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Gut microbial carbohydrate metabolism 
contributes to insulin resistance

Tadashi Takeuchi1, Tetsuya Kubota1,2,3,4,5 ✉, Yumiko Nakanishi1,2, Hiroshi Tsugawa6,7,8,9, 
Wataru Suda10, Andrew Tae-Jun Kwon11, Junshi Yazaki12, Kazutaka Ikeda7,13, Shino Nemoto1, 
Yoshiki Mochizuki12, Toshimori Kitami14, Katsuyuki Yugi15,16,17, Yoshiko Mizuno18,19, 
Nobutake Yamamichi20, Tsutomu Yamazaki21, Iseki Takamoto3,22, Naoto Kubota3, 
Takashi Kadowaki3,23, Erik Arner11, Piero Carninci24,25, Osamu Ohara12,13, Makoto Arita7,8,26,27, 
Masahira Hattori10, Shigeo Koyasu28 & Hiroshi Ohno1,2,8 ✉

Insulin resistance is the primary pathophysiology underlying metabolic syndrome 
and type 2 diabetes1,2. Previous metagenomic studies have described the 
characteristics of gut microbiota and their roles in metabolizing major nutrients in 
insulin resistance3–9. In particular, carbohydrate metabolism of commensals has been 
proposed to contribute up to 10% of the host’s overall energy extraction10, thereby 
playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the 
underlying mechanism remains unclear. Here we investigate this relationship using  
a comprehensive multi-omics strategy in humans. We combine unbiased faecal 
metabolomics with metagenomics, host metabolomics and transcriptomics data to 
profile the involvement of the microbiome in insulin resistance. These data reveal that 
faecal carbohydrates, particularly host-accessible monosaccharides, are increased in 
individuals with insulin resistance and are associated with microbial carbohydrate 
metabolisms and host inflammatory cytokines. We identify gut bacteria associated 
with insulin resistance and insulin sensitivity that show a distinct pattern of 
carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated 
bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our 
study, which provides a comprehensive view of the host–microorganism relationships 
in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, 
suggesting a potential therapeutic target for ameliorating insulin resistance.

We analysed 306 individuals (71% male) aged from 20 to 75 years 
(median age, 61 years), who were recruited during their annual health 
check-ups (Extended Data Fig. 1a). Individuals diagnosed with diabetes 
were excluded to avoid any long-lasting effects of hyperglycaemia5,6. 
Consequently, our study included relatively healthy individuals com-
pared with most of the previous metagenomic studies of diabetes 
and obesity5–8,11,12; the median (interquartile range (IQR)) body mass 
index (BMI) and glycated haemoglobin (HbA1c) were 24.9 kg m−2 
(22.2–27.1 kg m−2) and 5.8% (5.5–6.1%), respectively (Supplementary 

Table 1). The main clinical phenotype analysed in this study was insulin 
resistance (IR), which we defined as a homeostatic model assessment of 
IR (HOMA-IR) score of at least 2.5 (ref. 13). We also analysed the associa-
tions between faecal metabolites and metabolic syndrome (MetS), an 
IR-related pathology. The clinical characteristics of IR and MetS largely 
overlapped except for blood pressure and sex ratio, for which there 
was no difference between individuals with IR versus normal insulin 
sensitivity (IS) (Supplementary Table 1). Untargeted metabolomics 
analysis using two mass spectrometry (MS)-based analytical platforms 
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identified 195 and 100 annotated faecal and plasma hydrophilic metab-
olites, and 2,654 and 635 annotated faecal and plasma lipid metabolites, 
respectively (Extended Data Fig. 1a). To identify the overall difference 
in microbial functions, faecal metabolites and predicted genes were 
summarized into co-abundance groups (CAGs) and KEGG categories, 
respectively (Extended Data Fig. 1b). Transcriptomic information of 
peripheral blood mononuclear cells (PBMCs) was obtained using the 
cap analysis of gene expression (CAGE) method14, which can measure 
gene expression at the transcription-start-site resolution.

To examine how omics data of faecal samples can predict IR, we first 
compared the area under the curve (AUC) of receiver operating charac-
teristic (ROC) curves on the basis of random-forest classifiers. Predictor 
variables for the models were selected using the minimum-redundancy 
maximum-relevance algorithm15 from the faecal 16S, metabolome, 
metagenome and their merged datasets (Supplementary Table 2). 
We found that the selected features of faecal metabolomic data gen-
erally outperformed those of 16S and metagenomics in predicting IR 
(Fig. 1a), suggesting that faecal metabolomics could be used to study 
IR pathogenesis.

Faecal carbohydrates are increased in IR
We next searched for the associations between clinical phenotypes and 
faecal metabolite CAGs (Fig. 1b and Supplementary Tables 3–8). Major 
confounding factors, namely sex and age, were adjusted throughout the 
correlation and regression analyses with clinical markers. Among the 

hydrophilic metabolites, most of the CAGs showing significant associa-
tions with IR were those of carbohydrate metabolites, mainly mono-
saccharides (hydrophilic CAGs 5, 12 and 15; Fig. 1b, top). Short-chain 
fatty acids (SCFAs), which are known as carbohydrate fermentation 
products, were also increased in IR (hydrophilic CAG 8). Hydrophilic 
CAG 18 remained unannotated as it included metabolites from dif-
ferent pathways (Supplementary Table 5). KEGG pathway enrich-
ment analysis of the metabolites in these IR-related hydrophilic CAGs 
revealed that these metabolites were indeed involved in carbohydrate 
metabolism (Extended Data Fig. 2a). Specifically, we found that the 
major monosaccharides such as fructose, galactose, mannose and 
xylose significantly correlated with IR (Fig. 1c). Among the SCFAs, 
propionate was particularly increased in IR (Extended Data Fig. 2b), 
consistent with its role in gluconeogenesis16. Faecal monosaccharides 
were similarly increased in MetS, obesity and prediabetes (Fig. 1d and 
Extended Data Fig. 2c,d). By contrast, disaccharides showed weak or 
no association (Extended Data Fig. 2b–d). These findings show that 
the end products of carbohydrate degradation—such as monosaccha-
rides, which are readily absorbed and used by the host—are particularly 
increased in the faeces of individuals with IR and MetS. Supporting 
these findings, our analysis of previously published faecal metabo-
lomics data from the TwinsUK cohort17 showed that faecal monosac-
charides, notably glucose and arabinose, were positively associated 
with obesity and HOMA-IR, both of which relate to IR (Extended Data 
Fig. 3a–c and Supplementary Table 9). Similarly, the peak intensity 
of faecal fructose, glucose and galactose was associated with BMI in 
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Fig. 1 | Faecal carbohydrate metabolites are distinctly altered in IR. a, Left, 
the AUC of random forest classifiers was used to predict IR based on genus- 
level 16S (n = 282), metagenome at the KEGG orthologue (KO) level (n = 266), 
faecal metabolome and metagenome (KEGG orthologue) + faecal metabolome 
(n = 266) data. The number of featured markers selected from the datasets 
increases along the x axis. Right, the box plots show the AUC obtained by selected 
features. Each dot represents an AUC value of a random-forest classifier using  
a given number of selected features as predictor variables. b, CAGs of faecal 
hydrophilic metabolites (hydroCAG, top) and lipid metabolites (lipidCAG, 
bottom), and clinical phenotypes and markers (n = 282). The two-column heat 
map on the left represents the associations with the main clinical phenotypes 
(IR and MetS) analysed using rank-based linear regression, whereas the main 
heat map shows the partial Spearman’s correlations (pSC) adjusted by age  
and sex with representative metabolic markers. Only the CAGs with adjusted  

P (Padj) < 0.05 are coloured. The category names for CAGs were determined on 
the basis of the most abundant metabolites in the CAGs. Further details are 
provided in Supplementary Tables 3–8. FBG, fasting blood glucose; neg., 
negative; pos., positive. The lipid abbreviations are defined in Supplementary 
Table 27. c, pSC between HOMA-IR and faecal levels of monosaccharides. The 
coefficients (pSC) and Padj values are described (n = 282). d, Faecal levels of 
monosaccharides in MetS (n = 306). For a, the box plots indicate the median 
(centre line), upper and lower quartiles (box limits), and upper and lower 
extremes except for outliers (whiskers). conc., concentration. For c, the density 
plots indicate median and distribution. For a and d, statistical analysis was 
performed using Kruskal–Wallis tests followed by Dunn’s test (a) and rank-based 
linear regression adjusted by age and sex (d); *P < 0.05, **P < 0.01, ***P < 0.001. 
See the Source Data (a) and Supplementary Table 5 (d) for exact P values.
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a small number of individuals without inflammatory bowel disease 
(IBD) from HMP2 data18 (Extended Data Fig. 3d). Together, these find-
ings indicate that faecal carbohydrates are increased in IR and related 
pathologies and that this alteration is consistently observed across  
populations.

In addition to hydrophilic metabolites, faecal lipid CAGs were also 
associated with IR (Fig. 1b). Lysophospholipids, bile acids and acyl-
carnitine were associated with IR and MetS as reported previously19. 
Among them, a lipid CAG largely consisting of digalactosyl/glucosyl-
diacylglycerol (DGDG) (lipid CAG 11) came to our attention as DGDG is 
reportedly derived from bacteria20,21. These lipids contain glucose and/
or galactose in their structures, although their biological functions in 
mammals are largely unclear. Most of the DGDGs in this cluster showed 
positive correlations with some of the precursor diacylglycerols and 
monosaccharides (that is, glucose and galactose) (Extended Data 
Fig. 4a). As diacylglycerols are deeply involved in IR pathogenesis22, 
the biological functions of this metabolite class are of particular inter-
est. Notably, DGDGs with different acyl chains in lipid CAG 41 showed 

no association with IR (Supplementary Table 7), implying that the dif-
ferences in acyl chains of lipids may have a physiological importance 
as reported previously23.

Microorganism–metabolite relationships in IR
We next investigated the alteration in gut microbiota and the functions 
of gut microbiota that are associated with IR. Gut microbiota diver-
sity varied among individuals (Extended Data Fig. 5a–e). We then pro-
filed the genus-level microbial composition of the study participants 
using 16S rRNA sequencing data24 and identified four bacterial groups 
(Extended Data Fig. 5f). Group 1 was dominated by the Lachnospiraceae 
family such as Blautia and Dorea, whereas group 2 was characterized by 
Bacteroidales (such as Bacteroides, Parabacteroides and Alistipes) and 
Faecalibacterium. Group 3 contained Actinobacteria genera. Group 4  
did not form a distinct network. We could further classify the study 
participants into four clusters, A to D, on the basis of their taxonomic 
profiles (Fig. 2a). Individuals in cluster C distinctly harboured group 2 
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Fig. 2 | IR-associated faecal metabolites are associated with altered gut 
microbiota and microbial genetic functions. a, Co-abundance clusters of 
bacteria at the genus level and their abundance (n = 282). The participants were 
classified into four clusters, A to D, according to their taxonomic profiles. The 
proportion of individuals with IR are shown. Mid, intermediate. b, HOMA-IR, 
BMI, triglycerides (TG) and HDL-C levels among the participant clusters.  
c, Bacteria–metabolite networks of co-abundance microbial groups from a  
and faecal metabolites (n = 282). All faecal hydrophilic and bacteria-related 
lipid metabolites were included. Only interactions with positive and significant 
(Padj < 0.05) Spearman’s correlations are shown. The metabolites in CAGs 
relating to carbohydrates in Fig. 1b are highlighted in red. Unclust., unclustered. 
d, The number of significant positive and negative correlations between 
genera and faecal carbohydrates. The top five genera in each correlation are 
shown. e, KEGG pathways relating to carbohydrate metabolism and membrane 
transport, faecal carbohydrates, the top three genera positively or negatively 
correlated with faecal carbohydrates, and the participant clusters. KEGG 

orthologues significantly (Padj < 0.05) associated with the metabolite (left) and 
taxonomic abundance (right) are summarized as the percentage enrichment 
among KEGG pathways. The median percentage of 15 faecal carbohydrates 
(carb.) is shown in colour (blue to red) on the left, whereas the percentage 
enrichment is shown as the disk size on the right; the Spearman’s correlations 
between pathway-level abundance and six genera are shown in colour (blue to 
yellow) in the middle (n = 266). f, The abundance of representative KEGG 
orthologues involved in glycosidase among the participant clusters (n = 266). 
The abundance was transformed by arcsine square root transformation. The 
density plots in b and f indicate the median and distribution. Statistical analysis 
was performed using rank-based linear regression adjusted by age and sex  
(b; Supplementary Table 10), two-sided Wilcoxon rank-sum tests with multiple- 
testing correction (e; Supplementary Table 16), and Kruskal–Wallis tests with 
Dunn’s test (f; Supplementary Table 18). *P < 0.05, **P < 0.01, ***P < 0.001 in 
comparison to cluster C (with the lowest proportion of IR) (b and f).
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with Bacteroidales, whereas those in cluster D showed a higher abun-
dance of group 1 and 3 bacteria (Extended Data Fig. 5g). Notably, the 
proportion of IR (Fig. 2a; P = 0.0071) was significantly lower in cluster C.  
Other metabolic parameters associated with IR and MetS such as 
HOMA-IR, BMI, triglycerides, HDL-cholesterol (HDL-C) and adiponectin 
were also different between cluster C (with the lowest proportion of 
IR) and the other three clusters (Fig. 2b and Supplementary Table 10). 
The proportion of IR among individuals with abundant group 1 and 
3 bacteria was consistently higher than those with abundant group 
2 bacteria, as identified on the basis of shotgun metagenomics data 
(Extended Data Fig. 5h). HOMA-IR showed negative associations with 
the genus Alistipes in the Rikenellaceae family and several species from 
Bacteroides, Bifidobacterium and Ruminococcus (Extended Data Fig. 5i 
and Supplementary Tables 11 and 12), partly recapitulating previous 
reports regarding individuals with obesity25–27. Notably, different genera 
and species correlated with other clinical markers, suggesting that the 
individual association between microbial taxa and clinical manifesta-
tion is not as robust as in the co-abundance analysis.

