [19]. The 
phenotype of mice lacking MGL in adipocytes is yet to be 
determined [19]. Deficiency of ABHD6 also results in 
MAG accumulation in various tissues, and adipocyte-spe-
cific deletion of ABHD6 results in phenotypic changes, 
mostly under cold exposure [20]. Mice lacking ABHD6 in 
adipocytes demonstrate increased energy expenditure, re-
sistance to cold-induced hyperthermia, increased glucose 
and oxidative metabolism in BAT, and increased eWAT 
expression of PGC1α, PPARα, and PPARγ without any 
concomitant changes in the thermogenic mitochondrial- 
uncoupling protein-1 levels [20]. 

Transcriptional control of lipolysis 
One of the effective mechanisms of controlling lipolysis is 
the transcriptional regulation in the promotors of the genes 
coding Pnpla2 (ATGL) and Lipe (HSL). According to sev-
eral studies, both target genes are regulated by the 
Peroxisome Proliferator Activated Receptor (PPAR) family. 
Both Pnpla2 and Lipe are targets of PPARs, and a recent 
report showed that cysteine dioxygenase 1 engages with 
PPARγ and assists in enlisting Med24, a fundamental sub-
unit of the mediator complex to promoters of Pnpla2 and 
Lipe genes [21]. Other transcription factors that are known to 
induce adipogenesis, such as the G/C-box-binding factor 
specificity protein-1, E-box-binding transcription factor-E3, 
or CCAAT/enhancer-binding protein alpha (CEBPα), 
are also known to regulate both transcriptions of Pnpla2 and 
Lipe [22]. The Lipe gene expression is controlled by sterol 
regulatory element-binding proteins. Growth hormones 
(GH) induce the Janus kinase 2/Signal transduction and 
activator and transcription 5 (STAT5) pathway as well as the 
Mitogen-activated protein (MAP) kinase pathway through 
the extracellular signal-regulated kinases 1/2 (ERK1/2) 
pathway [23]. Phospho-STAT5 will directly bind to the 
promoter region of the Pnpla2 gene regulating the expres-
sion and initiating lipolysis [24,25]. Other than GH sig-
naling, recently, the MAP kinase pathway through ERK-3 
activated by the β3-adrenergic receptor could increase the 
forkhead box protein O1 (FOXO1)-mediated Pnpla2 ex-
pression and stimulate lipolysis [26]. 

Molecular and cellular signals promoting lipolysis 
The levels of TAG stores are regulated with great 
precision through the action of circulating hormones 

that promote adipocyte lipolysis ( Figures 1 and 2). 
Norepinephrine, a major catecholamine that engages 
adipocyte lipolysis, is released in response to cold sti-
mulation from sympathetic nerve (SNS) endings that 
innervate adipose cells to facilitate nonshivering ther-
mogenesis (NST) by activating G-protein-coupled re-
ceptors (GPCR) [27]. These GPCRs, including β1, β2, 
and β3-ARs, are coupled to Gs, leading to the activation 
of adenylyl cyclase, increasing the levels of cyclic AMP 
(cAMP) as a second messenger, and promoting protein 
kinase-A (PKA) activation mediating the actions of ca-
techolamines. PKA then phosphorylates Perlipin1 
(PLIN1), releasing CGI-58 to activate ATGL and 
phosphorylating HSL to promote its transfer from the 
cytosol to LDs. HSL then interacts with PLIN1 to in-
crease its hydrolase activity for DAGs. The phosphor-
ylation of PLIN1 is necessary for PKA-dependent 
lipolysis by releasing CGI-58 and interacting with 
ATGL and for proper LD recruitment and activation of 
HSL [2] (Figure 2). Other GPCRs, such as the olfactory 
and photoreceptive nonvisual opsins GPCRs, were 
shown to control lipolysis in WAT [28,29]. GPRC6A was 
another class of GPCRs shown to mediate the effect of 
osteocalcin and ornithine in promoting lipolysis and in-
creasing ATGL levels [30]. Hypothalamus plays a crucial 
role in adipocyte lipolysis through adipose tissue SNS 
projections, and O-linked β-d-N-acetylglucosamine (O- 
GlcNAc) modification (O-GlcNAcylation), catalyzed by 
O-GlcNAc transferase (OGT) in the ventromedial hy-
pothalamus (VMH), was shown to regulate VMH neu-
ronal excitability and adipocyte lipolysis [31]. Similarly, 
mitochondrial architecture in the proopiomelanocortin 
(POMC)-expressing neurons in the arcuate nucleus of 
the hypothalamus was recently shown to regulate cal-
cium homeostasis in POMC neurons and adipocyte li-
polysis [32]. Adipocyte-secreted adipokine leptin acts in 
the hypothalamic region to stimulate the SNS-mediated 
adipocyte lipolysis [33]. Pharmacological activation of 
the SNS pathway by β3-AR agonist mirabegron was re-
cently shown to induce lipolysis in humans’ sub-
cutaneous WAT (scWAT) [34], and stabilization of 
ERK-3 by β-adrenergic stimulation was shown to induce 
lipolysis by an increase in ATGL expression [26]. 

