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An imbalance in microbial homeostasis, referred to as dysbiosis, is critically
associated with the progression of obesity-induced metabolic disorders
including type 2 diabetes (T2D). Alteration in gut microbial diversity and the
abundance of pathogenic bacteria disrupt metabolic homeostasis and
potentiate chronic inflammation, due to intestinal leakage or release of a
diverse range of microbial metabolites. The obesity-associated shifts in gut
microbial diversity worsen the triglyceride and cholesterol level that regulates
adipogenesis, lipolysis, and fatty acid oxidation. Moreover, an intricate interaction
of the gut-brain axis coupled with the altered microbiome profile and
microbiome-derived metabolites disrupt bidirectional communication for
instigating insulin resistance. Furthermore, a distinct microbial community
within visceral adipose tissue is associated with its dysfunction in obese T2D
individuals. The specific bacterial signature was found in the mesenteric adipose
tissue of T2D patients. Recently, it has been shown that in Crohn’s disease, the gut-
derived bacterium Clostridium innocuum translocated to the mesenteric adipose
tissue and modulates its function by inducing M2 macrophage polarization,
increasing adipogenesis, and promoting microbial surveillance. Considering
these facts, modulation of microbiota in the gut and adipose tissue could serve
as one of the contemporary approaches to manage T2D by using prebiotics,
probiotics, or faecal microbial transplantation. Altogether, this review consolidates
the current knowledge on gut and adipose tissue dysbiosis and its role in the
development and progression of obesity-induced T2D. It emphasizes the
significance of the gut microbiota and its metabolites as well as the alteration
of adipose tissue microbiome profile for promoting adipose tissue dysfunction,
and identifying novel therapeutic strategies, providing valuable insights and
directions for future research and potential clinical interventions.
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1 Introduction

Obesity is a severe human health problem that increasing globally at an alarming rate
which significantly contributes to the development of several metabolic diseases including
type 2 diabetes (T2D) (Pulgaron and Delamater, 2014). According to the World Health
Organization report, more than 2 billion adults worldwide are overweight or obese, and the
number of people with diabetes has risen from 151 million in 2000 to 537 million in 2021
(Ruze et al., 2023). Recent evidence suggests that diet and food habits strikingly influence the
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pathophysiological state of obesity potentiating the onset and
progression of T2D (Guo et al., 2020).

The gut microbiota iscomprisedof about 10 trillion different bacteria
that increase in density as thesemoves along the gastrointestinal (GI) tract
(Cani et al., 2019). The host and gut microbiota represent a symbiotic
connection in which the host provides a nutrient-rich habitat for the
microbiome community while the microbes influence the host’s
physiology, immunology, and metabolism (Thursby and Juge, 2017).
The dynamic complexity of the microbial ecosystem and its composition
is influenced by several factors, including diet and lifestyle, which play a
vital role in the maintenance of host health by regulating the immune
system, metabolizing nutrients, and producing essential vitamins and
hormones (Hou et al., 2022). Moreover, the gut microbiome critically
regulates the gut-brain axis wherein gut microbial metabolites such as
short-chain fatty acids (SCFAs) and neurotransmitters can cross the
blood-brain barrier and influence brain function (Silva et al., 2020).

Gut dysbiosis, a condition characterized by an imbalance in the
composition and function of the gut microbiome, has been
implicated in several chronic diseases, including inflammatory
bowel disease, colorectal cancer, and T2D (Vijay and Valdes,
2022). Understanding the relationship between the gut
microbiome and insulin resistance has been improved in the last
few decades. Gut dysbiosis and the disrupted gut permeability (leaky
gut) in obesity allow lipopolysaccharide (LPS) and other pro-
inflammatory molecules to enter the bloodstream and trigger
systemic inflammation, contributing to the progression of insulin
resistance and T2D (Boulangé et al., 2016). Obesity has been
attributed to several metabolic changes that are causally linked
with glucose intolerance and insulin resistance associated with
T2D (Martyn et al., 2008; Wondmkun, 2020). Few recent studies
revealed the enrichment of microorganisms in mesenteric and
omental adipose tissue during obesity, which acts as a key driver
of adipose tissue inflammation that potentiates Crohn’s disease and
insulin resistance (Ha et al., 2020; Massier et al., 2020). Thus,
targeting the gut microbiome has emerged as a promising
strategy for the prevention and treatment of obesity-induced
T2D. Several therapeutic strategies, such as probiotics, prebiotics,
and dietary modifications, have been proposed to modulate the gut
microbiome to prevent or treat T2D (Huda et al., 2021).

This review aims to provide an overview of the current
understanding of gut and adipose tissue dysbiosis in obesity-
induced T2D and to identify future research directions and
associated challenges in this field. We explored the mechanisms
by which adipose tissue microbiome enriched in obesity and
associated gut dysbiosis that correlated with altered gut
microbiota-brain axis, and pancreas dysfunction through the
emergence of microbial metabolites contributing to the
development of T2D. We also examined the shreds of evidence
supporting the use of various therapeutic strategies aimed at
modulating the gut microbiome.

2 Gut dysbiosis linked with obesity and
type 2 diabetes

The human gut accommodates a diverse community of enteric
microflora, including Firmicutes and Bacteroidetes (up to 75% of
total gut flora), which is also called a “virtual organ”, provides

structural, metabolic, and protective benefits to intestinal epithelial
cells (O’Hara and Shanahan, 2006; Foster and McVey Neufeld,
2013). The human gut environment can be viewed as a dynamic
system formed by the host and its microbiota working together. The
gut microbiota involves in carbohydrate and fat metabolism,
vitamin and amino acid production, the proliferation of epithelial
cells, defense against infections, and hormone regulation in the host
body (Oliphant and Allen-Vercoe, 2019) and also helps in the
digestion of plant polysaccharides, complex nutrients, and milk
sugars (Xu and Gordon, 2003; Hersoug et al., 2018) those which
were not properly digested by the host and thus contributing 10% of
caloric value and aid in preserving intestinal health and anti-cancer
properties (Wong et al., 2006; Blustein et al., 2013; Cox and Blaser,
2013).

2.1 Obesity induces alteration of gut
microbiota profile

Obesity is a complex metabolic disorder resulting from an
imbalance between energy intake and energy expenditure (Hill et al.,
2012). It is associated with dysregulation of lipid and glucose
metabolism leading to abnormal levels of blood lipids causally linked
with hyperlipidemia, ectopic lipid deposition, glucose intolerance,
insulin resistance, and T2D (Klop et al., 2013). Reportedly, lipid has
bidirectional regulation with the gut microbiota. Dietary lipids break
down into fatty acids that are majorly absorbed in the GI tract and are
found to modulate bacterial diversity as several fatty acids exhibit
antibiotic activity and reduce ATP production (Jackman et al., 2016;
Schoeler and Caesar, 2019). In the distal colon, residual peptides and
proteins, bile acids, and choline undergo fermentation that produces a
more diverse range of products compared to the fermentation of
carbohydrates in the proximal colon (Canfora et al., 2022). Some of
the products generated in the distal colon include bacterial toxins such
as LPS, hydrogen sulfide, bile acid derivatives like deoxycholate and
lithocholate, branched-chain amino acids (BCAAs) and their
metabolites, and branched-chain fatty acids (BCFAs) like isobutyrate,
2-methyl butyrate, and isovalerate (Zhai et al., 2021). Additionally,
aromatic amino acids (AAAs) give rise to phenolic, indolic, skatolic, and
p-cresolic compounds, ammonia, and polyamines. Choline, another
substrate, produces dimethylamine (DMA) and trimethylamine (TMA)
as end products in the distal colon (Zhai et al., 2021) (Table 1).

Specific gut bacteria, such as Akkermansia muciniphila and
Bifidobacterium, have been shown to produce metabolites that
directly affect glucose metabolism leading to increased insulin
sensitivity and improved glucose tolerance. On the contrary,
obesity-associated changes in gut bacteria have been shown to
produce metabolites that can promote insulin resistance and
glucose intolerance. Mice feeding with an HFD comprising 49.5%
lipid content reduce Bifidobacterium spp., Eubacterium rectale,
Clostridium coccoides as well as Bacteroides (Cani et al., 2007).
Both high-fat and high-sugar diet feeding significantly altered the
gut microbiota diversity, promoting the accumulation of Gram-
negative bacteria (Cani et al., 2007). About 50% reduction in
Bacteroidetes and a proportional increase in Firmicutes have been
identified in genetically obese mice models (Ley et al., 2005).