We next constructed a microorganism–metabolite network on the 
basis of the significant positive or negative correlations (Supplemen-
tary Table 13). Although faecal SCFAs and lipids such as DGDG corre-
lated with both IR- and IS-associated bacterial groups, IR-associated 
faecal carbohydrates predominantly correlated with genera in groups 1 
and 4, the most prominent being Dorea in Lachnospiraceae (Fig. 2c,d). 
By contrast, the majority of these carbohydrates negatively corre-
lated with IS-associated genera in group 2 bacteria such as Bacteroides, 
Alistipes and Flavonifractor (Fig. 2d and Extended Data Fig. 5j), with 
minimal correlations with bacteria in group 1. Accordingly, the faecal 
carbohydrate levels were distinctly different among the participant 
clusters (Extended Data Fig. 5k). Previous studies have suggested 
that several Lachnospiraceae species are involved in polysaccharide 
fermentation28,29, while Alistipes is increased on an animal-based diet 
rather than a polysaccharide-rich diet30. These findings highlight a tight 
connection between carbohydrate-degradation products and IR- and 
IS-associated bacteria, suggesting that these bacteria may be involved 
in the aberrant faecal carbohydrate profile in IR.

The IR-associated faecal carbohydrates were also correlated with 
KEGG pathways relating to carbohydrate metabolism and transpor-
tation, such as the phosphotransferase system (PTS), starch and 
sucrose metabolism, and galactose metabolism, while negatively 
associated with pathways relating to carbohydrate catabolism, such 
as glycolysis and pyruvate metabolism (Fig. 2e and Supplementary 
Tables 14 and 15). These pathways were also distinctly correlated with 
the participant clusters defined in Fig. 2a and the genera relating to 
carbohydrates defined in Fig. 2d. Amino acid metabolism was also 
different, particularly between clusters C and D, whereas lipid metabo-
lism did not show distinct associations with microbiota (Extended 
Data Fig. 6a,b and Supplementary Table 16). Although carbohydrate 
pathways such as PTS and starch and sucrose metabolism showed 
strong positive associations with HbA1c and γ-GTP, the associations 
with other IR markers were generally sparse (Extended Data Fig. 6c 
and Supplementary Table 17), suggesting that metabolites are more 
sensitive to the clinical manifestations as shown in Fig. 1a. PTS is an 
essential component for bacteria to incorporate sugars into themselves 
as energy sources31. Detailed analyses of KEGG orthologues revealed 
that faecal carbohydrates and participant clusters mainly correlated 
with PTSs relating to disaccharides and amino sugars (Extended Data 
Fig. 6d,e and Supplementary Table 18), suggesting that the preference 
of sugar use by microbiota through PTS may affect the metabolite 
levels. Glycosidases, which catalyse the breakdown of oligo- and disac-
charides32, were also associated with faecal monosaccharides (Extended 
Data Fig. 6f). Extracellular glucosidases such as β-fructofuranosidase 
(K01193, KEGG Orthology database), amylosucrase (K05341, KEGG 
Orthology database) and oligo-1,6-glucosidase (K01182, KEGG Orthol-
ogy database), which were predicted to degrade sucrose and dextrin 

into glucose and fructose (Extended Data Fig. 6g,h), showed the high-
est positive correlations, especially with faecal glucose. By contrast, 
glucosidases relating to starch use such as α-amylases (K01176 and 
K07405, KEGG Orthology database) were negatively linked with faecal 
carbohydrates. Importantly, the abundance of these glycosidase genes 
was significantly different between participant cluster C and the other 
three clusters, suggesting that taxonomic profiles largely explain the 
variations of glucosidases (Fig. 2f, Extended Data Fig. 6h and Supple-
mentary Table 18). Consistently, disaccharide-breakdown genes were 
predominantly conserved in the genomes of Blautia and Dorea abun-
dant in cluster D, whereas they were almost lacking in Bacteroidales 
abundant in cluster C (Extended Data Fig. 6i). Together, our findings 
reveal four distinct populations with unique taxonomic profiles and 
carbohydrate metabolisms characterized by sugar use and degrada-
tion, which correlate with IR and its related markers.

Faecal carbohydrates and inflammation in IR
Consistent with previous reports1,2, the host cytokine, metabolomic 
and transcriptomic signatures were highly associated with IR (Sup-
plementary Tables 19–21). Moreover, many of these PBMC genes were 
functionally involved in inflammation (Extended Data Fig. 7a) and 
possibly derived from monocytes (Supplementary Table 21). Several 
studies have suggested that microbial components such as lipopoly-
saccharides have a role in facilitating inflammation of metabolic  
diseases33,34. However, it remains unclear whether microbial metabo-
lism is involved in low-grade inflammation. We therefore tried to infer 
possible associations between host inflammatory signatures of IR and 
faecal carbohydrates. First, the cross-omics correlation-based network 
with individual metabolites, bacteria, transcripts and cytokines associ-
ated with IR revealed that faecal carbohydrates were strongly tied with 
both bacteria and host IR-related signatures, especially cytokines, sug-
gesting that these metabolites are the hubs of the host–microorganism  
network in IR (Fig. 3a, Extended Data Fig. 7b,c and Supplementary 
Table 22). Differential abundance, calculated as the ratio of their abun-
dance in IR and IS, was most pronounced in the associations between 
faecal carbohydrates and cytokines. Notably, IL-10, a plasma cytokine, 
showed the most prominent associations with faecal carbohydrates 
and modestly with PBMC-derived transcripts, supporting recent stud-
ies showing its paradoxical effect to facilitate IR35–37. Faecal carbohy-
drates moderately explained the variance of IL-10 and, to a lesser extent,  
adiponectin, leptin and serpin E1, suggesting that faecal carbohydrates 
are particularly associated with these cytokines (Fig. 3b). Although 
the proportions of variance explained by faecal carbohydrates were 
lower than by plasma metabolites, they were much higher than those 
by genus-level abundance, highlighting the role of faecal metabo-
lites linking gut microbiota and host inflammatory responses. We 
next sought to infer whether these cytokines mediated the effects 
of faecal carbohydrates on host metabolism using causal mediation  
analyses38. We found that IL-10, serpin E1, adiponectin and leptin medi-
ated most in silico causal relationships between faecal carbohydrates 
and host IR markers such as HOMA-IR (Fig. 3c, Extended Data Fig. 7d 
and Supplementary Table 23). Notably, there were unique correspond-
ences between metabolites and cytokines; for example, IL-10 mediated 
the effects of fructose, mannose, xylose and rhamnose, but not other 
metabolites. Although the biological importance of these unique cor-
respondences remains to be investigated, the combined analyses of 
faecal microbiota, metabolome and host inflammatory phenotypes in 
IR suggest a previously unrecognized interaction, whereby excessive 
monosaccharides may affect host cytokine expression.

IS-associated bacteria in experimental models
The above findings from human multi-omics analyses revealed an asso-
ciation between carbohydrate metabolites and IR pathology. To address 
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the causal relationship between gut microbiota, faecal carbohydrates 
and metabolic diseases, we first analysed metabolites in the bacterial 
culture of 22 human faecal IS- and IR-associated bacteria. These bac-
teria were selected on the basis of the findings from the genus-level 
co-occurrence (Fig. 2a,b) and the species-level (Extended Data Fig. 5i) 
profiles. Principal component analysis plots of 198 metabolites indi-
cated that Bacteroidales, a representative IS-associated bacterial order, 
showed a distinct metabolic profile along PC1 (Extended Data Fig. 8a,b 
and Supplementary Table 24). The top 10 metabolites contributing to 
the group separation included several amino acids and fermentation 
products such as succinate and fumarate, and the majority of these 
metabolites were preferentially produced by Bacteroidales (Extended 
Data Fig. 8b,c). We detected 13 out of 15 carbohydrates associated with 
IR (Fig. 1b) in the bacterial culture (Extended Data Fig. 8b). Most of 
these carbohydrates were plotted negatively along PC1, suggesting 
that these metabolites were negatively associated with Bacteroidales. 

Glucose, mannose and glucosamine were preferentially consumed 
by Bacteroidales compared with the other orders, whereas lactulose 
was mainly produced by Eubacteriales (Extended Data Fig. 8d). Alis-
tipes indistinctus was the most potent in consuming a wide variety 
of carbohydrates (Extended Data Fig. 8e,f). These findings show that 
Bacteroidales species are potent consumers of several carbohydrates, 
driving the production of their fermentation products.

We next tested the potential therapeutic effects of seven candidate 
bacteria shown to be associated with IS in human cohort findings. 
Postprandial blood glucose levels were particularly reduced in mice 
administered with A. indistinctus, Alistipes finegoldii and Bacteroides 
thetaiotaomicron that were fed a high-fat diet (Fig. 4a). Insulin toler-
ance tests also revealed that these strains ameliorated IR, most prom-
inently by A. indistinctus administration (Fig. 4b,c). A. indistinctus  
administration ameliorated body mass gain, ectopic triglyceride 
accumulation in the liver and glucose intolerance (Extended Data 
Fig. 9a–d). Serum levels of HDL-C, adiponectin and, to a lesser extent,  
triglycerides, were also improved in mice that were treated with  
A. indistinctus (Extended Data Fig. 9e–g). The findings of the hyperin-
sulinaemic–euglycaemic clamp analysis indicated that A. indistinctus 
administration significantly improved IR and, particularly, whole-body 
glucose disposal (Extended Data Fig. 9h–j). Phosphorylation of AKT 
in the liver and epididymal fat was increased in mice treated with  
A. indistinctus and A. finegoldii mice (Extended Data Fig. 9k,l), sug-
gesting that insulin signalling was improved in the liver and adipose 
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tissue. These findings reveal a potency of A. indistinctus administration 
in ameliorating diet-induced obesity and IR.

Mechanistically, metabolic measurement revealed that carbohydrate 
oxidation was significantly reduced in mice that were treated with  
A. indistinctus, implying that carbohydrate use is limited (Extended Data 
Fig. 9m and Supplementary Table 25). As dietary intake and locomotor 
activity remained unchanged (Extended Data Fig. 9n,o), we reasoned 
that host-accessible carbohydrates in the intestine were reduced by 
treatment with A. indistinctus. In this regard, A. indistinctus admin-
istration substantially altered caecal metabolites, characterized by 
a reduction in several carbohydrates including fructose, a lipogenic 
monosaccharide39 (Extended Data Fig. 10a–c and Supplementary 
Table 26). Fructose was similarly reduced in the serum (Extended Data 
Fig. 10d). Importantly, the AUC of insulin tolerance test was positively 
correlated with the caecal monosaccharides fructose, glucose and 
mannose (Fig. 4d). Collectively, these findings reveal that A. indistinctus 
ameliorates IR and affects intestinal carbohydrate metabolites in mice, 
supporting our observations in the human cohort.