Besides transmembrane signaling, adipocyte-intrinsic 
signals are also emerging as regulators of lipolysis pro-
grams. The delivery of ATGL to lipid droplets relies on 
the presence of small Guanosine triphosphate-binding 
protein ARF1, its guanine-nucleotide exchange factor 
Golgi brefeldin A resistant guanine nucleotide exchange 
factor 1, and its effector coatomer protein I from the 
ER–Golgi transport machinery [35]. Lipid droplet-asso-
ciated small GTPase Rab18 is essential in recruiting 
ATGL to lipid droplets through the ARF1/GBF1 
pathway [36]. Circular RNA derived from protein tyr-
osine kinase 2 (PTK2) (circPTK2) induced lipolysis by 
sponging miR-182-5p and enhancing the stability of 
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juxtaposed with another zinc finger gene 1 (JAZF1) [37]. 
Micro RNAs (miR) are also emerging as important reg-
ulators of adipocyte lipolysis. miR-128 was shown to 
control adipocyte differentiation, lipid accumulation, 
and lipolysis [38], and ablation of miR-33 enhanced lipid 
uptake and impaired lipolysis [39]. Coiled-coil–helix- 
coiled–coil–helix domain-containing 10, a mitochondrial 
intermembrane protein enriched at the cristae junction, 
regulated lipolysis by modulating the levels of ATGL 
and HSL [40]. Other organelles, such as peroxisome, 
facilitate lipolysis through direct interaction with LD 
during fasting conditions [41]. 

Molecular and cellular signals inhibiting 
lipolysis 
Protein complexes formed at the LD are one of the best- 
known inhibitors of lipolytic programs (Figure 2). 
PNPLA3 can compete with ATGL for binding to CGI- 
58, thereby sequestering CGI-58 away from ATGL [42]. 

Ubiquitin-X domain adaptor 8 (UBDX8) can bind 
ATGL, promoting its segregation from the LD, followed 
by ubiquitination and proteasomal degradation [43]. 
ATGL is also ubiquitinated and degraded by interacting 
with prolyl isomerase Pin1 at Ser185/Pro186 residues in 
the PNPLA domain [44]. The levels of the ATGL 
protein are also regulated by two types of E3 ligases, 
UBR1 and UBR2, which are part of a system called the 
N-end rule pathway [45]. This pathway recognizes 
specific N-terminal residues of short-lived proteins and 
targets them for degradation through the proteasome. 
The researchers showed that mice with a genetic mod-
ification that makes the ATGL protein resistant to de-
gradation by the N-end rule pathway (called AtglF2A/ 
F2A) had increased lipolysis and are protected against 
obesity and fatty liver disease induced by a high-fat diet  
[45]. In contrast to the role of O-GlcNAc and OGT ac-
tivity in VMH neurons to promote lipolysis mentioned 
above [31], a mouse model with the adipocyte-specific 