Many bacterial genera are either positively or negatively
correlated with obese T2D conditions. The overabundance of
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bacterial genera including Fusobacterium, Ruminococcus, and
Blautia was found to be positively correlated with the
pathophysiology of T2D (Table 2). In contrast, several
bacterial genera including Faecalibacterium, Bifidobacterium,
Akkermansia, Roseburia, and Bacteroides were negatively
correlated with T2D and therefore beneficial to counteract the
pathogenesis of T2D (Gurung et al., 2020) (Table 2). Certain gut
bacterial populations were linked to metabolic alterations, body
fat mass, and calorie consumption. The gut bacteria
Faecalibacterium prausnitzii was reported to be linked with
shifts in inflammatory status and insulin sensitivity (Furet
et al., 2010). F. prausnitzii is relatively attuned to urinary
metabolites, corpulence, and inflammation, and exhibits anti-
inflammatory effects by targeting the NF-κB pathway. This
bacteria species is recognized as a preserved and prominent
species of healthy individuals’ faecal microbiota (Li et al.,
2008; Sokol et al., 2008; Tap et al., 2009; Furet et al., 2010).
Lactobacillus rhamnosus CNCM I-3690 as a probiotic candidate
counteracts B. Wadsworth-mediated immunological dysfunction
and also supports bolstering the intestinal barrier and lowering
inflammation (Natividad et al., 2018). Blautia wexlerae
administration reduces obesity and T2D through metabolic
gut microbiota reconstruction (Hosomi et al., 2022). The
microbial community regulates hormonal balance, bowel

permeability, expression of genes regulating lipogenesis,
insulin resistance, endotoxemia, interaction with bile acids,
and changes in the distribution of brown adipose tissue (BAT)
(Cornejo-Pareja et al., 2019). Moreover, an unbalanced gut flora
in obese people might cause chronic inflammation followed by
metabolic diseases including insulin resistance and T2D (Singh
et al., 2017). People even trying to improve gut barrier function
by using herbal medicine like Bofutsushosan causally associated
with the blooms Akkermansia muciniphila and improves glucose
metabolism in mice (Fujisaka et al., 2020). Nuciferine, a main
bioactive component in the lotus leaf, when treated with HFD
rats showed a significant decline in the ratio of Firmicutes/
Bacteroidetes phyla which resulted in reduced blood
endotoxemia and inflammation along with increased intestinal
integrity and SCFA synthesis (Wang et al., 2020). Interestingly,
blood glucose levels may also be adversely affected by the oral
microbial compositions that cause both local and systemic
inflammation (Omori et al., 2022). Alteration in the salivary
microbiome has also been reported in T2D patients with a higher
abundance of Streptococcus sp., Lactobacillus sp., Blautia
wexlerae, Lactobacillus fermentum, Nocardia coeliaca,
Selenomonas artemidis (Kampoo et al., 2014; Long et al., 2017)
and reduction of phylum Actinobacteria, and Bifidobacterium
(Kampoo et al., 2014; Long et al., 2017).

TABLE 1 Microbial metabolites and their role in obesity and T2D pathogenesis.

Metabolites Source microorganism Status in
obesity
and T2D

Role in pathogenesis Ref

Styrylpyrone-type
metabolite
penstyrylpyrone

Penicillium sp. Decrease Improves disease condition Lee et al. (2013); Mar Rodríguez
et al. (2015)

Butyrate Fusobacterium, Eubacterium biforme,
Butyrivibrio crossotus, Clostridium
symbiosum, Roseburia, Anaerostipes,
Coprococcus, Faecalibacterium

Decrease improves colon mucosal barrier function,
exhibits immunomodulatory effects and
anti-inflammatory properties by
downregulating pro-Inflammatory
cytokines

Segain et al. (2000); Canfora et al.
(2019); Hermes et al. (2020); Kim
et al. (2020); Palmas et al. (2021)

BCAAs (Branched-chain
amino acid) (valine,
leucine, isoleucine)

Fusobacterium Increase Insulin resistance Newgard et al. (2009); Reddy
et al. (2018); Kim et al. (2020)

Endotoxin Lactobacillus spp. Decrease Improvement of mucosal barrier function Diamant et al. (2011)

Linoleic acid Bifidobacteria Decrease Increase omega-3 fatty acid levels in
Adipose tissue and reduce the pro-
inflammatory cytokines

Diamant et al. (2011)

SFCA Ruminococcus gnavus, Eubacterium biforme,
Butyrivibrio crossotus, Clostridium
symbiosum, Roseburia, Anaerostipes,
Coprococcus, Faecalibacterium,
Ruminococcus, Phascolarctobacterium,
Dialister, Megasphaera

Decrease Suppress weight gain, Glucose-stimulated
insulin secretion, increases GLP-1 and
peptide YY (PYY)

Lin et al. (2012); Vallianou et al.
(2018); Canfora et al. (2019);
Hermes et al. (2020); Palmas et al.
(2021)

LPS Enterobacter, Escherichia albertii Increase Metabolic endotoxemia, inflammation Cani et al. (2007); de la
Cuesta-Zuluaga et al. (2018);
Palmas et al. (2021)

Hydrogen sulfide Desulfovibrio piger Increase Pro-inflammatory effects and Toxic
intestinal epithelial cells

Palmas et al. (2021)

Polyamines Clostridium, Peptostreptococcus, Peptococcus Increase Inflammation Canfora et al. (2019); Bui et al.
(2022)

BCFAs Bacteroides, Eubacterium, Clostridium Increase Inflammation and dyslipidemia Canfora et al. (2019)
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TABLE 2 Summary of microbial signature at different taxonomic level in the gut and adipose tissue of obesity and type 2 diabetes.

Genus Species Obesity & type
2 diabetes

Adipose
tissue

Gut References

Faecalibacterium prausnitzii Increase - Yes Furet et al. (2010)

Akkermansia muciniphila Decrease - Yes Roopchand et al. (2015)

Akkermansia - Increase - Yes Parks et al. (2013)

Clostridium clostridioforme Increase - Yes Karlsson et al. (2013); Parks et al. (2013)

Bifidobacterium - Decrease - Yes Furet et al. (2010)

Mycobacterium tuberculosis Increase Yes Neyrolles et al. (2006)

Lactoococcus - Increase - Yes Peroumal et al. (2022)

Allobaculum - Increase - Yes Peroumal et al. (2022)

Allistipes - Decrease - Yes Verdam et al. (2013)

Bacteroides ovatus Decrease - Yes Verdam et al. (2013)

Oscillospira guillermondii Decrease - Yes Verdam et al. (2013); Konikoff and Gophna (2016); Gophna et al.
(2017); Palmas et al. (2021)

Desulfovibrio piger Increase - Yes Konikoff and Gophna (2016)

Barnesiella - Decrease - Yes Parks et al. (2013)

Eubacterium hallii Decrease - Yes Verdam et al. (2013)

Lactobacillus plantarum Increase - Yes Van Baarlen et al. (2009); Diamant et al. (2011); Sedighi et al. (2017)

Dorea formicigenerans Increase - Yes Verdam et al. (2013)

Bacteroides plebeius Decrease - Yes Verdam et al. (2013)

Bacteroides splachnicus Decrease - Yes Verdam et al. (2013)

Parabacteroides distasonis Decrease - Yes Verdam et al. (2013)

Clostridium symbiosum Increase - Yes Verdam et al. (2013)

Escherichia albertii Increase - Yes Palmas et al. (2021)

Bacteroides caccae Increase - Yes Qin et al. (2012)

Clostridium hathewayi Increase - Yes Qin et al. (2012)

Clostridium ramosum Increase - Yes Qin et al. (2012)

Clostridium symbiosum Increase - Yes Qin et al. (2012)

Eggerthella lenta Increase - Yes Qin et al. (2012)

Escherichia coli Increase - Yes Qin et al. (2012)

Granulicatella - Increase - Yes Aranaz et al. (2021)

Veillonella - Increase - Yes Aranaz et al. (2021)

Haemophilus - Increase - Yes Aranaz et al. (2021)

Dialister - Increase - Yes Aranaz et al. (2021)

Parabacteroides - Increase - Yes Aranaz et al. (2021)

Prevotella - Increase - Yes Aranaz et al. (2021)

Shigella - Increase - Yes Aranaz et al. (2021)

Allisonella - Increase - Yes Aranaz et al. (2021)

Blautia - Increase - Yes Zeng et al. (2019)

Romboutsia - Increase - Yes Zeng et al. (2019)

(Continued on following page)
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2.2 Gut microbial-derived metabolites
modulate lipid metabolism in obesity

Microbiota-derived metabolites, such as bile acids, LPS, and SCFAs
have been identified as important factors in the regulation of
hyperlipidemia (Agus et al., 2021; Jia et al., 2021). SCFAs such as
acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and
isovaleric acid are produced from the fermentation of dietary fibre by
gutmicrobes and are known to be associatedwith several health benefits
(Rios-Covian et al., 2020). These fatty acids also influence adipogenesis,
lipolysis, and fatty acid oxidation, all of which are related to lipid
metabolism in non-obese and obese states (Breton et al., 2022).
Propionate has been found to increase the expression of peroxisome
proliferator-activated receptors (PPARs), which are key regulators of

adipogenesis (Hong et al., 2005). Gut microbiota is known to inhibit
adenosine monophosphate kinase (AMPK) activity, an enzyme that
plays a crucial role in energy homeostasis, leading to the reduction of
fatty acid oxidation coincided with higher cholesterol and triglycerides
favouring lipogenesis. High-fat diet (HFD)-fed germ-free (GF) mice
showed higher levels of phosphorylatedAMPK and promoted fatty acid
oxidation, compared to control animals (Bäckhed et al., 2007).
Microbiota transfer from conventional (CV) mice to GF mice has
been found to affect the fasting-induced adipose factor, angiopoietin-
like 4 (ANGPTL4). ANGPTL4 inhibits lipoprotein lipase (LPL), which
decreases the accumulation of triglycerides in adipocytes and relevantly
regulates fat storage (Bäckhed et al., 2004).