Discussion
To deepen our understanding of the host–microorganism relationship 
in IR, we used multimodal techniques to conduct a comprehensive 
and extensive study investigating the interactions between the gut 
microbiome and metabolic diseases in humans. Although carbohy-
drate metabolism by the gut microorganisms has been suggested to 
influence the pathogenesis of obesity3,4,25 and prediabetes6,8, the actual 
mechanistic linkage has been elusive in humans owing to the lack of 
detailed metabolomic information. In this regard, the major strength 
of our approach is that we combine faecal metabolomics catalogu-
ing more than 2,800 annotated metabolites with both microbiome 
and host pathology. This metabolome-based approach enabled us 
to identify the faecal metabolites related to IR, identify an associa-
tion between faecal carbohydrates and low-grade inflammation of IR, 
and efficiently select candidate strains for functional validations in 
experimental settings (Extended Data Fig. 10e). Together, our study 
highlights the advantage of comprehensive omics strategy in explor-
ing the involvement of microbial metabolism and their products in 
the pathogenesis of IR. Excessive monosaccharides have the potential 
to promote ectopic lipid accumulation while also activating immune 
cells, leading to low-grade inflammation and IR40–42. Fructose is a widely 
recognized risk factor for inflammation and IR due to its role in lipid 
accumulation39, whereas galactose has been shown to participate 
in the energy metabolism of activated immune cells43. Our in vivo 
studies confirm that A. indistinctus administration improves lipid 
accumulation and thereby IR, while simultaneously reducing intesti-
nal monosaccharide levels (Fig. 4d). Nevertheless, we are aware that 
further mechanistic studies are needed to examine the kinetics of 
absorption and their effects on host metabolism. In particular, how 
Alistipes strains suppress carbohydrate metabolism is an intriguing 
question (for example, whether these bacteria per se inhibit carbohy-
drate metabolism, or whether they interact with other commensals), 
as it would directly open the possibility of a new therapeutic strategy. 
Given that A. indistinctus improved whole-body IS (Extended Data 
Fig. 9i), it would be important to investigate the involvement of insulin 
signalling not only in the liver but also in peripheral tissues, including 
skeletal muscle and adipose tissue, along with the accumulation of 
specific lipid molecules (such as ceramides and diacylglycerols) in 
these tissues. Such investigations hold the potential to shed light on 
the underlying mechanisms that contribute to A. indistinctus-mediated 
improvement of IR. Finally, two participants in the human study were 
unable to collect their faeces in the morning, which could potentially 
influence the outcomes due to the lack of stringent control over 
time-of-day and fasting conditions. We therefore believe that longi-
tudinal studies incorporating a timely documentation of dietary habits 

are warranted to dissect the intricate impacts of microbial metabolism 
on the trajectory of diabetes and its complications while accounting 
for potential confounding factors.
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Methods

Study participants and data collection
The study participants were recruited from 2014 to 2016 during their 
annual health check-ups at the University of Tokyo Hospital. The indi-
viduals included both male and female Japanese individuals aged from 
20 to 75 years. The exclusion criteria were as follows: established diag-
nosis of diabetes, routine use of medications for diabetes and/or intesti-
nal diseases, use of antibiotics within 2 weeks before sample collection 
and loss of 3 kg of body weight in the 3 months before sample collection. 
Written consent was obtained from the participants after a thorough 
explanation of the nature of the study at their health-checkups.

To normalize the participants’ clinical characteristics, we planned 
to recruit around 100 healthy individuals, 100 individuals with obesity 
(BMI ≥25, based on the Japanese definition) and 100 individuals with a 
prediabetic condition (FBG ≥110 mg dl−1 and/or HbA1c ≥6.0%) on the 
basis of their clinical data, and stopped recruiting when the number of 
participants almost reached the goal. The sample size was determined 
on the basis of previous metagenomics studies showing microbial 
signatures of diabetic patients5,6. We enrolled 112, 100 and 101 individu-
als for the normal, obese and prediabetic groups, respectively. The 
participants were provided with instructions to fast overnight before 
their visits, and all clinical information and blood samples were col-
lected in the morning during their hospital visit. Blood samples were 
immediately centrifuged to collect plasma and then stored at −80 °C 
until the sample preparation and analysis. The participants were also 
instructed to collect faecal samples in the morning and were provided 
with guidance on how to collect and preserve faecal samples, along with 
a kit comprising a sampling tube and an ice pack. The faecal samples 
were then transported to the hospital either by refrigerated shipping 
or by the participants themselves. In both scenarios, the samples were 
delivered in a chilled state within 24 h after collection and stored at 
−80 °C until sample preparation and analysis. Consequently, 256 par-
ticipants collected their faeces in the morning on the day of their hos-
pital visit. As for the remaining participants, they collected their faeces 
in the morning between 2 days before and 7 days after their hospital 
visit, with the exception of 5 individuals who collected their faeces in 
the morning more than 7 days after their hospital visit, 2 individuals 
who reported collecting their faeces in the evening 1 day before their 
hospital visit, and 5 individuals who did not provide faecal samples. 
Moreover, two individuals withdrew from the study after enrolment. 
Thus, 306 individuals who underwent physical examination, labora-
tory tests, faecal sampling for faecal 16S rRNA pyrosequencing and 
metabolomic analyses, and plasma sampling for plasma metabolomic 
analyses were included for the analysis. Owing to the limited samples, 
faecal metagenomics data were available for 290 individuals; CAGE 
analysis data for 298 individuals; and plasma cytokine and insulin data 
for 282 individuals. The number of samples included in each analysis is 
described in the figure legends. The clinical study was approved by the 
institutional review board of RIKEN and The University of Tokyo and 
performed in accordance with the institutes’ guidelines.

Although we determined the criteria for enrolment, these criteria 
were not necessarily appropriate for subsequent analyses. For example, 
those in the prediabetes group were significantly leaner than those in 
the obese group (27.3 kg m−2 versus 25.2 kg m−2, P < 0.0001). Moreover, 
owing to the nature of the study participants (that is, those participated 
in regular health checkups), the blood glucose and HbA1c of the predia-
betes group were significantly but only marginally higher than those 
of the obese group (FBG, 106 mg dl−1 versus 94 mg dl−1, P < 0.0001; and 
HbA1c, 6.2% versus 5.6%, P < 0.0001). We therefore reasoned that, in 
these subclinical conditions of diabetes, many metabolic traits may 
be overlapping between prediabetes and obesity groups and they do 
not necessarily capture their distinct features in metabolic and clinical 
continuums. This hinders us from distinguishing microbial and metabo-
lomic characteristics directly related to human metabolic dysfunctions. 

We therefore considered that individual indices representing partici-
pants’ clinical conditions (that is, IR and MetS, as described below) 
may offer a better interpretation of the participants’ metabolic traits 
and data. Nevertheless, we observed consistent results even with the 
clinical criteria of obesity and prediabetes (Extended Data Fig. 2d).

Phenotypic outcomes
IR is defined as HOMA-IR ≥2.5, as has been set for the Japanese popu-
lation13. Similarly, normal IS was defined as HOMA-IR ≤1.6. HOMA-IR 
is calculated using the following formula: fasting plasma insulin 
(μU ml−1) × fasting plasma glucose (mg dl−1)/405. HOMA-IR values could 
be calculated for 282 individuals only, owing to the limited data of 
plasma insulin in some participants. MetS is diagnosed according to 
the Japanese criteria44, which require an abdominal circumference of 
≥85 cm for male and ≥90 cm for female individuals and at least two 
out of the following three clinical abnormalities: (1) dyslipidaemia, 
defined as triglyceride levels of ≥150 mg dl−1 and/or HDL-C levels of 
<40 mg dl−1; (2) elevated blood pressure, defined as systolic blood pres-
sure of ≥130 mmHg and/or diastolic blood pressure of ≥85 mmHg; and 
(3) impaired fasting glucose, defined as FBG levels of ≥110 mg dl−1. Indi-
viduals who meet the criteria of abdominal circumference but only one 
clinical abnormality were defined as pre-MetS, as reported previously45.

Measurement of plasma cytokines
Plasma cytokines were measured using Human Adipokine Magnetic 
Bead Panel 2 (Millipore, HADK2MAG-61K) and Human Obesity Pre-
mixed Magnetic Luminex Performance Assay Kit (R&D, FCSTM08) 
according to the manufacturers’ instructions. Measurements below 
the lower detection limits were considered to be zero, and those above 
the upper detection limits were considered to be the highest values of 
analysed cytokines.

Preparation for faecal samples
Aliquots (5 g) of faeces were blended with 30 ml methanol and filtrated 
with 100 μm of mesh filter to remove food residue after vigorous vortex-
ing. The filtrate was centrifuged at 15,000g for 10 min at 4 °C and the 
supernatant (methanol extract) was used for metabolomics analysis. 
DNA of the faecal microbiome was extracted from the pellet.

Extraction and measurement for hydrophilic metabolites of 
faecal and plasma samples
We followed the extraction process and gas chromatography-tandem 
MS (GC–MS/MS) measurement methods for water-soluble metabolites 
described previously46 with some modifications. In brief, a 10 μl aliquot 
of plasma was added to 150 μl methanol, 125 μl Milli-Q water, 15 μl inter-
nal standard solution (1 mM 2-isopropylmalic acid) and 60 μl CHCl3. For 
faecal samples, a 25 μl aliquot of methanol extract was added to 125 μl 
methanol, 150 μl Milli-Q water containing internal standard (100 μM 
2-isopropylmalic acid) and 60 μl CHCl3. The solution was shaken at 
1,200 rpm for 30 min at 37 °C. After centrifugation at 16,000g for 5 min 
at room temperature, 250 μl of the supernatant was transferred to a new 
tube and 200 μl of Milli-Q water was added. After mixing, the solution 
was centrifuged at 16,000g for 5 min at room temperature, and 250 μl of 
the supernatant was transferred to a new tube. The samples were evapo-
rated dry using a vacuum evaporator for 20 min at 40 °C and lyophi-
lized using a freeze dryer. Dried extracts were derivatized with 40 μl of 
20 mg ml−1 methoxyamine hydrochloride (Sigma-Aldrich) dissolved in 
pyridine and shaken at 1,200 rpm for 90 min at 30 °C. The solution was 
then mixed with 20 μl of N-methyl-N-trimethylsilyl-trifluoroacetamide 
(MSTFA, GL Science) and incubated for 30 min at 37 °C with shaking 
at 1,200 rpm. After derivatization, the samples were centrifuged at 
16,000g for 5 min at room temperature, and the supernatant was trans-
ferred to a glass vial. The analysis was performed using a GC–MS/MS 
platform on the Shimadzu GCMS-TQ8030 triple quadrupole mass 
spectrometer (Shimadzu) with a capillary column (BPX5, SGE Analytical 



Science). The GC oven was programmed as follows: 60 °C held for 2 min, 
increased to 330 °C (15 °C min−1), and finally 330 °C held for 3.45 min. 
GC was operated in constant linear velocity mode set to 39 cm s−1. The 
detector and injector temperatures were 200 °C and 250 °C, respec-
tively. Injection volume was set at 1 μl with a split ratio of 1:30.

We followed the SCFA extraction and GC–MS/MS measurement meth-
ods as previously described47 with some modifications. A 90 μl aliquot 
of plasma was added to 10 μl Milli-Q water containing internal standards 
(2 mM [1,2-13C2]acetate, 2 mM [2H7]butyrate and 2 mM crotonate). For 
faecal samples, a 25 μl aliquot of methanol extract was added to 10 μl 
Milli-Q water containing internal standards and then centrifugally 
concentrated at 40 °C and reconstituted with 100 μl of Milli-Q water. 
Then, 50 μl of hydrochloric acid (HCl) and 200 μl of diethyl ether were 
added to the solution and mixed well. After centrifugation at 3,000g 
for 10 min, 80 μl of the organic layer was transferred to a glass vial 
and 16 μl N-tert-butyldimethylsilyl-N-trifluoroacetamide (MTBSTFA, 
Sigma-Aldrich) was added to derivatize the samples. The vials were incu-
bated at 80 °C for 20 min and allowed to stand for 48 h before injection. 
The analysis was performed using a Shimadzu GCMS-TQ8030 triple 
quadrupole mass spectrometer with a capillary column (BPX5). The 
GC oven was programmed as follows: 60 °C held for 3 min, increased to 
130 °C (8 °C min−1), increased to 330 °C (30 °C min−1) and finally 330 °C 
held for 3 min. The detector and injector temperatures were 230 °C 
and 250 °C, respectively. GC was operated in constant linear velocity 
mode set to 40 cm s−1. Injection volume was set at 1 μl with a split ratio 
of 1:30. The data were processed and concentration was calculated by 
LabSolutions Insight (Shimadzu).