Figure 2  
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Major pathways involved in positive and negative regulation of lipolysis. β-adrenergic receptors (β-AR) are coupled to Gs, leading to the activation of 
adenylyl cyclase, increasing the levels of cAMP as a second messenger, and PKA activation, mediating the actions of noradrenaline. PKA then 
phosphorylates PLIN1, releasing CGI-58 to activate ATGL and phosphorylating HSL to promote its transfer from the cytosol to LDs. CGI-58 interacts with 
FABP4 to increase ATGL activity. HSL then interacts with PLIN1 to increase its hydrolase activity for DAGs. HSL and PLIN1 are also phosphorylated by 
ERK1/2 and protein kinase G (PKG) through GHR and NP receptor (NPR) signals. PNPLA3 can compete with ATGL for binding to CGI-58, thereby 
sequestering CGI-58 away from ATGL. G0S2 and HILPDA interaction inhibits AGTL activity. The binding of natriuretic peptides (NP) to the NPR also 
activates PKG via GC-derived Guanosine 3’,5’-cyclic monophosphate (cGMP). Insulin and IGF-1 activate PI3K and IRS1/2 that subsequently activate PKB 
and PDE3B, resulting in the hydrolysis of cAMP, blocking HSL and ATGL activation. Insulin binding blocks FOXO1 transcriptional function and also induces 
stabilization of PDE3B with ABHD15, which promotes cAMP degradation. Activation of ALK7 inhibits the expression of β-AR and causes phosphorylation 
of Suppressor of Mothers Against Decapentaplegic (SMAD) proteins to block transcription of Lipe. Ghrelin is recognized as having antilipolytic effects as it 
activates the PI3K pathway. Additionally, adiponectin can also hinder lipolysis by suppressing PKA by decreasing its regulatory subunit RIIα. FGF1 
suppresses lipolysis through FGFR1 by inhibiting the cAMP/PKA axis via activation of PDE4D, which results in cAMP degradation. Activation of Gi-protein- 
coupled α2-ARs and A1-R inhibits AC and thereby reduces cAMP-dependent signaling to lipolysis.   
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knockout of OGT causes loss of PLIN1 O-GlcNAc, 
which leads to increased PLIN1 phosphorylation and 
increased lipolysis [46]. 

Hormonal signals such as insulin or insulin-like growth 
factor-1 (IGF-1) inhibit lipolysis by binding to the in-
sulin receptor or IGF receptor (Figure 2) [2]. This 
binding activates insulin receptor substrate-1/2 (IRS1/2), 
phosphatidylinositol-3-kinase (PI3K), PDK1, and PKB, 
which then activate PDE3B, leading to the hydrolysis of 
cAMP [47]. Insulin suppresses the transcription of 
Pnpla2 through the phosphorylation of FOXO1 by PKB, 
leading to the inhibition of nuclear translocation of 
FOXO1 [48]. Insulin binding also induces stabilization 
of PDE3B with ABHD15, which promotes cAMP de-
gradation [49] (Figure 2). Using similar mechanism, 
FGF1 suppresses lipolysis through FGFR1 by inhibiting 
cAMP/PKA axis via activation of PDE4D, which results 
in cAMP degradation [50]. Adenosine and alpha-2 re-
ceptor agonists also inhibit lipolysis by reducing cAMP 
levels by activating adenosine-A1 receptors (A1-AR) and 
α2-AR, respectively, coupled with Gi proteins, inhibiting 
adenylate cyclase and cAMP synthesis (Figure 2) [51]. 
PAQR11, a scaffolding protein, progesterone, and 
Adipoq receptor family member, regulates PDE4D le-
vels in adipose tissue [52]. PAQR11 modulates the WAT 
cAMP level by regulating PDE4D degradation through 
the SKP1–CUL1–FBXO2 E3 ligase complex [52]. 

Various other hormones, including adiponectin and 
ghrelin, can act as regulators of lipolysis. Adiponectin, 
derived from adipocytes, is crucial in safeguarding 
against obesity-related metabolic conditions [53]. Adi-
ponectin has demonstrated its capacity to obstruct lipo-
lysis by inhibiting HSL activation through the PKA 
pathway. Moreover, adiponectin reduces the levels of 
PKA RIIα, the regulatory subunit of PKA, thereby ne-
gatively impacting its protein stability. The inhibitory 
effect of adiponectin on lipolysis is nullified when RIIα 
is overexpressed [54]. In summary, adiponectin not only 
enhances insulin-induced suppression of lipolysis but 
also independently obstructs the process of lipolysis. 
Studies have revealed that ghrelin directly attenuates 
lipolysis in WAT by activating the PI3K–PKB–PDE3B 
axis (Figure 2) [55]. However, the effect of ghrelin on 
lipolysis remains unclear, as ghrelin infusion in humans 
was found to acutely increase lipolysis and free FA re-
lease while impairing glucose uptake into skeletal 
muscle [56]. Other secreted factors such as Activin B, 
Activin E, and growth/differentiation factor-3 binding to 
the activin-receptor-1c (also called activin-receptor-like 
kinase 7, Alk7) could block lipolysis through down-
regulation of β-AR expression and the phosphorylation 
of Suppressor of Mothers Against Decapentaplegic 
transcription factors, which in turn, inhibit CEBPα and 

PPARγ expression and thereby decrease Lipe gene 
transcription [57–59] (Figure 2). Noncoding RNAs are 
also emerging as a potent inhibitor of lipolysis. A recent 
study by Zhang et al. showed that small nucleolar RNA 
C/D box 46 (SNORD46) blocked IL-15-induced, FER 
kinase-dependent phosphorylation of CD36 and MGL 
in adipocytes, leading to inhibition lipolysis [60]. miR- 
425 inhibits lipolysis by blocking Cab39–AMPK 
pathway and miR-145 blocks lipolysis by directly tar-
geting Foxo1 and Abhd5 to attenuate ATGL function and 
expression [61]. 