Obesity-associated gut microbial imbalance leads to alterations
in the production of these metabolites and signalling molecules

TABLE 2 (Continued) Summary of microbial signature at different taxonomic level in the gut and adipose tissue of obesity and type 2 diabetes.

Genus Species Obesity & type
2 diabetes

Adipose
tissue

Gut References

Ruminococcus - Increase - Yes Zeng et al. (2019)

Clostridium sensu stricto Increase - Yes Zeng et al. (2019)

Oscillibacter valericigenes Increase Yes - Li et al. (2022)

Trypanosoma cruzi Increase Yes - Tanowitz et al. (2017)

Trypanosoma brucei Increase Yes - Tanowitz et al. (2017)

Plasmodium spp. - Increase Yes - Tanowitz et al. (2017)

Ottowia - Increase Yes - Massier et al. (2020)

Xanthomonas - Increase Yes - Massier et al. (2020)

Nosocomiicoccus - Increase Yes - Massier et al. (2020)

Paenibacillus - Increase Yes - Massier et al. (2020)

Rhodotorula - Increase - Yes Mar Rodríguez et al. (2015)

Aspergillus - Increase - Yes Mar Rodríguez et al. (2015)

Atopobium - Increase Yes - Massier et al. (2020)

Allorhizobium - Increase Yes - Massier et al. (2020)

Delftia - Increase Yes - Massier et al. (2020)

Bdellovibrio - Increase Yes - Massier et al. (2020)

Acinetobacter - Increase Yes - Massier et al. (2020)

Alicycliphilus - Increase Yes - Massier et al. (2020)

Jeotgalicoccus - Increase Yes - Massier et al. (2020)

Exiguobacterium - Increase Yes - Massier et al. (2020)

Gemella - Increase Yes - Massier et al. (2020)

Candida metapsilosis Increase Yes - Massier et al. (2020)

Malassezia restricta Increase Yes - Massier et al. (2020)

Pseudozyma aphidis Increase Yes - Massier et al. (2020)

Candida albicans Increase - Yes Peroumal et al. (2022)

Eurotium - Increase - Yes Mar Rodríguez et al. (2015)

Human
adenovirus-36

- - Yes - Dhurandhar et al. (1997); Atkinson et al. (2005)
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causing T2D pathogenesis (Figure 1). It has been shown that a
specific gut microbiota community belonging to the Prevotella
group produced a small metabolite succinate that improved
glucose homeostasis in mice by regulating intestinal
gluconeogenesis (Ghanim et al., 2009). Similarly, it has been
found that a membrane protein from A. muciniphila, a mucin-
degrading gut bacterium, protected mice from obesity and
associated complications (Buckley et al., 2014). Moreover, a novel
microbially produced small molecule imidazole propionate is
involved in the impairment of insulin signalling by targeting the
mammalian target of rapamycin complex 1 (mTORC1) and thus
promoting glucose intolerance and insulin resistance (Kindt et al.,
2010). Furthermore, alteration of microbiota profile as well
microbial leakage causes pancreatic infection and inflammation
that impairs the production of insulin and promotes insulin

resistance leading to glucose intolerance and T2D.
Transplantation of faecal matter from Western diet-fed or
genetically obese mice was capable of generating an obese
phenotype in the standard diet-fed or non-obese mice, which
resulted in a larger weight gain compared to treatment with
wild-type microorganisms (De Groot et al., 2020). Furthermore,
an obese pathophysiological state decreases the number of A.
muciniphila by increasing NAD and riboflavin-biosynthesis.
Together, these functional adjustments particularly allow
glutathione to be recharged to its reduced state, enabling redox
balance in microorganisms that may be exposed to the gut which is a
potentially unfriendly, inflammatory, and oxidatively challenged
environment (Yassour et al., 2016). It has also been observed that
Bacteroidetes were decreased in number with a concomitant
increase in Firmicutes in the gut of HFD-fed mice. This

FIGURE 1
Overview of obesity-induced dysbiosis and associated pathogenesis in the gut, gut-brain axis, pancreas, and adipose tissue of type 2 diabetes.
Specific microbial phyla signatures were observed in gut and adipose tissue in the onset of obesity-induced T2D (right side) compared to lean healthy
individual (left side). A Plethora of gut microbiome-derived metabolites participates in organs function, including gut-brain homeostasis, pancreas
function, and inflammatory homeostasis. Alteration of microbial metabolites including LPS, endotoxins, and MAMPs leads to the development of
pathophysiological state in obesity and T2D, by rapid systemic inflammation, releasing pro-inflammatory molecules, gut-brain dysfunction, and
pancreatic damages.
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alteration in the bacterial balance may have a role in the emergence
and development of obesity (Magne et al., 2020). Firmicutes bacteria
are believed to have a greater capacity to obtain energy from food,
which could increase caloric intake. On the contrary, Bacteroidetes
are linked with weight management either by oxidation of SCFAs or
the digestion of complex carbohydrates (Singh et al., 2017).
Moreover, by transferring faecal microbiota from hyperlipidemic
individuals to GF mice, researchers have been able to observe the
pathogenic effects of the microbiota on lipid metabolism (Burz et al.,
2021). Velagapudi et al.compared GF mice with CV mice and found
differences in triglyceride (TG) levels in various tissues. The GFmice
showed lower levels of TG in adipose tissue and the liver but higher
levels of TG in the circulatory system compared to CV mice
(Velagapudi et al., 2010). Interestingly, western diet-fed GF mice
were found to have less hypercholesterolemia (high levels of
cholesterol in the blood) and increased cholesterol excretion in
the liver and faeces compared to CV mice (Velagapudi et al., 2010).
This indicates that the absence of gut microbiota influences
cholesterol metabolism and may lead to reduced cholesterol
accumulation in the blood. These studies highlight the
relationship between gut microbial compositions and metabolic
disorders such as T2D in HFD feeding.

2.3 Gut microbiome components promote
chronic inflammation in obesity

Obesity is associated with chronic low-grade systemic
inflammation, often regulated by microbial signature in the host,
which is associated with insulin resistance, a hallmark of T2D.
Inflammatory molecules produced by gut bacteria can enter the
bloodstream, promoting chronic inflammation and impairing
insulin signalling. LPS, a common structural component of the
outer membrane of Gram-negative bacteria, reportedly promoted
the onset of obesity (Boulangé et al., 2016). LPS and other bacterial
debris pass from the gut environment and enter into the circulatory
system due to increased intestinal permeability triggering an
immune reaction. As seen by enhanced adipose macrophage
recruitment and hepatic NF-κB/IKKβ inflammatory-signaling
pathways, this was linked to systemic inflammation, most likely
via LPS or saturated fatty acids (Takeda et al., 2003; Kleinridders
et al., 2009) Mice lacking toll-like receptor 4 (TLR4) and cluster of
differentiation 14 (CD14), receptors for LPS, are resistant to HFD-
or LPS-induced hyperinsulinemia and insulin resistance
(Stavropoulou et al., 2020). Elevated LPS content in the gut
decreases the tight junction proteinzona occludens-1 (ZO-1) and
occludin expression and affects the permeability and integrity of
intestinal epithelial cells (Jia et al., 2021). Overall, the release of
inflammatory metabolites ultimately impairs lipid metabolism. In a
recent study by Mishra et al., it has been shown that gut microbiota
in obese mice and humans have reduced ability for ethanolamine
metabolism that resulted in increased intestinal permeability
(Mishra et al., 2023). Moreover, ethanolamine elevated the
abundance of a specific microRNA, miR-101a-3p, and enhanced
miR promoter binding ARID3a transcription factor, which leads to
the loss of a critical tight junction protein ZO-1. As a result, the
weakening of the intestinal barrier leads to increased gut
permeability, inflammation, and abnormalities in glucose

metabolism (Figure 2). Importantly, restoration of ethanolamine-
metabolizing activity can be done by correcting ARID3a/miR-101a-
3p/ZO-1 axis and improving the integrity of the intestinal barrier
(Mishra et al., 2023).