Overall, 195 and 100 metabolites in the faecal and plasma samples, 
respectively, were detected by our GC–MS/MS platform and passed 
quality control. The values below the limit of detection were replaced 
with zero. Consequently, 110 faecal and 88 plasma metabolites that 
were detected (that is, above zero) in more than 75% of participants were 
included in subsequent analyses, for which they were combined into 
a common analysis pipeline and defined as hydrophilic metabolites.

Lipidomics of faecal and plasma samples
The lipidomics analysis was performed according to a previously 
reported study20. Methanol, isopropanol, chloroform and acetoni-
trile of liquid chromatography (LC)–MS grade were purchased from 
Wako. Ammonium acetate and EDTA were purchased from Wako and 
Dojindo, respectively. Milli-Q water was purchased from Millipore 
(Merck). EquiSPLASH was purchased from Avanti Polar Lipids. Pal-
mitic acid-d3 and stearic acid-d3 were purchased from Olbracht Serdary 
Research Laboratories.

For plasma lipid extraction, an aliquot of 20 μl of human plasma 
sample was added to 200 μl of methanol containing 5 μl of EquiSPLASH, 
10 μM palmitic acid-d3 and 10 μM stearic acid-d3, and vortexed for 10 s. 
Then, 100 μl of chloroform was added and vortexed for 10 s. After incu-
bation for 2 h at room temperature, the solvent tube was centrifuged 
at 2,000g for 10 min at 20 °C. A total of 200 μl of supernatant was 
transferred to an LC–MS vial (Agilent Technologies). For faecal lipid 
extraction, 50 μl of the methanol extract was added to 145 μl of metha-
nol containing 5 μl of EquiSPLASH, 10 μM palmitic acid-d3 and 10 μM 
stearic acid-d3 in a 2 ml glass tube, and vortexed for 10 s. Then, 100 μl of 
chloroform was added and vortexed for 10 s. After incubation for 1 h at 
room temperature, 20 μl of water was added and vortexed for 10 s. After 
10 min incubation at room temperature, the solvent was centrifuged 
at 2,000g for 10 min at 4 °C, and the supernatant was transferred to 
the LC–MS vial. All of the samples were divided into four batches for 
plasma analyses and five batches for faecal analyses, with 70–80 and 
55–60 samples per batch after randomization, respectively. For each 
batch, a series of samples was prepared, and subsequent LC–MS/MS 
measurements were performed. A quality control sample was prepared 
by mixing the same volume of plasma from the first batch subjects. 
A procedure blank was prepared by using the same volume of water 

instead of a biological sample. The blank sample was analysed at the 
beginning and the end of each analysis batch, and the quality-control 
sample was injected every ten study samples.

The LC system consisted of a Waters Acquity UPLC system. 
Lipids were separated on an Acquity UPLC Peptide BEH C18 column 
(50 × 2.1 mm; 1.7 μm) (Waters). The column was maintained at 45 °C 
at a flow rate of 0.3 ml min−1. The mobile phases consisted of (A) 1:1:3 
(v/v/v) acetonitrile:methanol:water with ammonium acetate (5 mM) 
and 10 nM EDTA; and (B) 100% isopropanol with ammonium acetate 
(5 mM) and 10 nM EDTA. A sample volume of 0.5−3 μl, depending bio-
logical samples, was used for the injection. The separation was con-
ducted under the following gradient: 0 min, 0% B; 1 min, 0% B; 5 min, 
40% B; 7.5 min, 64% B; 12 min, 64% B; 12.5 min, 82.5% B; 19 min, 85% B; 
20 min, 95% B; 20.1 min, 0% B; and 25 min, 0% B. The sample temperature 
was maintained at 4 °C.

MS detection of lipids was performed on a quadrupole/time-of-flight 
mass spectrometer TripleTOF 6600 (SCIEX). All analyses were per-
formed in high-resolution mode in MS1 (~35,000 full width at 
half-maximum) and the high sensitivity mode (~20,000 full width at 
half-maximum) in MS2. Data-dependent MS/MS acquisition (DDA) was 
used. The parameters were MS1 and MS2 mass ranges, m/z 70–1,250; 
MS1 accumulation time, 250 ms; MS2 accumulation time, 100 ms; col-
lision energy, +40/−42 eV; collision energy spread, 15  eV; cycle time, 
1,300 ms; curtain gas, 30; ion source gas 1, 40(+)/50(−); ion source  
gas 2, 80(+)/50(−); temperature, 250 °C(+)/300 °C(−); ion spray volt-
age floating, +5.5/−4.5 kV; declustering potential, 80 V. The other DDA 
parameters were dependent product ion scan number, 16; intensity 
threshold, 100 cps; exclusion time of precursor ion, 0 s; mass toler-
ance, 20 ppm; ignore peaks, within m/z 200; and dynamic background 
subtraction, true. The mass calibration was automatically performed 
using an APCI positive/negative calibration solution through a calibra-
tion delivery system.

MS-DIAL (v.4.48)20,48 was used with the following parameters: (data 
collection) retention time begin, 1.0 min; retention time end, 18 min; 
MS1 and MS2 mass range begin, 0 Da; MS1 and MS2 mass range end, 
2,000 Da; MS1 tolerance, 0.01 Da; MS2 tolerance, 0.025 Da; (peak detec-
tion) minimum peak height, 3,000 amplitude; mass slice width, 0.1 Da; 
smoothing method, linear weighted moving average; smoothing level, 
3 scan; minimum peak width, 5 scan; exclusion mass list, none; (identifi-
cation) retention time tolerance, 1.5 min; MS1 accurate mass tolerance, 
0.01 Da; MS2 accurate mass tolerance, 0.05 Da; identification score cut 
off, 70%; all lipid subclasses were used as the search space; (alignment) 
retention time tolerance 0.15 min; MS1 tolerance, 0.015 Da. The default 
values were used for other parameters. In faecal lipidomics, a total of 
48,790 and 20,367 chromatographic peaks were detected in positive- 
and negative-ion mode data, respectively. Of these, 2,654 unique lipid 
molecules were annotated and semi-quantified in the MS-DIAL software 
program and used for further statistical analyses. Likewise, in plasma 
lipidomics, 1,469 and 2,167 chromatographic peaks were detected in 
positive- and negative-ion mode data, respectively, and 635 unique lipid 
molecules were annotated and semi-quantified. The semi-quantitative 
value of lipids was calculated by the internal standards according to 
the previous study20. The abbreviations of lipids are listed in Supple-
mentary Table 27. Details of lipid subclass characterization follow the 
previous study20.

Co-abundance clustering of metabolites
To generate co-abundance clusters, 110 hydrophilic metabolites and 
2,654 lipid metabolites detected in more than 75% of participants 
were included. These metabolites were clustered based on their 
co-abundance using the R package WGCNA49 (v.1.72-1). The follow-
ing parameters were used for the analysis. For hydrophilic metabo-
lites, soft thresholding β = 12, minimum cluster size = 3, deep split = 4, 
cut height = 0.9999, PAM clustering = F. For lipid metabolites, soft 
thresholding β = 14, minimum cluster size = 20, deep split = 4, cut 
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height = 0.999, PAM clustering = F. As soft thresholding of WGCNA 
was not able to cluster all of the metabolites, the remaining metabolites 
that did not fit the criteria were subsequently clustered on the basis of 
biweight midcorrelation. The following parameters were used for the 
secondary clustering. For hydrophilic metabolites, minimum cluster 
size = 3, deep split = 4, cut height = 0.9999, PAM clustering = F. For lipid 
metabolites, minimum cluster size = 6, deep split = 4, cut height = 0.999, 
PAM clustering = F. The clusters with biweight midcorrelation above 
0.8 were merged. The first principal component (PC1) of each cluster 
was calculated using the moduleEigengenes command of WGCNA and 
used as the representative value of the cluster for further analyses. The 
representative classes of the clusters were described in Supplemen-
tary Tables 2 and 3. KEGG pathway enrichment analysis of CAGs was 
performed on MetaboAnalyst (v.5.0)50 using 84 metabolite sets based 
on the KEGG pathway. Hypergeometric test and false-discovery rate 
(FDR)-adjusted P values were used to test significance. The enrichment 
ratio was calculated as the ratio of actual metabolite number to the 
expected value in each pathway.

Reanalysis of publicly available metabolomic data
To validate the associations between clinical markers and faecal metab-
olites, we used the metabolomic data of TwinsUK17 and HMP2 (ref. 18). 
The metabolome data of the TwinsUK cohort included 1,116 metabolites 
including 36 carbohydrates. The median (interquartile range) of age and 
BMI were 65 years (60–71 years) and 25.4 (22.8–28.8), and the propor-
tion of males was 6.6%. As reported previously17, the metabolite levels  
were scaled by run-day medians. The data were then log-transformed 
and scaled. For regression analyses, we filtered out the metabolites 
detected in less than 50% of participants; as a result, 759 metabolites 
including 29 carbohydrates were used for further analyses. The record 
of BMI and HOMA-IR were used for phenotypic outcomes. For BMI, we 
retrieved 786 samples measured on the same day of faecal collection. 
For HOMA-IR, plasma glucose and insulin obtained in the same year of 
the faecal collection were used for the following calculation: plasma 
glucose (mM) × insulin (pM)/6.945/22.5. We identified 550 individuals 
who underwent both faecal collection and glucose and insulin meas-
urement in the same year and included them in the analysis. The HMP2 
data were obtained from the Inflammatory Bowel Disease Multi’omics 
Database (https://ibdmdb.org/). Among the 26 out of 106 samples from 
non-IBD control, BMI data were available for 20 samples. We further 
excluded four individuals aged <10 years. As HMP2 is a longitudinal 
study, only the first faecal sampling for metabolomics was used for 
the current analysis to avoid redundancy. The intensity of fructose, 
glucose and/or galactose was log-transformed and scaled.

DNA extraction from faecal samples
DNA extraction was performed according to a protocol described 
previously47 with slight modifications. Before DNA extraction, the 
faecal pellet was washed once with PBS and suspended in a 10 mM 
Tris-HCl/20 mM EDTA buffer (pH 8.0). Lysozyme (Sigma-Aldrich), 
achromopeptidase (Wako) and proteinase K (Merck) were subsequently 
added to the samples for cell lysis. DNA was recovered by a phenol–
chloroform extraction method. To purify the extracted DNA, RNA was 
digested with RNase (Nippon Gene). DNA was then precipitated in a 
solution containing polyethylene glycol 6000 (Hampton Research). 
The DNA concentration was quantified using Quant-iT PicoGreen 
(Thermo Fisher Scientific).

16S rRNA gene sequencing and taxonomic assignment
The hypervariable V1–V2 region of the 16S rRNA gene was amplified 
by PCR using barcoded primers. PCR amplicons were purified using 
AMPure XP magnetic purification beads (Beckman Coulter), and quanti-
fied using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies 
Japan). Equal amounts of each PCR amplicon were mixed and then 
sequenced using the MiSeq (Illumina) system.

On the basis of sample-specific barcodes, reads were assigned to 
each sample using bcl2fastq. Next, the reads lacking both forward 
and reverse primer sequences were removed using BLAST and parasail 
followed by trimming of both primer sequences. Data were further 
denoised by removing reads with average quality values of <25 and pos-
sible chimeric sequences. Reads with BLAST match lengths of <90% with 
the representative sequence in the 16S databases (described below) 
were considered to be chimeras and were removed. The filter-passed 
reads were used for further analysis. The 16S database was constructed 
from three publicly available databases: the Ribosomal Database Pro-
ject (RDP; v.10.27), CORE (http://microbiome.osu.edu/) and a reference 
genome sequence database obtained from the NCBI FTP site (ftp://ftp.
ncbi.nih.gov/genbank/, December 2011).