Adipose tissue microenvironment control of 
lipolysis 
Immune cells are one of the best-known cell types in 
adipose tissue that regulate adipocyte lipolysis. Immune 
cells secrete cytokines such as tumor necrosis factor-alpha, 
interleukin-6 (IL6), IL1-b, IL-4, IL-15, IL-17a, IL-21, and 
interferon-gamma is known to influence lipolysis. ER 
stress protein inositol-requiring protein-1 (IRE1) was re-
cently shown to mediate inflammation-induced lipolysis 
and adipocyte-specific knockout of IRE1-blocked adipo-
cyte lipolysis and increased plasma TAG levels after 
bacterial toxin stimulus [62]. Immune cells can also 
function to regulate lipolysis negatively. Adipose tissue 
macrophages (ATM) regulate age-related decline in lipo-
lysis by catecholamine degradation through the action of 
inflammasome and monoamine oxidase-a (MAOA), an 
enzyme known to degrade catecholamines [63]. The 
regulatory T cells (Tregs) were recently shown to suppress 
visceral eWAT diurnal adipocyte lipolysis [64]. The clock 
gene Basic Helix-Loop-Helix ARNT Like 1, specifically 
in Tregs, enabled eWAT Tregs to enforce a diurnal 
rhythm in eWAT lipolysis, causing an increase in the 
suppression of fat breakdown throughout the day [64]. 
These results highlight the significance of the cell’s in-
ternal biological clock in ensuring optimal lipolytic func-
tion. Single-nuclei adipocyte RNA-seq from adipocytes 
lacking IL10Rα showed a marked increase in Lipe levels in 
the thermogenic adipocyte cluster, hinting toward an in-
hibitory role of IL10 on lipolysis [65]. Adipocytes also 
consist of B-cell-activating factor receptors, and B-cell ac-
tivating factor overexpression was shown to induce lipo-
lysis in scWAT [66]. Besides immune cells, the crosstalk 
between endothelium and adipocytes in the adipose tissue 
is crucial for adipose tissue homeostasis, exemplified by 
angiogenesis during WAT expansion. A recent report by 
Monelli et al. showed that when the PI3K pathway is 
activated in endothelial cells (EC), it causes ECs to pro-
liferate, specifically in WAT [67]. The researchers found 
that polyamines released by ECs are the critical mediators 
of communication and stimulate adipocyte lipolysis and 
FA release. The ECs then use these FAs for energy 
production to support their proliferation [67]. These 
findings provide new insights into the biology of ECs in 
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WAT and demonstrate how the microenvironment influ-
ences WAT homeostatic conditions. 

Local and systemic effects of lipolysis 
Energy-demanding tissues such as the liver, heart, 
BAT, and pancreas show direct consequences of per-
turbations in lipolysis (Figure 3). During fasting and 
β3-adrenergic stimulation, adipocyte ATGL action 
controls hepatic PPARα transcriptional function and 
production of FGF21 and ketone bodies [68]. β3- 
adrenergic stimulation also induces a thermogenic re-
sponse in BAT, and the authors show that ATGL 
function in white adipocytes also elicits a tertiary re-
sponse in BAT through hepatic PPARα activation [68]. 
ATGL is present in BAT, but recent reports have in-
dicated a dispensable role of ATGL in BAT thermo-
genesis [16]. The thermogenic activity of BAT is 
influenced by the availability of nutrients or the 
breakdown of fats in WAT. This implies that the 

energy substrates circulating in the body are adequate 
to support NST. Previous assumptions that the cold 
intolerance observed in ATGL knockout mice was due 
to BAT dysfunction were probably incorrect, as it has 
been discovered that the mice suffer from severe car-
diomyopathy [69]. ATGL lipolytic function in WAT 
under cold exposure and β3-AR stimulation also results 
in insulin secretion from pancreatic beta cells that fa-
cilitate triglyceride-rich lipoprotein (TRL) uptake in 
BAT for optimal BAT function [70]. Mice lacking 
ATGL die early due to heart failure [71]. However, 
when ATGL was overexpressed in the hearts of these 
mice, their heart failure was prevented, and they had 
normal heart function and lifespan. Accordingly, adi-
pocyte-specific ATGL depletion and pharmacological 
treatment with Atglistatin, a pharmacological inhibitor 
of ATGL, protect mice from catecholamine-induced 
cardiac damage by decreasing cardiac hypertrophy, 
cardiac fibrosis, and inflammation [72]. 