2.4 Obesity-induced gut dysbiosis
influences T2D-associated pathogenesis

Gut dysbiosis is a phenomenon that refers to a disruption in the
composition and function of the microorganisms that inhabit the
human body. Recent studies have demonstrated that gut dysbiosis is
associated with obesity and T2D, two major health concerns that affect
millions of people worldwide. Obesity and T2D are closely linked, with
obesity being one of the major risk factors for developing T2D. Studies
have indicated that alterations in gut dysbiosis may contribute to the
development of insulin resistance, which are key driver of T2D. In a
landmark study, researchers transplanted gut microbiota from lean or
obese human donors into GF mice. Mice receiving microbiota from
obese donors showed increased total body fat and insulin resistance
compared to those receiving microbiota from lean donors. This study
provided early evidence for a potential link between gut microbiota and
obesity-related metabolic dysfunction (Turnbaugh et al., 2006). It has
been reported that the gut microbiota of obese individuals is highly
efficient at extracting energy from the diet, leading to increased energy
storage, which promotes the hypertrophy of adipose tissue and weight
gain. The gut microbiome is structured by diet composition (David
et al., 2014; Von Schwartzenberg et al., 2021), and polyunsaturated fatty
acids (PUFA)-enriched dietary lipids exhibited a positive effect on the
gut microbiota, restoring obesity-induced gut microbial dysfunction in
mice (Haneishi et al., 2023). Multiple population studies have
consistently demonstrated associations between gut microbiota
composition and obesity-related metabolic disorders, including T2D
(Table 3). Qin et al. found significant differences in the gut microbial
composition between obese and non-obese individuals, with lower
bacterial diversity observed in the gut microbiota of obese
individuals (Qin et al., 2012). Specific microbial taxa associated with
obesity were identified, indicating a potential role of the gut microbiota
in energy harvest and metabolic dysfunction. Le Chatelier et al. also
identified compositional differences in the gut microbiota between lean
and obese individuals, with certain bacterial groups associated with
adiposity, insulin resistance, and metabolic parameters (Le Chatelier
et al., 2013). Moreover, Karlsson et al. highlighted the importance of gut
microbial diversity, as reduced bacterial richness was associated with a
higher prevalence of insulin resistance and metabolic disorders
(Karlsson et al., 2013). A large-scale population study was
performed to examine the association between gut microbiota and
metabolic health, specifically focusing on obesity and insulin resistance.
It identified specific gut microbial signatures, or patterns, that were
associated with obesity and insulin resistance, as well as observed
distinct differences in the gut microbiota composition between
individuals with normal and impaired glucose metabolism which
altogether highlighted the potential importance of the microbiome
in the development and progression of obesity-related diabetes
(Forslund et al., 2015). Several reports on animal studies also
provide compelling evidence that alterations in the gut microbiota
can influence metabolic health, including obesity-related diabetes. They
demonstrated that manipulating the gut microbiota composition or
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transferring microbiota from obese individuals can lead to metabolic
abnormalities in healthy animals (Cani et al., 2008; Ridaura et al., 2013;
Everard et al., 2014). These studies collectively support the notion that
alterations in the gut microbiota composition are associated with
obesity-related diabetes and provide insight into potential
mechanisms underlying this relationship (Table 3).

It is also worth mentioning that the field of gut microbiota
research is evolving, and new studies may provide additional
insights into the specific mechanisms and relationships between
microbial compositions and metabolic disorders. These findings
highlight the important role of gut microbiota composition in
metabolic disorders and provide valuable insights into specific
bacterial genera that may be associated with either positive or
negative outcomes in terms of metabolic health.

3 Adipose tissue dysbiosis promotes
adipocyte dysfunction in obesity-
induced type 2 diabetes

Adipose tissue is a metabolically active endocrine,
immunological, energy storage organ critically regulating energy

balance and glucose metabolism. The enriching complexity of
adipose tissue is associated with its microbiome, which consists
of a diverse community of microorganisms that reside within the
tissue microenvironment and appear to play an important role in
regulating adipose tissue inflammation and insulin sensitivity.

3.1 Microbiota-derived factors regulate
adipose tissue function

Adipose tissue dysbiosis can also influence adipose tissue
function by altering the production and release of various
adipokines. Apart from the tissue microbiome, the intestinal
microbial population was found to regulate adipocyte function.
Genetically obese mice (ob/ob) inherit alteration in the
microbiota with increasing Firmicutes population in comparison
to lean heterozygous (ob/+) animals. Moreover, the microbial
composition is very similar to the obese human samples (Ley
et al., 2005). The fat-storing capacity is critically regulated by the
microbiome and GF mice are protected from obesity even after
being fed an HFD (Bäckhed et al., 2004). The absence of a
microbiome leads to an overexpression of Fasting-Induced

FIGURE 2
Pathophysiologically leaky gut associated with obesity and type 2 diabetes. Fat-enriched diet consumption is aligned with obesity and
hyperlipidemia wherein dietary lipid breaks down into free fatty acids and absorbed in the intestine and embraces antibiotic response, and facilitates
microbiome alteration in obesity. Intestinal epithelial layer barricades between gut microbiota and systemic circulation, that rapidly disrupted during gut
pathogenesis. Pathogenic microbes and derived metabolites including LPS and ethanolamine are rapidly produced in obesity and directly found
routes to systemic circulation. LPS endorses rapid inflammation through TLR4, CD14, and MD-2 which breaks down epithelial tight junctions.
Ethanolamine activated microRNA species such as miR-101a-3p and inhibits the critical tight junction molecules zona occludens-1 (ZO-1). This result in
increased barrier permeability and affiliates rapid inflammation, insulin resistance, and abnormal glucose metabolism.
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Adipose Factor (Fiaf), a protein involved in lipid metabolism by
inhibiting the activity of lipoprotein lipase (LPL), an enzyme
responsible for breaking down triglycerides. Additionally, it
induces the expression of PGC-1α and activates AMPK, both of
which impact cellular energy metabolism (Bäckhed et al., 2005).
These combined effects enhance adipocyte lipid storage, potentially
leading to increased fat accumulation. Few microbes become
therapeutically significant as of their impact on leanness; such as
the administration of Akkermansia muciniphila, Lactobacillus
plantarum reportedly reduces the impact of an obesogenic diet
on human and animals (Depommier et al., 2019; Heeney et al.,
2019). Faecalmicrobiota transplantation (FMT) experiments
involving the transfer of intestinal microbiota from obese patients
into GF mice have provided evidence that microbiota transfer
correlates with obesity. To minimize the inter-individual
variability of FMT transplantation, a recent study was performed
by FMT on the same morbidly obese patient before and after
undergoing (RYGB) bariatric surgery in GF mice. The results
showed that RYGB surgery led to improving metabolic health
along with the changes in the microbiota composition in both
patients and the mice receiving the FMTs from pre- and post-
surgery stools compared to mice with pre-surgery microbiota.
Moreover, visceral adipose tissue (VAT) and subcutaneous white
adipose tissue (scWAT) function improved by reducing the
expression of Tnf-a, Ccl2, Elane (neutrophil elastase), and
increasing anti-inflammatory Sirtuin1 level in the post-RYGB
FMT mice along with improvement of BAT function by
enriching UCP1 positive areas, anti-inflammatory markers IL33,
IL2Ra expression (Yadav et al., 2023). Another subset of
microbiome-derived products including propionate, flavonoid,
tryptophan-derived metabolites, and cell wall components
actively regulates adipose tissue. Tryptophan serves as an
essential amino acid, playing a vital role as a building block for
various proteins. However, it is worth noting that tryptophan has
additional significance beyond its role in protein synthesis. The
microbiota, residing in the gut, possesses the ability to convert
tryptophan into indole compounds. These indole compounds can
accumulate in the gut lumen. A recent study investigated the impact
of tryptophan-derived metabolites on a group of miRNAs known as
the miR-181 family, which are known to be upregulated in obese
white adipose tissue. Interestingly, deletion of the two most highly
expressed miR-181 clusters in mice protected them from developing
obesity caused by an HFD. A specific tryptophan-derived metabolite
called indole-3-carboxylic acid was identified as being reduced in
mice fed an HFD. It was found that this metabolite acts on
adipocytes to inhibit the expression of miR-181. By regulating
miR-181 expression, indole-3-carboxylic acid was shown to have
an impact on energy expenditure and insulin sensitivity, suggesting
its involvement in the regulation of metabolism (Virtue et al., 2019).
Emerging evidence suggeststoll-like receptor (TLR) ligands and
nucleotide-binding oligomerization domain-containing (NOD)
proteins, specifically NOD1 and NOD2, play crucial roles in
adipose tissue dysfunction (Chan et al., 2017). An abundance of
microbiota-derived LPS causes activation of TLR signalling in
adipocytes and other immune cells, which in turn results
secretion of pro-inflammatory cytokines and chemokines,
promoting a state of chronic low-grade inflammation; a
characteristic feature of adipose tissue dysfunction observed in

conditions such as obesity and associate with insulin resistance.
Moreover, NOD1 and NOD2, members of the NOD-like receptor
(NLR) family, are present in both adipocytes and immune cells
within adipose tissue and play significant roles in adipose tissue
dysfunction. Activation of NOD1 is associated with insulin
resistance, whereas NOD2 null mice develop chronic
inflammation and insulin resistance without change in adiposity
upon being fed an HFD (Denou et al., 2015; Chan et al., 2017;
Martínez-Montoro et al., 2022). Overall, these pattern recognition
receptors contribute to adipose tissue inflammation, metabolic
dysregulation, and impaired insulin sensitivity.