Operational taxonomic unit (OTU) clustering and UniFrac analysis 
from the filter-passed reads, 3,000 high-quality reads per sample were 
randomly chosen. All reads (the number of samples × 3,000) were then 
sorted according to their average quality value and grouped into OTUs 
using UCLUST (http://www.drive5.com/) with a sequence-identity 
threshold of 97%. The representative sequences of the generated OTUs 
were processed for homology search against the databases mentioned 
above using the GLSEARCH program for taxonomic assignments. For 
assignment at the phylum, genus and species levels, sequence similarity 
thresholds of 70%, 94% and 97% were applied, respectively.

Shotgun metagenomic sequencing
Metagenome shotgun libraries (insert size of 500 bp) were prepared 
using the TruSeq Nano DNA kit (Illumina) and sequenced on the Illumina 
NovaSeq platform. After quality filtering, reads mapped to the human 
genome (HG19) or the phiX bacteriophage genome were removed. For 
each individual, the filter-passed NovaSeq reads were assembled using 
MEGAHIT (v.1.2.4). Prodigal (v.2.6.3) was used to predict protein-coding 
genes (≥100 bp) in the contigs (≥500 bp) and singletons (≥300 bp). 
Finally, 6,458,217 non-redundant genes were identified in the 290 
samples by clustering the predicted genes using CD-HIT with a 95% 
nucleotide identity and 90% length coverage cut-off. Functional assign-
ment of the non-redundant genes was performed using DIAMOND 
(e-value ≤ 1.0 × 10−5) against the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database (release 2019-10-07) to obtain the KEGG 
orthologues. The genes with the best hit correlating to eukaryotic 
genes were excluded from further analysis.

Quantification of annotated genes in human gut microbiomes
For taxonomic assignment of metagenomic reads, 1 million filter-passed 
reads were processed for mOTU analysis (v.2.5.1)51 to obtain the rela-
tive abundance at the species level. To functionally annotate the 
predicted genes, 1 million filter-passed metagenomic reads per indi-
vidual were mapped to the combined reference gene set consisting of 
non-redundant genes identified in this study, JPGM52 and IGC53 using 
Bowtie2 with a 95% identity cut-off. Multi-mapped reads, that is, the 
reads that mapped to multiple genes with identical scores, were nor-
malized to the proportion of the number of other reads that uniquely 
mapped to these genes, according to a strategy outlined in a previous 
report52. The proportion of KEGG orthologues was calculated from 
the number of reads mapped to them. For the enrichment analysis of 
KEGG pathways, the significantly and positively (negatively) associ-
ated KEGG orthologue gave +1 (−1) for all of the upstream pathways 
linked to the KEGG orthologue, and the points were summarized as 
the ratio to the number of KEGG orthologues in the pathway. For the 
KEGG-orthologue-level analyses of PTS, those including ‘phospho-
transferase system (PTS)’ in the KEGG pathway (02060) were selected 
for the following correlation analyses. In the analyses of glucosidases, 
‘glycoside hydrolases’ defined in the CAZy database on the basis of 
EC numbers54 were selected. We further selected those included in 
‘starch and sucrose metabolism’ in the KEGG pathway (00500). We 
defined intracellular glucosidase by their substrate described in the 
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KEGG pathway map; those cleave phosphorylated carbohydrates were 
recognized as intracellular, and the rest of the genes were recognized 
to possess extracellular enzymatic activities. The pathways were fur-
ther summarized into carbohydrate metabolism (09101), amino acid 
metabolism (09105), lipid metabolism (09103) and membrane trans-
port (09131) on the basis of the KEGG Orthology database.

Comparison of KEGG organism genomes
The list of KEGG organisms used for this genome analysis is listed in 
Supplementary Table 28. All KEGG organisms from genera Alistipes,  
Bacteroides, Flavonifractor, Blautia, Dorea and Coprococcus, which 
showed the top three positive or negative correlations with faecal 
carbohydrates in Fig. 2d, were selected for this analysis. The lists 
of genes involving the ‘starch and sucrose metabolism’ pathway 
(00500) in these KEGG organisms were extracted using the R package  
KEGGREST (v.1.32.0). The representative protein sequences of Blautia 
hydrogenotrophica strain 2789STDY5608857 (taxonomy ID 53443), 
Dorea longicatena strain 2789STDY5608851 (taxonomy ID 88431) and 
Dorea formicigenerans strain ATCC 27755 (taxonomy ID 411461) were 
downloaded from the NCBI Datasets (https://www.ncbi.nlm.nih.gov/
datasets/genomes/). KEGG annotation of these protein sequence files 
was performed using BlastKOALA (https://www.kegg.jp/blastkoala/) 
with ‘Bacteria’ used as the taxonomy group. The presence of KEGG 
orthologues relating to extracellular glycoside hydrolases in starch 
and sucrose metabolism pathways shown in grey in Extended Data 
Fig. 6f was summarized.

RNA extraction from PBMC
Blood samples were collected in Vacutainer CPT tubes (Becton  
Dickinson) and mixed with the anticoagulant by gently inverting 
the tubes 8 to 10 times. After centrifugation of the blood for 30 min 
at 1,500g, PBMCs were isolated as a diffuse layer above the gel. The 
plasma was removed, and the PBMCs were collected in conical tubes 
with 500 μl RNAlater (Thermo Fisher Scientific). The conical tubes were 
centrifuged at 1,000g at room temperature for 3 min to pellet the cells 
and the supernatant was discarded. The RNA was then isolated using 
the Maxwell 16 LEV simplyRNA Blood Kit (Promega) according to the 
manufacturer’s instructions. The quality of the RNA was assessed using 
Bioanalyzer (Agilent), as recommended by the manufacturer. The RNAs 
were quantified using the GloMax plate reader (Promega) and Quant-iT 
RiboGreen RNA Assay Kit (Thermo Fisher Scientific).

CAGE analysis
The CAGE libraries were constructed according to the dual-index 
nanoCAGE protocol, a template-switching-based variation of the 
standard CAGE protocol designed for low quantities of RNA55,56. 
cDNA libraries were prepared with RNA extracted from PBMC samples 
and sequenced on the Illumina HiSeq 2000 (50 bp paired-end). The 
sequenced reads were processed with the MOIRAI pipeline57: low qual-
ity and rDNA reads were first removed, then the remaining reads were 
mapped to the human genome version hg38 patch 1 using BWA v.0.5.9 
(r16). The mapped reads were overlapped with the FANTOM5 robust 
promoter set (http://fantom.gsc.riken.jp/5/datafiles/latest/extra/
CAGE_peaks/) and mapped to the nearest GENCODE v.27 annotations 
within (500 bp)58,59. The mapped reads falling under each FANTOM5 
CAGE cluster were summed to produce the raw expression counts. 
Expression counts were converted to counts per million (CPM), and 
CAGE clusters expressed in less than 100 samples with at least 1 CPM 
and greater than 1 sample with at least 10 CPM were removed from 
further analysis. For each sample, the richness index was calculated 
using the R package vegan’s rarefy function with a subsample size of 
100 on the filtered raw counts. Samples with a read library size of less 
than 1,000,000 and a number of unique CAGE clusters of <11,000 
and richness less than 44 were removed as outliers, with the thresh-
olds selected from visual inspection of the respective distributions.  

Cell type specificities of promoters of interest were determined using 
the FANTOM5 hg38 human promoterome view.11 in the ZENBU genome 
browser (https://fantom.gsc.riken.jp/zenbu/). Top-hit cells for analysed 
promoters were described. For cell-type gene set enrichment analysis of 
genes significantly associated with IR, annotated genes were analysed 
using Enrichr60,61 and the Human Gene Atlas database60, and the results 
of cell types with Padj < 0.05 were selected. The Enrichr combined score 
is defined as: c = log[p] z, where c is the combined score, p is the P value 
based on Fisher’s exact test and z is the z-score60.

Metabolite measurement in bacterial culture
The following strains were used for this culture analysis: A. indistinc-
tus ( JCM16068), A. finegoldii ( JCM16770), Alistipes putredinis ( JCM 
16772), B. thetaiotaomicron ( JCM 5827), Bacteroides xylanisolvens ( JCM 
15633), Bacteroides ovatus ( JCM 5824), Bacteroides caccae ( JCM 9498), 
Parabacteroides merdae ( JCM 9497), Parabacteroides distasonis ( JCM 
5825), D. formicigenerans ( JCM 31256), D. longicatena ( JCM 11232),  
B. hydrogenotrophica ( JCM 14656), Blautia producta (BP, JCM 1471), Cop-
rococcus comes ( JCM 31264), Faecalibacterium prausnitzii ( JCM 31915), 
Flavonifractor plautii ( JCM 32125), Clostridium spiroforme ( JCM1432), 
Coriobacterium glomerans ( JCM 10262), Roseburia hominis ( JCM 
17582), Adlercreutzia equolifaciens subsp. equolifaciens ( JCM 14793), 
Eggerthella lenta ( JCM 9979) and Collinsella aerofaciens ( JCM 10188). 
All strains were obtained from RIKEN BioResource Research Center. All 
of the strains were cultivated in EG medium ( JCM Medium No. 14) sup-
plemented with 5% Fildes extract prepared by pepsin-digested horse 
blood instead of horse blood itself. For measurement of metabolites in 
bacterial culture, 60 μl of the bacterial culture grown in the EG medium 
was inoculated into 3 ml of the experiment medium (EG medium) and 
cultivated for 24 h. The samples were centrifuged, and the cell-free 
supernatant was collected for analysis. GC–MS was performed to 
measure hydrophilic metabolites as described above. We identified 
261 metabolites by the analysis and used 198 metabolites observed in 
at least 30% of samples for the following analyses.

Animal experiments
C57BL6/N male mice aged 6 weeks were purchased from CLEA Japan. 
They were randomly assigned to either the control or treatment 
group and housed in a conventional animal facility of Yokohama City  
University. The mice were fed Quick Fat (CLEA Japan) for 3 weeks before 
bacterial administration and continued to be fed for 3 weeks during bac-
terial challenges. A. indistinctus ( JCM16068), A. finegoldii ( JCM16770),  
B. thetaiotaomicron ( JCM 5827), B. xylanisolvens ( JCM 15633), P. merdae 
( JCM 9497), F. prausnitzii ( JCM 31915) and C. spiroforme ( JCM1432) were 
used to broadly compare the efficacy of bacterial administration on the 
animal model. These strains were cultivated in EG medium overnight, 
and the concentration was adjusted to 2.5 × 108 CFU per ml by PBS. 
The bacteria and PBS, a negative control, were orally administered to 
the mice at a dose of 200 μl per mouse. The bacteria and PBS as the 
vehicle control were provided 3 times a week for 3 or 4 weeks. Body 
mass was measured before oral gavage. Postprandial blood glucose 
measurement and insulin tolerance test were performed 3 weeks after 
the initiation of bacterial challenges. After the insulin tolerance test, 
the mice were subjected to 5 h fasting before insulin injection, and 
0.85 U kg−1 human regular insulin (Eli Lilly) was subsequently adminis-
tered intraperitoneally. The intraperitoneal glucose tolerance test was 
performed 4 weeks after the initiation of bacterial challenges. The mice 
were subjected to 5 h fasting before glucose infusion, and 2.0 g per kg 
glucose (Nacalai Tesque) was administered intraperitoneally. In both 
experiments, the blood glucose was collected from the tail vein and seri-
ally measured using GLUCOCARD G Black (Arkray). For the necropsy, 
the mice were euthanized by isoflurane (MSD), and the fat mass of per-
igonadal and mesenteric fats was measured. Blood was drawn through 
cardiac puncture after the anaesthesia. HDL-C (Wako), triglycerides 
(Wako) and adiponectin (Otsuka) were measured in accordance with 
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the manufacturers’ instructions. The Yokohama City University animal 
facility is maintained under a 12 h–12 h light–dark cycle at 24 ± 1.5 °C 
and 55 ± 10% humidity.