Figure 3  
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Recent developments in the local and systemic tissue crosstalk mediated by lipolysis to regulate energy and lipid homeostasis. FA released by 
adipocytes during fasting and b-adrenergic stimulation can function as PPARα ligands in the liver to upregulate a transcriptional program involved in 
increasing FA oxidation, FGF21, and ketone bodies, and BAT thermogenic activity. FA released by adipocytes during fasting and β-adrenergic 
stimulation also leads to insulin secretion from the pancreas that stimulates the uptake of FA-induced TRL from the liver in BAT for optimal 
thermogenesis. The heart and skeletal muscle use both glucose- and adipocyte- derived FA as an energy substrate for normal function. Linoleic acid 
from adipocyte lipolysis acts on a pool of CD81+ beige APC for proliferation and conversion into beige adipocytes for optimal thermogenesis. Lipolytic 
signal also enhances the transcription of Gpr3, a gene encoding GPR3. GPR3 is a constitutively active GPCR that activates the cAMP/PKA pathway to 
increase thermogenesis in beige and brown adipocytes. FA from adipocyte lipolysis also increases EC proliferation.   
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The lipolytic program plays a significant role in re-
modeling cell-intrinsic and adipose tissue niche. FAs 
from lipolysis activate PPAR pathways to regulate gene 
expression. Lipolytic signal also enhances the tran-
scription of Gpr3, a gene encoding G-protein-coupled 
receptor 3 (GPR3). GPR3 is a constitutively active 
GPCR that activates cAMP/PKA pathway to increase 
thermogenesis in beige and brown adipocytes [73]. Li-
polytic products also potentiate the proliferation of cells 
in the WAT niche. WAT lipolysis increases the pro-
liferation of thermogenic beige precursor cell (adipocyte 
precursor cells (APC)) in the WAT niche to increase 
adipose thermogenesis [74]. The researcher showed that 
linoleic acid released from adipocyte lipolysis increases 
β-oxidation and prostanoid release with a subsequent 
increase in CD81+ beige APC proliferation [74]. As 
discussed, FA also causes EC proliferation due to the 
crosstalk between the endothelium and adipocytes [67]. 

Conclusion 
Despite lipolysis being recognized as important for many 
years, the identification of essential proteins has only 
occurred in recent decades. Our understanding of lipo-
lysis and its effects on cellular metabolism, including 
adipose tissue, has been significantly expanded with the 
discovery of crucial lipolytic enzymes and various reg-
ulatory proteins and mechanisms. As more enzymes and 
regulatory proteins are discovered, the intricate nature of 
the hormonal and intracellular signaling network that 
controls the lipolytic pathway has become increasingly 
apparent. Investigating the involvement of lipolytic 
products and intermediates in nonadipose tissues could 
reveal new insights into the role of lipolysis and its 
connection to metabolic diseases. Our view of lipolysis 
has drastically evolved from the actions of three lipases 
to a complex interactome or ‘lipolysome’ [75]. The adi-
pose tissue lipolytic pathway has been the subject of 
intense investigation, and mutant mouse lines have been 
developed for most lipases. Additionally, the identifica-
tion of lipase inhibitors has created a timely opportunity 
to achieve a quantitative understanding of lipolysis and 
its regulatory network. The severe symptoms observed 
in various tissues such as adipose tissue, pancreas, liver, 
heart, and skeletal muscle due to the defect in lipolysis 
highlight the importance of maintaining a balance be-
tween lipid mobilization, utilization, and storage in most 
tissues. Therefore, by examining the mechanisms that 
govern lipolysis in adipose and nonadipose tissues, we 
can enhance our comprehension of lipid metabolism and 
identify novel therapeutic targets for managing meta-
bolic conditions such as type-2 diabetes, fatty liver dis-
ease, and heart failure. 
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