3.2 Microbial compartmentalization in the
white adipose tissue depots during obesity

Similar to the intestinal microbiome, recent studies revealed
independent adipose tissue microbiome exists and obese people
exhibit an increase in Firmicutes and a reduction in Bacteroidetes.
Among the different depots of adipose tissue, mesenteric white
adipose tissue (mWAT) harbours the highest bacterial quantity and
diversity. The mWAT is a continuous band of adipose tissue that
wraps around the various segments of the intestines and acts as a
gateway for the intestines to communicate with the rest of the body’s
systems. Moreover, the adipose tissue microbiome’s composition
and functionality are known to vary with obesity which regulates
inflammation and metabolic dysfunction (Davis, 2016; Massier
et al., 2020; Zheng et al., 2020). Burcelin et al. introduced the
initial hypothesis of the “tissue microbiota” after finding bacterial
DNA in different metabolic organs such as the liver, and adipose
tissue of human beings (Burcelin et al., 2013). Moreover, the
presence of bacterial DNA in distinct compartmentalization
within the mesenteric adipose tissueand omental adipose tissue is
associated with type 2 diabetes (T2D) (Anhê et al., 2020). Later, the
bacterial diversity was compared in the white adipose tissue (WAT)
of subcutaneous, visceral, and mesenteric depots and it was found
bacterial population is predominant in mesenteric WAT (Massier
et al., 2020). These findings suggest that WAT may operate as a
critical institution to host bacterial populations and to metabolic
dysfunction under obesity-associated T2D (Table 2).

Microbiota-mediated interruptions in OXPHOS/mitochondria
lead to functional impairment of white adipose tissue, the primary
governing factor of systemic glucose metabolism (Li et al., 2022).
Consumption of a high-fat/high-sugar diet leads to the expansion of
specific bacteria that produce TLR2 ligands, triggering the induction
of Mmp12+ macrophages in WAT. Mmp12+ macrophages serve as
a link between microbiota-dependent inflammation and OXPHOS
damage in WAT. These macrophages exhibited a specific molecular
signature that was associated with insulin resistance in obese
patients and released MMP12, which acts as a bridge between
inflammation and mitochondrial damage in WAT, ultimately
leading to insulin resistance (Li et al., 2022).

Alteration in the microbiota may have a role in both chronic
inflammation and insulin resistance (Boulangé et al., 2016; Foley
et al., 2018; Kawai et al., 2021). Studies have shown that specific
bacterial species prevalent in the adipose tissue of obese people
can create inflammatory mediators like LPS, which can cause
insulin resistance and other metabolic diseases (Massier et al.,
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TABLE 3 Summary of predominant microbial taxa and their functions in different health conditions, such as obesity, T2D, and obesity-associated T2D.

Health state Microbial taxa Function References

Obese Proteus mirabilis Potential drivers of inflammation Xu et al. (2022)

E. coli Potential drivers of inflammation Xu et al. (2022)

Veillonella Positively correlated with CD11b, Insulin resistance and low-
grade inflammation

Moreno-Indias et al. (2016); Nirmalkar et al. (2018);
Aranaz et al. (2021)

Prevotella Positively correlated with IL6, Insulin resistance and low-grade
inflammation

Moreno-Indias et al. (2016); Nirmalkar et al. (2018);
Aranaz et al. (2021)

Succinovibrio Positively correlated with TNF alpha Moreno-Indias et al. (2016)

Firmicutes Positively correlated with IL1B Moreno-Indias et al. (2016)

Lachnospiraceae Low-levels of HDL-C Del Chierico et al. (2021); Sarmiento-Andrade et al.
(2022)

Lactobacillus Associated with weight gain Nirmalkar et al. (2018); Xu et al. (2022)

Blautia Associated with weight gain Nirmalkar et al. (2018)

Collinsella Involved with the high levels of triglycerides and cholesterol Nirmalkar et al. (2018)

Succinivibrio Xu et al. (2022)

Fusobacterium Mounting adhesiveness to host epithelial cells, and inflammatory
responses

Ahmad et al. (2020); Xu et al. (2022)

Ruminococcus Associated with EDF markers Nirmalkar et al. (2018)

Bacteroides Associated with EDF markers Nirmalkar et al. (2018)

T2D Gammaproteobacteria Inflammation mainly due to endotoxins Sroka-Oleksiak et al. (2020)

Lactobacillus Positively correlated with HBA1c and HOMA-IR Chen et al. (2019); Ejtahed et al. (2020)

Escherichia Impaired epithelial integrity, low-grade inflammation, and
autoimmune responses

Ejtahed et al. (2020)

Prevotella Conflicting effects on glycemic control Ejtahed et al. (2020)

Bacteroides ovatus Impaired glucose tolerance Del Chierico et al. (2021); Sarmiento-Andrade et al.
(2022)

Enterobacteriaceae Impaired glucose tolerance Del Chierico et al. (2021); Sarmiento-Andrade et al.
(2022)

Fusobacteria Mounting adhesiveness to host epithelial cells, and inflammatory
responses

Ahmad et al. (2020)

Bacteroides vulgatus Increase plasma IL-6 which is linked to low-grade inflammation
and insulin resistance

Leite et al. (2017)

Prevotellacopri Increase plasma IL-6 which is linked to low-grade inflammation
and insulin resistance

Leite et al. (2017)

Obesity-
associated T2D

Enterobacteriaceae Bacterial load in plasma, liver, and omental adipose tissue leads to
inflammation

Anhê et al. (2020); Xu et al. (2022)

Acidobacteria Positive association with the diabetes state Ahmad et al. (2020)

Deferribacteres Positive association with the diabetes state Ahmad et al. (2020)

Gemmatimonadetes Positive association with the diabetes state Ahmad et al. (2020)

Gammaproteobacteria Inflammation Ahmad et al. (2020)

Dialister Mediates an inflammatory response and insulin resistance Ahmad et al. (2020)

Allisonella Mediates an inflammatory response and insulin resistance Ahmad et al. (2020)

Fusobacteria Mounting adhesiveness to host epithelial cells, and inflammatory
responses

Ahmad et al. (2020)
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2020). LPS plays a crucial role in macrophage polarization,
specifically in the transition from an anti-inflammatory to a
pro-inflammatory phenotype. The exposure of adipocytes to
LPS, potentially influenced by their size, may play a role in
adipocyte cell death with the formation of crown-like
structures in inflamed adipose tissue. Furthermore, it has been
observed that LPS present within adipocytes can activate caspase-
4/5/11, which can induce a highly inflammatory form of
programmed cell death known as pyroptosis; typically
associated with intracellular pathogen infections (Hersoug
et al., 2018). Changing microflora composition in obese
adipose tissue exhibits similarities to the altered gut
microbiome. In overweight individuals, studies have shown
that adipose tissue contains higher amounts of bacterial
strains such as Proteobacteria and Actinobacteria (Massier
et al., 2020). These changes in the composition of adipose
tissue microbiota may have implications for metabolic health.
Further analysis using 16s rRNA sequencing revealed specific
bacterial families in the VAT of obese and lean individuals. The
presence of Streptococcaceae and Ruminococaceae families,
along with other unnamed genera, was observed in obese
VAT, and Marvinobryantia and Bacilliales were found in lean
VAT (Shantaram et al., 2022). It is worth noting that the presence
of Streptococcaceae and Ruminococaceae in the VAT has been
associated with inflammatory milieu and the recruitment of
VAT-specific neutrophils, suggesting potential implications for
adipose tissue inflammation. Studies have also reported the
presence of bacteria like Mycobacterium tuberculosis, parasites
such as Trypanosoma cruzi, Trypanosoma brucei, Plasmodium
berghei, and pathogens like Rickettsia prowazekii, Coxiella
burnetii, as well as viruses like human immunodeficiency virus
(HIV) and simian immunodeficiency virus (SIV) (Neyrolles et al.,
2006; Tanowitz et al., 2017). These findings highlight the
potential role of adipose tissue as a niche for various
microorganisms (Table 2). Moreover, Table 3 highlights the
predominant microbial taxa and their functions in different
health conditions, such as obesity, T2D, and obesity-associated
T2D. However, the significance of the dormant state observed in
certain microorganisms, allowing them to evade host defence
mechanisms and drugs, in the context of obesity and related
health conditions is currently unclear. In a recent report, it has
been shown that in Crohn’s disease, gut bacteria translocated to
mesenteric adipose tissue (Ha et al., 2020). This process
contributes to the formation of “creeping fat” and obstructs
the systemic translocation of gut bacteria. The expanded
mesenteric adipose tissue in the sites of the gut barrier
enriched with C. innocuum remodels the macrophage
population toward the M2 phenotype, which helps prevent
potentially harmful bacterial antigens that have translocated
across the barrier from the gut lumen (Ha et al., 2020; Smith
and Bénézech, 2020). These findings provide insights into the
specific microbial compositions associated with different
inflammatory conditions and their relationship with adipose
tissue (Figure 1).