To assess the metabolism, dietary intake and locomotor activity of 
mice, C57BL6/N male mice at the age of 6 weeks were purchased from 
CLEA Japan and were maintained in a vinyl isolator of SPF animal facility 
at RIKEN Yokohama branch. Using the same experimental protocol in 
the conventional condition, the mice were fed Quick Fat (CLEA Japan) 
for 3 weeks before bacterial administration and continued to be fed 
the diet during bacterial challenges and metabolic measurement. 
We gave three oral gavages of A. indistinctus or PBS (vehicle control) 
every other day and then placed the mice individually in acrylic cages. 
We further gave one oral gavage 2 days after the start of individual 
housing. Their metabolic activity, dietary intake and physical activity 
were subsequently monitored. There was no significant difference in 
body mass at the start of metabolic measurement (mean ± s.d. of body 
mass were 25.7 ± 2.6 g and 26.1 ± 1.4 g in the vehicle and A. indistinctus 
groups, respectively). Oxygen and carbon dioxide concentration was 
measured using the ARCO-2000 system, an open-circuit metabolic gas 
analysis system with a mass spectrometer (Arco Systems). VO2, VCO2, 
energy expenditure, fat oxidation rate, carbohydrate oxidation rate 
and respiratory quotient were calculated within the system. Dietary 
intake and physical activity were simultaneously monitored through 
ACTIMO-100M and MFD-100M (Shinfactory). The differences in diurnal 
variation were tested using two-way mixed ANOVA, and P values for 
interactions between time and group were reported. The RIKEN animal 
facility is maintained under a 12 h–12 h light–dark cycle at 23 ± 2 °C 
and 50 ± 10% humidity. The sample size was determined on the basis 
of our preliminary experiments. Bacterial administration and body 
mass measurements were performed by an independent researcher 
who was not involved in the grouping and outcome assessments. All 
experimental procedures were approved by the Institutional Animal 
Care and Use Committee of the RIKEN and Yokohama City University 
and performed in accordance with the institutes’ guidelines.

Western blot analysis of phosphorylated AKT
To analyse phosphorylation of AKT (p-AKT) at Ser473, the mice admin-
istered with A. indistinctus, A. finegoldii and PBS (vehicle control)  
3 times a week for 4 weeks were subjected to 6 h fasting before the insulin 
injection, and 0.85 U kg−1 human regular insulin (Eli Lilly) was subse-
quently administered from the inferior vena cava. The liver, epididymal 
fat (eWAT) and gastrocnemius muscle were subsequently collected 
5 min after the insulin injection, weighed and snap-frozen by liquid 
nitrogen. To prepare the lysates for western blotting, the tissues were 
homogenized in buffer A (25 mM Tris-HCl, pH 7.4, 10 mM sodium ortho-
vanadate, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 
10 mM EDTA, 10 mM EGTA and 1 mM phenylmethylsulfonyl fluoride). 
Thereafter, the lysates were resolved on 10% SDS–PAGE. Phosphoryl-
ated or total protein of AKT was isolated by immunoblotting using 
specific antibodies after the tissue lysates were resolved by SDS–PAGE 
and transferred to a Hybond-P PVDF transfer membrane (Amersham 
Biosciences). Bound antibodies were detected with HRP-conjugated 
secondary antibodies using ECL detection reagents (Amersham Bio-
sciences). Rabbit polyclonal antibodies directed against AKT and p-AKT 
(Ser473) were purchased from Cell Signaling Technology. Precision 
Plus Protein All Blue Standards (Bio-Rad) were used for the molecular 
mass markers.

Hyperinsulinaemic–euglycaemic clamp test
The protocol has been published elsewhere62,63. Mice administered with 
A. indistinctus or PBS (vehicle control) for 5 to 6 weeks were used for the 
experiment. Jugular vein catheterization was performed 1 day before 
the clamp test. In brief, a mouse was anaesthetized with isoflurane 
(MSD), and the right jugular vein was exposed. A double-channel cath-
eter was subsequently inserted to the vein. The next day, the mice were 

subjected to 4 h fasting before the clamp test. Human regular insulin  
(Eli Lilly) was intravenously administered at 7.5 mU kg−1 min−1, and the 
blood glucose levels were monitored every 5  min for 120 min. 50% glu-
cose solution containing 6,6-d2-glucose (Sigma-Aldrich) was simultane-
ously infused to keep blood glucose levels around 100 to 120 mg dl−1. 
To separate the plasma, approximately 25 μl of blood was also drawn 
from tail vein at 0, 90, 105 and 120 min, placed into a tube containing 
2 μl of heparin (Mochida Pharmaceutical) and centrifuged at 12,000g 
at 4 °C for 5 min. The plasma levels of glucose and 6,6-d2-glucose were 
measured using GC–MS. In brief, a 5 μl aliquot of plasma was extracted 
and derivatized with methoxyamine hydrochloride (Sigma-Aldrich) 
and N-methyl-N-(trimethylsilyl)trifluoroacetamide (GL Sciences), as 
previously described46. The analysis was performed using a GC–MS/
MS platform on a Shimadzu GCMS-TQ8040 triple quadrupole mass 
spectrometer (Shimadzu) with a capillary column (BPX5) (SGE Analyti-
cal Science/Trajan Scientific and Medical). The programme of GC–MS/
MS analysis was previously described46 with minor modifications. We 
integrated each derivative peak to obtain mass isotopomers of glucose 
for the following ions: m/z 319.1, 320.1 and 321.1. The glucose infusion 
rate was determined as the infusion rate at 90, 105 and 120 min. The rate 
of glucose disappearance was determined on the basis of the plasma 
levels of 6,6-d2-glucose and total glucose using a non-steady-state equa-
tion as described previously63,64 and considered as the whole-body 
glucose disposal after insulin stimulation. Hepatic glucose production 
was determined as the subtraction of glucose disappearance rate and 
glucose infusion rate.

Analysis of triglyceride contents in the liver
For the necropsy, the mice were anesthetized using isoflurane (MSD), 
and the left half of liver was dissected, weighed and frozen in liquid 
nitrogen. The extraction of triglyceride contents from the liver tissue 
has been reported elsewhere62,64. In brief, the samples were homog-
enized in buffer A (25 mM Tris-HCl at pH 7.4, 10 mM sodium orthovana-
date, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 10 mM 
EDTA, 10 mM EGTA and 1 mM phenylmethylsulfonyl fluoride) and mixed 
with chloroform/methanol (2:1, v/v). The mixture was shaken for 15 min, 
centrifuged and the organic layer was collected. The extraction step 
was repeated three times. The collected samples were evaporated 
and resuspended in 1% Triton X-100/ethanol. The triglyceride content 
was assessed using Triglyceride E-test Wako (Wako) according to the 
manufacturer’s instructions.

Statistical methods and comparisons
For general statistical comparisons, two-sided Wilcoxon rank-sum tests 
were used for two-group comparisons, Kruskal–Wallis tests followed 
by Dunn’s post hoc analysis were used for comparisons of more than 
two groups, and Fisher’s exact tests were used for comparison of cat-
egorical variables. For general correlation analyses, Spearman’s rank 
correlation in the function corr.test of the R package psych v.2.1.6 was 
used. For partial correlation analyses, partial Spearman’s rank correla-
tion in the function pcor.test of the R package ppcor v.1.1 was used. To 
predict the metabolite levels and their CAGs (Fig. 1b,d and Extended 
Data Figs. 2c,d and 3a), rank-based regression analyses were performed 
using the function rfit of the R package Rfit (v.0.24.2)65. For the ordi-
nal independent variables (that is, IR, MetS, and original categories 
with obese and prediabetes), IS, no MetS, and healthy categories were 
considered as the references, respectively, and the coefficients and  
P values for other categories were calculated against these reference 
categories. For the analyses involving generalized linear models (GLM) 
such as Fig. 2b and Extended Data Figs. 5i and  6c, the dependent vari-
ables were assumed to follow a Gamma distribution and arcsine square 
root transformation was applied to the relative-abundance values of 
microbiota and KEGG orthologues. To enhance comparability, the 
standardized coefficient was also calculated by standard deviations of 
dependent and independent variables using the function lm.beta of the 



R package QuantPsyc v.1.5 in Extended Data Fig. 5i. In the reanalysis of 
TwinsUK data, we fitted generalized linear mixed-effects models with 
age, sex, zygosity and BMI as fixed effects and sample collection year as 
a random effect using the function glmer of R package lme4 v.1.1-27.1 to 
estimate the associations between HOMA-IR and faecal carbohydrate 
metabolites (Extended Data Fig. 3b,c). Similarly, in the reanalysis of 
HMP2 data, we fitted a generalized linear mixed-effects model with 
consent age and sex as fixed effects and sample collection site as a 
random effect to estimate the associations between BMI and faecal 
fructose, glucose and/or galactose (Extended Data Fig. 3d). To analyse 
the associations between the participants’ clusters and clinical mark-
ers in Fig. 2b, the clusters were reordered before regression analyses 
according to their proportion of individuals with IR, where cluster C 
showing the lowest proportion of IR was set as the reference. To cal-
culate the KEGG pathway enrichment associated with the participant 
clusters (Fig. 2e and Extended Data Fig. 6a,b), the KEGG orthologues 
were compared between each cluster and the remaining three clusters 
using a two-sided Wilcoxon rank-sum test, and significant (Padj < 0.05) 
KEGG orthologues were summarized into the pathway level (Supple-
mentary Table 16). For comparison of metabolites in bacterial cultures 
(Extended Data Fig. 8), one-way ANOVA followed by Tukey’s post hoc 
test was performed, followed by multiple testing corrections based on 
the Benjamini–Hochberg procedure. For comparisons of time-series 
data such as insulin tolerance test, two-way repeated-measures ANOVA 
was used and the between-group difference was analysed by estimated 
marginal means. P < 0.05 was considered to be significant. To analyse 
the body mass change in animal experiments, ANCOVA analysis was 
performed to adjust baseline body mass (that is, body mass change as a 
dependent variable and group and baseline body mass as independent 
variables). We also validated the assumption of this ANCOVA model, 
that is, homogeneity of regression slopes, homogeneity of variances 
and normality of residuals. For multiple-testing corrections, P values 
were corrected using the Benjamini–Hochberg procedure using the 
R function p.adjust. Padj < 0.05 was used as a cut-off unless otherwise 
specified. All data were collected using Microsoft Excel 2016. All sta-
tistical and graphical analyses were conducted using R v.4.1.1 using R 
studio v.1.4.1717, unless otherwise specified.

ROC curve analysis of omics datasets
To analyse ROC curves of omics datasets, the datasets of faecal metabo-
lomics, including hydrophilic and lipid metabolites, faecal 16S rRNA 
gene sequencing at the genus level, faecal metagenome consisting 
of KEGG orthologues and clinical metadata, were included. We first 
selected feature variables in each dataset, that is, the best explaining 
variables in the given dataset, using the minimum redundancy maxi-
mum relevance (mRMR) algorithm15. The function mRMR.classic of the 
R package mRMRe v.2.1.2.1 was used for the calculation. The datasets 
were square-root-transformed before mRMR calculation. We selected  
5 to 50 variables in 5 increments as the maximum number of genera was 
50. Using the selected variables, we next established random-forest 
models using the R package caret v.6.0-88 to classify the individuals 
into IR or not. Specifically, the results of mRMR were split into train 
and test datasets in a 3:1 ratio. The generated random-forest models 
were evaluated using a tenfold cross-validation method and applied 
to the test datasets to obtain probability scores. The accuracy of each 
classification model was described by the AUC of ROC curves using 
the R package pROC v.1.17.0.1.

Construction of microorganism–metabolite networks
To construct the co-abundance networks of genus-level bacteria, we 
selected 28 genus-level microorganisms that were observed in more 
than 40% of the participants and calculated the correlations using 
the R package CCREPE (compositionality corrected by renormaliza-
tion and permutation)66 v.1.28.0 with Spearman’s correlations and the 
default settings. Interactions with Padj < 0.05 were selected for further 

analysis. Bacteria that exhibited a positive correlation with one another 
were determined to be members of an independent co-abundance 
microbial group, except for the interaction between Bacteroides and 
Robinsoniella. We decided to categorize Robinsoniella into the Blautia 
and Dorea group owing to its stronger correlation with Blautia in com-
parison to Bacteroides, both of which showed the highest centrality 
within their respective networks. Those weakly associated with each 
other or negatively associated with the members of other CAGs were 
classified as miscellaneous (Extended Data Fig. 5f). To characterize 
the microbial profiles of the study participants, the individuals were 
clustered on the basis of the abundance of 28 genera, which includes 
20 genera in co-abundance microbial groups identified with CCREPE 
and 8 unclustered genera, using the ward.D function of the R package 
pheatmap v.1.0.12. Four distinct clusters of participants were deter-
mined, and the proportion of IR was compared using Fisher’s exact 
tests. Microorganism–metabolite networks were constructed on the 
basis of the correlations between the 28 genera observed in at least 
40% of samples and the faecal metabolites, including all hydrophilic 
metabolites (n = 110) and bacteria-related lipid metabolites (n = 259). 
Bacteria-related metabolites were defined according to previous 
reports20,21. The following classes were selected: DGDG, PE-Cer, MGDG 
O, FAHFA, Cer-AS, Cer-BDS, NAGly, NAGlySer, PI-Cer, SL, AcylCer, bile 
acids, DGDG O and AAHFA. Positive and negative Spearman’s correla-
tions with Padj < 0.05 were separately depicted in the networks. The 
networks were visualized using Cytoscape (v.3.7.0)67.

Construction of cross-omics networks
To construct and visualize a correlation-based network of omics data, 
we first analysed IR-associated host signatures using plasma cytokines, 
plasma metabolites and CAGE promoter expression data. We identified 
the significant host markers through the following models: (1) GLM 
with a gamma distribution: HOMA-IR as a dependent variable and host 
markers, age and sex as independent variables; (2) logistic regression 
model: IR (HOMA-IR ≥ 2.5 = 1, HOMA-IR ≤ 1.6 = 0) as a dependent vari-
able and significant host markers in the model 1, age and sex as inde-
pendent variables. In both models, host markers with Padj < 0.05 were 
considered to be significant. We finally identified 6, 21 and 36 significant 
associations from plasma cytokines, plasma metabolites and CAGE 
promoter expression data, respectively (Supplementary Tables 19–21). 
In terms of bacteria, 20 genera with significant interactions between 
each other, which were identified with CCREPE as shown in Extended 
Data Fig. 5f, were included. In terms of faecal metabolites, 15 carbohy-
drates associated with IR in the CAG analysis as shown in Fig. 1b were 
included. Pairwise partial Spearman’s rank correlations adjusted by age, 
sex, BMI and FBG between all given factors were calculated with the R 
package ppcor v.1.1. The correlations with Padj < 0.05 were selected for 
visualization. The size of nodes was determined as the ratio of median 
abundance in IR over IS. As the median values of genera Robinsoniella 
and Rothia were zero, these elements were removed from the visualiza-
tion. The width of lines was determined as the absolute value of partial 
Spearman’s coefficient. The networks were visualized using Cytoscape 
v.3.7.0. as in the microorganism–metabolite networks described above.

Explained variance of plasma cytokines by omics data
To assess the explained variance of ten plasma cytokines, we estab-
lished random-forest models using the R package caret v.6.0-88 to 
predict the plasma cytokine levels using 15 IR-associated faecal car-
bohydrates identified in Fig. 1b; 20 genera with significant interac-
tions with each other that were identified in Fig. 2a; 21 IR-associated 
plasma hydrophilic metabolites (Supplementary Table 20); or 36 
IR-associated CAGE promoters (Supplementary Table 21). Plasma 
cytokines were log10-transformed and scaled before the regression 
analyses. The data were split into train and test datasets at a 4:1 ratio. 
The generated random-forest models were evaluated using a tenfold 
cross-validation method and applied to the test datasets to obtain 



Article
predictions. The explained variance shown as R2 was calculated as its 
definition: 1 − sum(test − predict)2/sum(test − mean(test))2. The nega-
tive values were considered as zero.

Causal mediation analysis
To infer the effects of plasma cytokines on in silico causal relation-
ships between faecal carbohydrates and IR markers (HOMA-IR, BMI, 
triglycerides and HDL-C), we performed causal mediation analysis using 
the R package mediation (v.4.5.0)38. As previously reported68, we first 
screened significant associations (Padj < 0.05) between 15 IR-associated 
faecal carbohydrates and four IR markers, and significant associations 
between ten plasma cytokines and four IR markers. Age and sex were 
included as independent variables in both models. We then performed 
causal mediation analyses with the following models: (1) Mediator 
models: cytokine ~ metabolite + age + sex; (2) outcome models: IR 
marker ~ metabolite + age + sex + cytokine. In both models, faecal car-
bohydrate and plasma cytokine values were scaled before the analy-
ses, and GLM with Gaussian distribution was used. A nonparametric 
bootstrap procedure was used to calculate the significance, followed 
by multiple testing corrections using the R function p.adjust. Average 
causal mediation effects and average direct effects with Padj values from 
representative models are reported in Extended Data Fig. 7d, whereas 
all of the results including the total effects and proportion mediated 
are reported in Supplementary Table 23.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data of faecal microbiota have been deposited at the 
DNA Data Bank of Japan’s BioProject (https://www.ddbj.nig.ac.jp/
bioproject/index-e.html) under accession number PRJDB11444. Raw 
metabolomic data have been deposited at the RIKEN DROP Met (http://
prime.psc.riken.jp/menta.cgi/prime/drop_index) under index number 
DM0037. Raw CAGE sequencing data are deposited at the Japanese 
Genotype-phenotype Archive of National Bioscience Database Center 
(https://humandbs.biosciencedbc.jp/en/) under accession number 
JGAS000569. The following publicly available databases were used in 
this study: Ribosomal Database Project (https://www.canr.msu.edu/
cme/resources#:~:text=RIBOSOMAL%20DATABASE%20PROJECT,J), 
CORE (http://microbiome.osu.edu/), a reference genome sequence 
database obtained from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/
genbank/, December 2011), UCLUST (http://www.drive5.com/), the 
KEGG Orthology database (https://www.genome.jp/kegg/ko.html), 
glycoside hydrolase family classification in the CAZy database (http://
www.cazy.org/Glycoside-Hydrolases.html), the Inflammatory Bowel 
Disease Multi’omics Database (https://ibdmdb.org/) and the Human 
Gene Atlas Database associated with Enrichr (https://maayanlab.cloud/
Enrichr/). Source data are provided with this paper.
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fecal metabolites and metabolic markers.

Extended Data Fig. 1 | Overview of multi-omics analysis and data.  
a, Individuals without a prior diagnosis of diabetes, diabetic medications,  
or intestinal diseases were included (n = 306). Insulin resistance (IR) and 
metabolic syndrome (MetS) were the main clinical phenotypes. To evaluate  
the host-microbe relationship, we collected 1) host factors: clinical, plasma 
metabolome, peripheral blood mononuclear cells (PBMC) transcriptome, and 
cytokine data, and 2) microbial factors: 16S rRNA pyrosequencing, shotgun 
metagenome, and faecal metabolome. The numbers of elements after quality 
filtering are shown for each data set. b, The multi-omics analysis workflow. To 
identify the microbes that affect metabolic phenotypes, we first analysed the 
phenotype-associated metabolomic signatures by binning metabolites into 

co-abundance groups (CAGs). Microbial signatures were determined using the 
16S and metagenomic datasets, and their associations with metabolites were 
analysed. To gain insight into the host-microbe relationship, the associations 
among faecal metabolites/microbes and host plasma metabolites, cytokines, 
and PBMC genes were analysed. We also assessed the mediation effects of 
plasma cytokines on the relationships between faecal metabolites and 
metabolic markers. Finally, to validate the effects of candidate metabolites/
microbes on metabolic phenotypes, we performed bacterial culture and 
animal experiments. The associations between clinical phenotypes and omics 
markers were adjusted by age and sex wherever appropriate.
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Extended Data Fig. 2 | Faecal carbohydrate metabolites are increased in  
IR and MetS. a, The KEGG pathway enrichment analysis of the metabolites in 
hydrophilic CAGs 5, 8, 12, 15, and 18, which were associated with IR in Fig. 1b.  
The size of disks shows the enrichment (i.e., the ratio of observed numbers and 
expected numbers of metabolites in each KEGG pathway). The pathways with 
raw P values < 0.05 are shown in the figure. b, Partial correlations between 
HOMA-IR and faecal levels of short-chain fatty acids (SCFA) such as acetate, 
propionate, and butyrate (left panel), and disaccharides such as maltose and 
sucrose (right panel). The coefficients (pSC) and P values of partial Spearman’s 

correlations adjusted by age and sex are described (n = 282). c, Faecal levels  
of SCFA (left panel) and disaccharides (right panel) were compared between  
no MetS, pre MetS, and MetS (n = 306). d, Faecal levels of monosaccharides  
(left panel), SCFA (middle panel), and disaccharides (right panel) were 
compared between healthy, obese, and prediabetes (n = 306). Density plots 
indicate median and distribution. *Padj < 0.05, **Padj < 0.01, ***Padj < 0.001; 
hypergeometric test with multiple test corrections (a) and rank-based linear 
regression adjusted by age and sex (c, d). The detailed statistics are reported in 
Supplementary Table 5, 6.



20

30

40

−2 −1 0 1

BM
I (

kg
/m

2 )

Fec. fructose/glucose/galactose
(log10, normalized)

−2

0

2

−2 0 2 4
Fec. arabinose (log10, normalized)

H
O

M
A−

IR
 (l

og
10

)

−2

0

2

−4 −2 0 2
Fec. glucose (log10, normalized)

H
O

M
A−

IR
 (l

og
10

)

−3 −2 −1 0 1−3 −2 −1 0 1
Fec. glucose (log10, normalized)

−3 −2 −1 0 1
Fec. xylose (log10, normalized)

Normal
Overweight (BMI ≥ 25)
Obesity (BMI ≥ 30)

Estimate = 0.18
P = 2.2×10−3

Estimate = 0.25
P = 4.1×10−4

a

b

HOMA−IR

2−
D

eo
xy

rib
os

e
Ar

ab
in

os
e

Ar
ab

ito
l/X

yl
ito

l
Ar

ab
on

at
e/

Ay
lo

na
te

Er
yt

hr
on

at
e

Fr
uc

to
se

Fu
co

se
G

al
ac

to
na

te
G

lu
co

se
G

lu
cu

ro
na

te
G

ly
ce

ra
te

La
ct

at
e

M
al

to
se

M
al

to
tri

os
e

M
an

ni
to

l/S
or

bi
to

l
M

an
no

se
N

−A
ce

ty
l−

be
ta

−g
lu

co
sa

m
in

yl
am

in
e

N
−A

ce
ty

lg
lu

co
sa

m
in

e/
N

−A
ce

ty
lg

al
ac

to
sa

m
in

e
N

−A
ce

ty
lg

lu
co

sa
m

in
yl

as
pa

ra
gi

ne
N

−A
ce

ty
lm

ur
am

at
e

N
−A

ce
ty

ln
eu

ra
m

in
at

e
N

6−
C

ar
bo

xy
m

et
hy

lly
si

ne
Py

ru
va

te
R

ib
ito

l
R

ib
on

at
e

R
ib

os
e

R
ib

ul
os

e/
Xy

lu
lo

se
Se

do
he

pt
ul

os
e

Xy
lo

se Neg/Pos
Neg
Pos

c

d

*
*

***

De
ns

ity

Estimate
0.1
0.2
0.3

Fec. arabinose (log10, normalized)