Overall, these studies shed light on the diverse microbial
communities present in adipose tissue and their potential
implications for obesity-induced inflammation and related health
conditions. Further research is needed to fully understand the

complex interactions between adipose tissue and the
gutmicrobiota for their role in metabolic health and disease.

4 Gut-brain axis linked with obesity-
induced type 2 diabetes

The gut-brain axis, commonly referred to as the feeding system,
is a sophisticated feedback mechanism between the gut and the
brain. It has long been known that the gut-brain axis is crucial for
maintaining energy balance. The relationship of the gut microbiota
with the enteric nervous system (ENS) and central nervous system
(CNS) is beginning to be shown by more recent research.

4.1 Gut-brain axis in metabolic homeostasis

The gut-brain axis is a bidirectional network system of
hormonal and neurological signalling cascades that are
involved in neurologic, endocrine, immune, and metabolic
pathways linking the ENS and CNS systems, and connecting
the effect of gut microbiota on physiological health (Appleton,
2018). Signals from the gut in response to an influx of nutrients
during a meal are traditionally conveyed to the brain, notifying
the CNS about meal quantity and composition (Lam et al., 2009;
Thorens, 2014; Fournel et al., 2017). The brain, especially the
hypothalamus, integrates this information as well as other gut-
derived signals to regulate the balance of dietary intake,
consumption of energy, and glucose homeostasis (Peterhoff
et al., 2003; Gautam et al., 2006). This postprandial gut
feedback is mediated by entero-endocrine cells (EECs), which
are specialized neuroendocrine cells of the intestinal epithelium.
The EECs are found throughout the gut epithelium and respond
to nutrient and mechanical stimuli by secreting hormones and
neurotransmitters such as glucagon-like peptide 1 (GLP-1),
gastric inhibitory polypeptide (GIP), cholecystokinin (CCK)
(Gribble and Reimann, 2016), Peptide YY (Batterham et al.,
2006), oxyntomodulin (OXM) (Schepp et al., 1996), ghrelin
(Date et al., 2000), nesfatin (Stengel et al., 2009), serotonin (5-
hydroxytryptamine), and Insulin-like peptide 5 (Insl5) (Grosse
et al., 2014) which informs CNS particularly hypothalamus to
coordinate and maintain metabolic homeostasis (Schwartz et al.,
2000; Lam et al., 2009). These molecules critically influence the
secretion of insulin, gastric acid, and bile acids, as well as gut
motility and food intake via vagal afferent neurons of ENS or
through the circulatory route (Ley et al., 2005; Cani et al., 2007;
Duparc et al., 2011). Indeed, metabolites generated from the gut
microbiota including SCFAs, butyrate, propionate, lactate, or
mimetics such as γ-aminobutyric acid (GABA), and melanocyte-
stimulating hormone (MSH)-mimetic, ClpB, can influence the
release of these hormones and neurotransmitters (Newgard et al.,
2009; Qin et al., 2012; Molinaro et al., 2020). Nutrient-induced
gut peptides can function in a paracrine fashion by activating
vagal neurons that innervate tissue surrounding the intestinal
epithelium and signal to the brain, or in an endocrine fashion by
targeting the brain and other peripheral organs involved in
metabolic regulation (Köhler et al., 2003). Under normal
conditions, intestinal glucose sensors, like SGLT1, and TASR1/
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2 initiate a signal to the afferent neurons for generating nitric
oxide (NO) in the hypothalamus to allow glucose entry into the
tissue by stimulating the autonomic nervous system (ANS)
(Fournel et al., 2017). The intervention of ANS in pancreatic
islets’ parasympathetic and sympathetic nerves regulates the islet
hormone secretion (Peterhoff et al., 2003; Gautam et al., 2006;
Thorens, 2014).

4.2 Gutmicrobial metabolitesmodulate gut-
brain axis in type 2 diabetes

Gut microbiota maintains glucose homeostasis by directly
communicating with the brain via microbe-derived metabolites
such as SCFAs. The SCFAs activate G-protein coupled receptors
(GPRs), FFAR2 (free fatty acid receptor 2), and FFAR3 (free fatty acid
receptor 3) localized in EECs (Kasubuchi et al., 2015), resulting in gut
peptide release. In healthy intestinal microbiota, the majority
(approximately 90%) of known phylogenetic categories consist of
Bacteroidetes and Firmicutes, including genera such as Ruminococcus,
Lactobacillus, Clostridium, and to a lesser extent Actinobacteria,
Verrucomicrobia, and Fusobacteria (Eckburg et al., 2005). These
bacteria play important roles in maintaining intestinal health and
normal physiological functions. However, in individuals with T2D,
there are notable changes in the composition of the intestinal
microbiota that includes opportunistic pathogenic bacteria such as
Bacteroides caccae, Clostridium hathewayi, Clostridium symbiosum,
Eggerthella lenta, Clostridium ramosum, and Escherichia coli are
found to be more abundant (Qin et al., 2012). Additionally,
mucin-degrading bacteria like Akkermansia muciniphila, sulfate-
reducing bacteria like Desulfovibrio Sp., and imidazole propionate-
producing bacteria such as Clostridium baumannii, Clostridium
parasymbiotics, and Ruminococcus gnavus have also been linked to
T2D (Molinaro et al., 2020). On the other hand, butyrate-producing
bacteria such as Clostridiales, Faecalibacterium prausnitzii, Roseburia
intestinalis, E. rectale, and Roseburia inulinivorans, which are
important for gut health and energy metabolism, are significantly
decreased in individuals with T2D (Qin et al., 2012). In the case of db/
db mice, a commonly used mouse model for studying T2D
pathophysiology, it has been observed that these mice experience
intestinal inflammation, which can disrupt glucose metabolism
(Duparc et al., 2011). This inflammation may be induced by an
increase in NO production which impacted the disturbances in
glucose metabolism contributing to the progression and severity of
T2D in these mice. In addition, prebiotic-induced improvements in
glucose homeostasis are contingent on GLP-1R signaling implying
that prebiotic-induced microbiome changes repair the gut-brain axis
(Jin et al., 2013). Increasing peptide production in prebiotic therapy
enhances gut barrier integrity in the context of high-fat eating and
obesity, which ultimately lowers the circulatory levels of LPS
(Thorens, 2011). Recent research also identified small intestinal
microbiota as a key mediator of the gut-brain axis in glucose
homeostasis. Direct small intestinal infusion of Lactobacillus gasseri
rescues intestinal lipid sensing, which is consistent with changes in the
small intestinal microbiota regulating nutrient-induced gut-brain
transmission (Biessels and Reagan, 2015; Omori et al., 2022).
Lactobacillus gasseri expresses bile salt hydrolase and
improvements in lipid sensing were dependent on the decreased

farnesoid-X receptor (FXR) signalling, emphasizing the role of bile
acids in gut-brain signalling processes that regulate metabolic
homeostasis (Omori et al., 2022). Changes in the proportions of
Gram-positive compared to Gram-negative bacteria in the intestinal
lumen have a major impact on LPS bioavailability (Qin et al., 2012).
The HFD-induced leaky gut helps to form an interaction of the
bacterium with the intestinal epithelial cells by three successive
pathways: a) attachment and invasion, b) alteration in the
epithelial barrier, and c) inducing inflammation (Köhler et al.,
2003). This allows tissue microbe-associated molecular patterns
(MAMPs) and LPS to translocate from the intestinal lumen to the
circulatory system (Delzenne and Cani, 2011). A crucial defence
against gut-derived bacterial products getting into the bloodstream is
provided by intestinal inflammatory cells (Steenbergen et al., 2015). It
was discovered that microbiota-driven LPS, through its interactions
with myeloid differentiation factor 2 (MD-2), TLR4, and
CD14 contributes to the low-grade tissue inflammation in
metabolic diseases associated with endotoxemia (Delzenne and
Cani, 2011; Steenbergen et al., 2015). Similarly, microbiota-
emanated peptidoglycans upon binding with NOD2 can modulate
the intestinal inflammatory milieu thus influencing glucose tolerance
and insulin sensitivity (Cani et al., 2008).

Upon activation of the pro-inflammatory cytokines by intestinal
innate and adaptive immune cells, the activities of intrinsic and
extrinsic enteric sensory neurons are altered (Kindt et al., 2010;
Buckley et al., 2014). Intestinal cells send an abnormal nerve message
that does not increase hypothalamic NO release and leads to
dysfunctionality in ENS neurons (Gonzalez-Correa et al., 2017).
The elevated level of TNF-α negatively impacts gut motility by
upregulating the expression of cyclooxygenase 2 (COX-2) (Rehn
et al., 2005) and enteric neuron apoptosis (Chandrasekharan et al.,
2013). Additionally, IL-1β accelerates the diarrhoea phase by
depolarizing the membrane potential, and decreasing the
membrane conductance in obese/diabetic patients (Acosta and
Camilleri, 2014). It also reported that a high accumulation of
inflammatory markers induces the expression of serotonin and
GABA, inhibiting brain functionality (Wang et al., 2012; Jin
et al., 2013). Dysfunctionality in the gut-brain axis is driven by
the interruption of the brain-islet axis and leads to islet
abnormalities (Thorens, 2011), which leads to the failure of the
insulin-regulated cognition and neuronal plasticity in the CNS
(Biessels and Reagan, 2015). Moreover, it has been discovered
that E. coli generates ClpB which regulates food intake (Breton
et al., 2016). GF mice that lack any microbiome exhibit lower
adiposity and higher insulin sensitivity despite greater food
intake (Chandrasekharan et al., 2013), and they are protected
against diet-induced obesity (Acosta and Camilleri, 2014). In
comparison to ordinary mice, GF mice have altered gut-brain
metabolic communication with alterations in EEC quantity as
well as differences in intestinal nutrient-sensing machinery and
nutrient-induced gut peptide release (Wang et al., 2012). Thus,
ENS signalling deficiencies in GF mice lead to changes in the gut-
brain axis that modulates energy balance exhibiting diminished
activation of brainstem neurons.

Overall, these findings highlight the importance of a balanced
and diverse intestinal microbiota in maintaining metabolic health.
Alterations in the composition of the microbiota, characterized by
changes in specific bacterial genera, can contribute to the
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development and progression of T2D and associated metabolic
dysfunctions.

5 Gut microbiome-derived metabolites
promote pancreatic β-cell dysfunction
in obesity

Obesity-associated metabolic disturbances can impair the function
of the pancreas, particularly in insulin-secreting β-cells and it has been
unequivocally proven in prior studies that β-cell mass reduces before
the development of T2D (Weir et al., 2020). The molecular reasons for
β-cell depletion were thoroughly discussed in several research articles
and reviewed elsewhere (Kahn, 2001; Prentki and Nolan, 2006; Cerf,
2013; Swisa et al., 2017). Although none of the direct evidence showed
an existing pancreatic microbiome, there are a plethora of reports that
prove gut microbiome-derived metabolites are responsible for β-cell
dysfunction and insulin resistance. Healthy gut microbiota supports
pancreatic cell expansion and maintenance of cell growth, as such early
zebrafish pancreatic cell growth required certain gut microbiota such as
someAeromonas strains that can release cell expansion factor A (BefA),
which encouraged proliferation and thereby cell growth (Hill et al.,
2016; Zhou et al., 2022). More crucially, the specific bacterial species in
humans could also release proteins that functioned similarly to BefA-
like proteins leading to the development of novel T2D therapy
strategies (Hill et al., 2016). Obesity exerts a multifaceted impact on
the pancreas, as well as the composition and function of the gut
microbiome. These alterations contribute to metabolic disturbances
and insulin resistance, playing a significant role in the development and
progression of obesity-related metabolic disorders. The β-cell death in
T2D has been linked to many variables, including hyperglycemia,
amyloid build-up, oxidative or endoplasmic reticulum stress,
inflammatory cytokines, dysfunctional autophagy, and lipotoxicity
(Lv et al., 2022).

5.1 Metabolites of gut microbiome affect β-
cell function and insulin sensitivity

BCAAs such as leucine, isoleucine, and valine serve as important
signalling molecules in the body, exerting both direct and indirect
effects on the insulin signalling pathway. While BCAAs have shown
potential anti-obesity effects in rodent models, it is noteworthy that
individuals with obesity often exhibit elevated levels of circulating
BCAAs. One proposed mechanism linking elevated BCAA levels
and T2D involves the activation of the mTORC1by leucine, one of
the BCAAs. Activation of mTORC1 by leucine can lead to the
uncoupling of insulin signalling at an early stage, potentially
contributing to insulin resistance. On the contrary, the activation
of mTORC1 in β-cells has been associated with a protective effect
against the development of T2D. This activation is linked to
compensatory increases in islet and β-cell mass, which help to
prevent the onset of T2D. An alternative model, known as the
BCAA dysmetabolism model, suggests that it is not the BCAAs
themselves but the accumulation of metabolites derived from BCAA
metabolism that contributes to β-cell mitochondrial dysfunction,
stress signalling with mitotoxic effects, and apoptosis associated with
T2D (Lynch and Adams, 2014).

L-tryptophan (Trp), an exogenous essential amino acid acts as a
metabolic precursor, for melatonin (Leja-Szpak et al., 2004) and
serotonin (Almaça et al., 2016). Melatonin rescues the pancreatic
cells against acute pancreatic damage by oxidative stress (Leja-Szpak
et al., 2004). Almaca et al. have revealed that serotonin acts as a
paracrine signal released by pancreatic β-cells to regulate glucagon
secretion. The study demonstrated that without serotonin signalling,
α-cells fail to respond appropriately to glucose level alteration
(Almaça et al., 2016). Tryptophan metabolism involves three
main pathways: the kynurenine pathway through indoleamine
2,3-dioxygenase 1 (IDO1), the serotonin production pathway via
Trp hydroxylase 1 (TpH1), and the direct transformation of Trp into
various molecules by the gut microbiota, including ligands of the
aryl hydrocarbon receptor (AhR). The kynurenine pathway is the
predominant route of tryptophan breakdown in most mammalian
cells. Within this pathway, kynurenines can inhibit proinsulin
synthesis in pancreatic islets and form complexes with insulin,
reducing its biological activity and promoting the development of
insulin resistance (Song et al., 2017; Vangipurapu et al., 2020).

The gut microbiome produces various metabolites, such as SCFAs
and bile acids which can influence pancreatic function and insulin
secretion (Kaneto et al., 2022). Pancreatitis is associated with alteration
in the composition of the gut microbiota, particularly at the phylum
level, characterized by an increase in Proteobacteria and a decrease in
strains that produce SCFAs. A study by Yu et al. revealed that
Eubacterium hallii, a prominent bacterium responsible for producing
butyrate, was significantly depleted in pancreatitis patients and the loss
of butyrate-producing bacteria is attributed to increased oxidative stress
in the pancreas (Yu et al., 2020). Moreover, butyrate has been shown to
ameliorate pancreatitis by suppressing the activation of NF-κB and
decreasing HMGB1 expression (Pan et al., 2019). The SCFAs such as
propionate have been associated with insulin secretion and sensitivity. It
has been shown that SCFAs stimulate the production of GLP-1 through
the activation of FFAR2, also known as GPR43 (G-protein coupled
receptor 43), regulate glucose-dependent insulin secretion from
pancreatic β-cells, and inhibit glucagon secretion. This mechanism
contributes to the maintenance of glucose homeostasis (Silva et al.,
2020).

The gut-derivedmetabolite trimethylamineN-oxide (TMAO) has
been linked to obesity, and elevated levels of TMAO have been found
to positively correlate with the presence of T2D. Krueger et al. showed
the effects of TMAO on insulin secretion by β cells were investigated,
revealing that TMAO exposure did not contribute to the development
of T2D but instead exhibited beneficial effects (Krueger et al., 2021).
Interestingly, TMAO exposure demonstrated a protective effect
against glucolipotoxicity (GLT)-induced damage to β-cells by
reducing oxidative stress and preserving insulin granule formation,
which suggests that TMAO promotes the preservation of functional
β-cell mass, thus counteracting T2D-promoting mechanisms
(Krueger et al., 2021).

5.2 Oxidative stress and inflammation in
pancreatic β-cell associated with microbial
components

Chronic hyperglycemia, a characteristic feature of T2D, is
linked to the rapid formation of advanced glycation end
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products (AGEs) and glucose autoxidation (Robertson et al., 2003).
These processes further lead to the production of reactive oxygen
species (ROS) and oxidative stress. In β-cells, superoxide (O2-),
hydroxyl (OH) radicals, hydrogen peroxide (H2O2), and other
ROS molecules are among the many that are being intensively
investigated for their harmful impact in exacerbating diabetes-
related problems (Kulkarni et al., 2023). Reactive oxygen species
(ROS) and reactive nitrogen species (RNS) overproduction or
improper clearance lead to oxidative stress, which may have a
variety of harmful consequences on cellular metabolism (Hasnain
et al., 2016). ER stress during protein misfolding results in
unfolded protein response (UPR) may impair insulin
transcription and translation and trigger inflammation and
death. The SAPKs, p38, and JNK are examples of stress-sensing
pathways that are activated by oxidative stress and cause damage to
cells (Houet al., 2008). Reports have indicated that malfunctioning
pancreatic islets exhibit relatively low levels of antioxidant
enzymes such as copper/zinc superoxide dismutase (Cu/Zn-
SOD), manganese superoxide dismutase (Mn-SOD), catalase,
and glutathione peroxidase (GPx) (Robertson et al., 2003;
Stancill et al., 2019). As a result, they become more vulnerable
to oxidative damage, eventually resulting in the death of β-cells and
it is clearly showing that there is a clear connection between
oxidative stress, mitochondrial dysfunction, and T2D (Rocha
et al., 2020).