Estimate = 0.11
P = 0.025

Extended Data Fig. 3 | Faecal carbohydrate metabolites are associated  
with IR-related pathologies. a, The faecal xylose, glucose, and arabinose  
were compared between individuals with normal weight, overweight, and 
obesity in the TwinsUK cohort (n = 786). b, The associations between faecal 
carbohydrates observed in at least 50% samples and HOMA-IR in the TwinsUK 
cohort (n = 550). The size and colour of the disks represent the estimate and  
the direction of the associations. Metabolites with Padj < 0.05 are depicted 
(n = 550). c, The associations between faecal glucose and arabinose and 
HOMA-IR as analysed in Fig. b. The lines and grey zones show the fitted  
linear regression lines with 95% confidence intervals. The estimates of 
metabolites and their P values are described. d, The association between  
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avoid redundancy. Density plots indicate median and distribution. *P < 0.05, 
**P < 0.01; rank-based linear regression adjusted by age, sex, and zygosity  
(a) and generalized linear mixed-effect models with age, sex, zygosity, and BMI 
as fixed effects, and sample collection year as a random effect (b). The detailed 
statistics are reported in Supplementary Table 9.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Faecal microbiota in IR. a, b, Chao1 and Shannon’s 
alpha diversity indices in IR and MetS (n = 282). c, d, PCoA plots of Bray-Curtis 
dissimilarity, showing the variations of faecal microbiota at the genus level 
based on 16S rRNA gene sequencing (c), and at the species (mOTU) level based 
on shotgun sequencing (d), clustered by IR or MetS (n= 282). Dots represent 
individual data summarized into PCo1 and PCo2. e, PCA plots showing the 
variations of KEGG orthologues based on shotgun metagenomic sequencing 
clustered by IR or MetS (n = 266). Dots represent individual data summarized 
into PC1 and PC2. f, Co-abundance groups of genus-level microbes and their 
abundance in the participant clusters defined in Fig. 2a. Co-abundance was 
determined based on compositionality-corrected Spearman’s correlations, 
with Padj < 0.05 considered significant. The disk size represents the median 
abundance in the participants. Three co-abundance groups were determined 
based on their networks, while the rest of the microbes were named as 
“miscellaneous”. g, The co-abundance groups of genus-level microbes  
and their abundance in the participant clusters. Those not clustered by 
compositionality-corrected Spearman’s correlations in f were shown as 
“Unclustered”. The size of the disks represents overabundance to the mean  
in four clusters of participants determined in Fig. 2a. The far-left column  
shows the genera that exhibit significant differences among the four clusters. 
h, The co-abundance clusters of microbes at the genus level using the shotgun 

metagenomic data and their abundance (n = 266). The genera forming distinct 
groups in f, i.e., groups 1, 2, and 3, were included in this analysis. The participants 
were clustered into three mOTU clusters A to C based on the heatmap clustering. 
The proportion of individuals with IS, intermediate, and IR are shown in the pie 
charts above the heatmap as Fig. 2a. i, The associations between representative 
metabolic markers and genera (left panel, n = 282) and mOTU (right, n = 266). 
Only those with significant associations with metabolic markers are depicted. 
The disk size and colour represent absolute values of standardized coefficient 
and the direction of associations. The detailed statistics are reported in 
Supplementary Table 11. j, Microbe-metabolite networks of IR- or and IS-
associated co-abundance microbial groups from Fig. 2a and faecal metabolites 
(n = 282). All faecal hydrophilic metabolites and faecal microbe-related lipid 
metabolites were included in the analysis. Only those with negative Spearman’s 
correlation between the genus-level microbial abundance and the metabolites 
with Padj < 0.05 are shown, which is complementary to Fig. 2c. The metabolites 
in CAGs relating to carbohydrates shown in Fig. 1b are highlighted in red. k, The 
relative abundance of IR-associated faecal carbohydrates in the participant 
clusters. The metabolites significantly different among these four clusters are 
coloured grey in the top row. a, b, Box plots indicate the median, upper and 
lower quartiles, and upper and lower extremes except for outliers. Kruskal-
Wallis test (g, k). See the Source Data (g) for exact P values.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Microbial carbohydrate metabolism is altered in IR. 
a, b, The associations between the KEGG pathways relating to amino acid 
metabolism (a) and lipid metabolism (b), faecal carbohydrates, top three 
genera positively or negatively correlated with faecal carbohydrates in Fig. 2d, 
and the participant clusters defined in Fig. 2a. KEGG orthologues significantly 
(Padj < 0.05) associated with the metabolite (left) and taxonomic abundance 
(right) are summarized as percent enrichment among the KEGG pathways. The 
median % of 15 faecal carbohydrates are coloured in the left panel whereas % 
enrichment is depicted as the disk size in the right panel. The Spearman’s 
correlations between pathway-level abundance and 6 genera were analysed  
in the middle panel (n = 266). c, The associations between representative 
metabolic markers and the KEGG pathways relating to carbohydrate metabolism, 
amino acid metabolism, lipid metabolism, and membrane transport defined  
in the KEGG orthology database. The pathways with significant associations  
with metabolic markers are included in the plots. The disk size and colour 
represent % enrichment and the direction of associations, and only significant 
(Padj < 0.05) associations are depicted (n = 266). d, Spearman’s correlation 
between KEGG orthologues associated with phosphotransferase system  
(PTS) and faecal carbohydrate metabolites. KEGG orthologues significantly 
(Padj < 0.05) associated with faecal metabolites are coloured red or blue 
(n = 266). The far-left column shows the type of carbohydrate metabolites  

that each PTS gene is involved in. e, The abundance of representative KEGG 
orthologues involved in PTS were compared among four participant  
clusters (n = 266). The abundance was transformed by arcsine square root 
transformation. f, Spearman’s correlation between KEGG orthologues 
significantly associated with glycoside hydrolases in starch and sucrose 
metabolism (KEGG pathway #00500) and faecal carbohydrate metabolites 
(n = 266). The far-left column shows whether the genes were predicted to 
function as extracellular enzymes. g, Representative pathways in starch and 
sucrose metabolism (KEGG pathway #00500) relating to glycosidase activities 
to degrade poly- and oligosaccharides into monosaccharides. h, The abundance 
of representative KEGG orthologues involved in glycosidase were compared 
among four participant clusters (n = 266). The abundance was transformed by 
arcsine square root transformation. i, The presence and absence of KEGG 
orthologues predicted to function as extracellular enzymes in 45 strains. The 
strains from the top three genera positively or negatively correlated with faecal 
carbohydrates shown in Fig. 2d, i.e., Bacteroides, Alistipes, Flavonifractor, 
Dorea, Blautia, and Coprococcus, were included in this analysis. Density plots 
indicate median and distribution (e, h). *P < 0.05, **P < 0.01, ***P < 0.001 in 
comparison to cluster C (with the lowest proportion of IR); Kruskal-Wallis test 
with Dunn’s test (e, h) (Supplementary Table 18).
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Extended Data Fig. 7 | Cytokine and faecal metabolite interactions in IR.  
a, Cell-type gene set enrichment analysis based on the Human Gene Atlas 
database using Enrichr. Annotated peripheral blood mononuclear cell (PBMC) 
transcripts positively or negatively associated with IR (Supplementary 
Table 21) were analysed (n = 275). Red and blue colour scales represent IR and 
IS-associated cell types, respectively (please refer to Methods for details).  
b, The cross-omics network shown in Fig. 3a with the annotations. c, The number 
of correlations between faecal carbohydrates and other omics elements shown 
in Fig. 3a. The proportion to all possible correlations is shown. d, Representative 

causal mediation models analysing the effects of IL-10 and adiponectin 
mediating in silico relationships between faecal carbohydrates and HOMA-IR. 
Causal mediation analysis with multiple test corrections were used to test 
significance. Estimates (β) and Padj values of average causal mediation effects 
(ACME), which are the indirect effects between the metabolites and host markers 
mediated by cytokines, and average direct effects (ADE), which are the direct 
effects controlling for cytokines, are described. Age and sex were adjusted in 
the models. The detailed information is reported in Supplementary Table 23.
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Extended Data Fig. 8 | Bacteroidales strains distinctly alter metabolites  
in the culture supernatant. a, b, PCA plots of metabolites in cell-free 
supernatants of 22 bacterial strains listed in (a). These strains were selected 
based on the findings from the genus-level co-occurrence (Fig. 2a, b) and the 
species-level profiles (Extended Data Fig. 5i). The strains from genera and 
species relating to IR-related markers shown in Extended Data Fig. 5i are 
particularly highlighted in boldface. The top 10 metabolites contributing to 
the PCA separation (left panel) and 13 out of 15 IR-related carbohydrates 
identified in Fig. 1b (right panel) are biplotted on the PCA plot, respectively (b). 

c, d, The levels of carbohydrate fermentation products (c) and carbohydrates 
relating to IR in the human cohort (d) in the cell-free supernatants. e, Pie charts 
summarizing the consumption and production of carbohydrates shown in (d). 
Those significantly decreased or increased compared with the vehicle control 
group were considered as consumption or production. f, The top consumers  
of carbohydrates, which summarizes the results shown in (e). Representative 
data of two independent experiments. c, d, Data are mean and s.d. The detailed 
statistics are reported in Supplementary Table 24 (n = 3 per group).
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Extended Data Fig. 9 | Alistipes indistinctus ameliorates IR. a, Body mass 
change from the baseline. The P value adjusted by baseline body mass by 
ANCOVA are shown (n = 25 and 26 for control and A. indistinctus (AI) groups, 
respectively. Pooled data of three independent experiments). b, TG contents in 
the liver (n = 12 and 14 for control and AI groups, respectively. Pooled data of 
two independent experiments). c, d, The blood glucose levels (c) and AUC  
(d) in intraperitoneal glucose tolerance test (IPGTT) (n = 5 and 4 for control 
and AI groups, respectively). e–g, Serum levels of HDL-cholesterol (HDL-C, e),
triglycerides (TG, f), and adiponectin (g) (n = 5 per group in e and f, n = 8 per 
group in g). h, Glucose infusion rate (GIR) during hyperinsulinemic-euglycemic 
clamp (n = 7 per group). The rates at 90, 105, and 120 min after the start of 
insulin infusion were shown as representative of steady-state conditions of 
euglycemia. i, j, Whole-body glucose disposal rate (Rd, i) and hepatic glucose 
production (HGP, j) measured with hyperinsulinemic-euglycemic clamp (n = 7 
per group). k, l, Representative images of phosphorylated Akt (p-Akt) at S473 

and total Akt in the liver and epidydimal fat (eWAT) in mice administered Alistipes 
indistinctus (AI), Alistipes finegoldii (AF), and PBS as vehicle control (k). The 
protein expression of p-Akt was normalized to that of total Akt (n = 4 vs 5 vs 5) (l). 
The raw images of blotting membranes are shown in Supplementary Fig. 1  
(n = 3 per group). m–o, Respiratory quotient (RQ) and carbohydrate oxidation 
rate (m), diet intake (n), and locomotor activity (o) after one-week bacterial 
administration (n = 4 and 5 for control and AI groups, respectively). P values for 
interactions between time and group are described in (m). Other metabolic 
measures are reported in Supplementary Table 25. Representative data of two 
independent experiments (c–g, k–o). a, Density plots indicate median and 
distribution. b–j, l, m, Data are mean and s.d. ANCOVA (main panel) with 
unadjusted linear regression (right panel) (a), two-sided Wilcoxon rank-sum 
test (b, d–g, i, j), two-way repeated measure ANOVA (c), Two-way ANOVA (h) and 
one-way ANOVA (l) with Tukey’s test, two-way mixed ANOVA (m), and Kruskal-
Wallis test (n, o).
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Extended Data Fig. 10 | Alistipes indistinctus reduces intestinal 
carbohydrates. a, PCA plots of metabolites in caecal contents of  
AI-administered mice. The top 10 metabolites contributing to the PCA 
separation (left panel) and 12 out of 15 IR-related carbohydrates identified in 
Fig. 1b (right panel) are biplotted on the PCA plot, respectively (n = 8 per 
group). b, The PC1 of PCA plots in Fig. a (n = 8 per group). c, Caecal levels of 
representative IR-related carbohydrates observed in AI-administered mice 
(n = 8 per group). The detailed statistics of all caecal metabolites are reported 
in Supplementary Table 26. d, Serum levels of fructose in AI-administered mice 
(n = 7 and 5 for control and AI groups, respectively). e, A schematic summary.  
In this study, we combined faecal metabolome, 16S rRNA gene sequencing, and 
metagenome data with host metabolome, transcriptome, and cytokine data  
to comprehensively delineate the involvement of gut microbiota in IR (upper 
panel). Carbohydrate degradation products such as monosaccharides are 

prominently increased in IR (middle panel). Metagenomic findings show that 
the degradation and utilization of poly- and disaccharides are facilitated in  
IR and that these microbial functions are strongly associated with faecal 
monosaccharides. Further analysis also suggests that the effects of these 
metabolites on host metabolic parameters such as BMI are in part mediated by 
specific cytokines. Finally, our animal experiments provide evidence showing 
that oral administration of AI, a candidate strain selected based on human 
cohort findings, reduces intestinal carbohydrates and lipid accumulation, 
thereby leading to the amelioration of IR (lower panel). Taken together, our 
study provides novel insights into the mechanisms of host-microbe interplays 
in IR. Representative data of two independent experiments. b, Box plots indicate 
the median, upper and lower quartiles, and upper and lower extremes except 
for outliers. c, d, Data are mean and s.d. Two-sided Wilcoxon rank-sum test (b–d).
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