Obesity and T2D also feature higher release of free fatty acids
(FFAs), which modulatesignalling pathways related to glucose
metabolism, and β-cell function. Elevated FFAs inhibit glucose-
stimulated insulin secretion and lead to β-cell dysfunction
through cytotoxic mechanisms, including apoptosis. FFAs
exposure is associated with ceramide synthesis, mitochondrial
dysfunction, overexpression of apoptotic genes, and intracellular
triglyceride accumulation in β-cells mediated by sterol
regulatory element-binding proteins (SREBPs) (Martínez-
Montoro et al., 2022). Visceral adipose tissue releases pro-
inflammatory factors like IL-2, IL-6, IL-8, IL-12A, and MCP-1
in obese conditions, which can contribute to β-cell dysfunction.
Macrophages present in adipose tissue are the early responders
and play a crucial role in promoting the pro-inflammatory
environment that negatively impacts pancreatic β-cells
(Daniele et al., 2014). Vangipurapu et al. reported an increase
in sphingolipids (e.g., myoinositol) and fatty acids from early
analysis of pathway enrichment and plasma metabolite analysis
of chronic pancreatitis patient samples (Vangipurapu et al.,
2020). Gao et al. revealed that the accumulation of microbial
DNAs contributes to inflammation and abnormalities in
pancreatic islet β-cells through their observations of passing
the extracellular vesicles containing microbial DNA from the
gut to β-cells (Gao et al., 2022). Bacterial LPS trigger
inflammatory responses and impact pancreatic β-cell function
(Wu et al., 2023). These metabolites can directly affect pancreatic
function and also influence systemic inflammation, gut barrier
integrity, and other metabolic pathways. Individual variations in
gut microbial composition and metabolism further contribute to
the complexity of this relationship (Figure 3). Further research is
needed to fully understand the mechanisms by which microbial
metabolites contribute to pancreas dysfunctions in T2D and
explore potential therapeutic targets.

6 Therapeutic approaches to manage
type 2 diabetes by targeting gut
microbiota

Therapeutics classes including probiotics, prebiotics, FMT, and
microbial-derived molecules, offer potential strategies for
controlling insulin secretion and insulin resistance (Zhang et al.,
2019). Probiotics, such as Lactobacillus spp. and Bifidobacterium
spp., have shown promise in improving glycemic control and insulin
sensitivity (Salles et al., 2020). Prebiotics, as dietary fibers, can
selectively promote the growth of beneficial gut bacteria and
improve glucose metabolism (Holscher, 2017). Moreover, FMT is
being explored for T2D management. Microbial-derived molecules
like SCFAs have implications for metabolic processes. However,
further research is needed to optimize these approaches and
personalize interventions for effective microbiome-based
therapies in T2D. Probiotics, live microorganisms that confer
health benefits to the host, have been shown to improve insulin
sensitivity and glucose tolerance in both animal and human studies.
Several studies have reported that probiotics can lead to
improvements in markers of inflammation, glycemic control, and
blood pressure. Probiotic supplementation has been shown to
reduce c-reactive protein (CRP) levels, indicating a potential anti-
inflammatory effect, along with the improvement of HbA1c, fasting
plasma glucose, and fasting insulin levels (Wang et al., 2021).
Consumption of probiotics has been associated with a decrease
in serum cholesterol levels and reduced cholesterol absorption in the
intestines which inhibits the activity of the HMG-CoA reductase, an
enzyme critically involved in endogenous cholesterol synthesis
(Kumar et al., 2012).

The biological effects of Lactobacillus spp. and Bifidobacterium
spp., on glucose intolerance and insulin resistance were majorly
studied in animal models of T2D. Lactobacillus plantarum
CCFM0236 has shown beneficial effects in improving insulin
resistance, reducing systemic inflammation, and ameliorating
pancreatic β-cell dysfunction in HFD-induced T2D animal
models. This probiotic strain reduced insulin resistance and
preserved pancreatic β-cell function, leading to better glycemic
control (Li et al., 2016). Clinical trial studies revealed
Lactobacillus reuteri DSM 17938, Lactobacillus case 431,
Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium
bifidum, Lactobacillus salivarius W24 improves insulin sensitivity
index, reduces HbA1c and HOMA-IR. Moreover, strains of
Lactobacillus, Lactococcus, Bifidobacterium, Propionibacterium,
and Acetobacter genera supplementation significantly reduced
pro-inflammatory cytokines including TNF-α, IL-1β and
improved physiological glycemic control by lowering HOMA-IR
and HbA1c (Zhai et al., 2021).

Combined supplementations of probiotics and prebiotics have
also been shown to improve glucose metabolism and reduce insulin
resistance. Prebiotics normalizes the GI tract’s pH value, reduce
hyperlipidemia, and improve the absorption of cation ions, creating
an environment favourable for the growth of beneficial bacteria
(Megur et al., 2022). In addition, FMT has shown promise in
improving glycemic control in patients with T2D. The recipients
of FMT showed a significant improvement in insulin sensitivity,
indicating a positive effect on glucose metabolism. This finding was
further supported by a larger-scale follow-up study where the
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recipients exhibited a reduction in HbA1c levels at 6 weeks post-
intervention (Kootte et al., 2017). However, the insulin sensitivity of
the recipients and the composition of their gut microbiota returned
to baseline after 18 weeks post-intervention (Kootte et al., 2017).
This suggests that the effects of FMT on insulin sensitivity and gut
microbiota composition may be transient and not sustained in the
long term.

7 Summary

The altered gut microbial community leads to disruptions in
metabolic homeostasis causally linked with the imbalance of lipid
homeostasis and chronic inflammation which is associated with
obesity and T2D. Remodelling of microbial profiles and microbiome-
derived metabolites contributes to the development of insulin resistance
by modulating the gut-brain axis, loss of pancreatic functionality, and
white adipose tissue dysfunction. Additionally, specific microbial genera
were found in the visceral adipose tissue that influences its normal
function during obesity. Moreover, pathogenic microbes such as
Escherichia and Shigella were abundantly present in obese diabetic
patients. The applications of prebiotics, probiotics, or faecal microbial
transplantation are considered contemporary approaches that can be
offered to manage T2D. Here we consolidate the current knowledge in

this field and underscore the urgent need for further research and clinical
interventions to combat the rising epidemic of obesity-inducedmetabolic
disorders.

8 Future perspective

In recent years, the study of gut and adipose tissue dysbiosis in
obese individuals with T2D has attracted significant attention, and
researchers are exploring several therapeutic approaches in this field.
One potential way is the development of personalized microbiome-
based therapies. Another important aspect is gaining a mechanistic
understanding of how gut dysbiosis contributes to obesity and T2D
for developing targeted therapeutics. It is needed to understand the
potential implications and mechanisms underlying the relationship
between microbial dormancy and obesity. This review raises a few
fundamental questions to understand the basics of obesity-induced
pathogenesis. Such as, how microbial compartmentalization occurs
within the visceral adipose tissue (VAT) during obesity and how the
obese adipose tissue microenvironment supports microbial survival.
It also demands the ongoing search for the source and origin of
tissue-specific microbes. Moreover, what are the factors that govern
gut and adipose tissue dysbiosis in obesity and actively control
microbial localization in insulin-responsive organs such as the liver

FIGURE 3
Gutmicrobial-derived factors alteration with the progression of obesity and type 2 diabetes. Increased production of several metabolites associated
with gut dysbiosis such as LPS, TNFα, TMAO, H2S, BCAAs, BCFAs, and Polyamines were linked with the progression of obesity-induced T2D. On the
contrary, beneficial microbiome-derived metabolites from the healthy gut, responsible for anti-inflammatory effects and physiological homeostasis,
such as Propionate, Acetate, and Butyrate (short-chain fatty acids) were reduced in obesity-induced gut dysbiosis. The gut represented in pink color
indicates a healthy state, whereas, brown color and green color indicate obesity-induced pathophysiological progression to T2D state.
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and adipose tissue? Therefore, further research is needed to fully
comprehend the gut-adipose tissue axis in obesity and its role in the
progression of insulin resistance and T2D, as our understanding of
this subject is still in its nascent stages.
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