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Although many individuals are able to achieve weight
loss, maintaining this loss over time is challenging. We
aimed to study whether genetic predisposition to general
or abdominal obesity predicts weight regain after weight
loss. We examined the associations between genetic
risk scores for higher BMI and higher waist-to-hip ratio
adjusted for BMI (WHRadjBMI) with changes in weight and
waist circumference up to 3 years after a 1-year weight
loss program in participants (n = 822 women, n = 593
men) from the Look AHEAD (Action for Health in Diabe-
tes) study who had lost $$3% of their initial weight. Ge-
netic predisposition to higher BMI or WHRadjBMI was not
associated with weight regain after weight loss. How-
ever, the WHRadjBMI genetic score did predict an in-
crease in waist circumference independent of weight
change. To conclude, a genetic predisposition to higher
WHRadjBMI predicts an increase in abdominal obesity
after weight loss, whereas genetic predisposition to
higher BMI is not predictive of weight regain. These re-
sults suggest that genetic effects on abdominal obesity
may be more pronounced than those on general obesity
during weight regain.

Obesity is a global epidemic and a major contributor to the
increasing incidence of type 2 diabetes worldwide (1). It is
estimated that more than one billion people will have obe-
sity by 2030 (2). Treatment options for obesity include be-
havioral changes, pharmaceuticals, and bariatric surgery.
Lifestyle interventions typically result in an average weight
loss of 7–10% within 6 months (3); however, maintaining
the weight loss is a significant challenge: participants often
regain an average of 33% of the lost weight within 1 year
and 50–100% of it within 5 years (4–7).

Independent of overall body fat, abdominal obesity is as-
sociated with an increased risk of cardiometabolic diseases,
such as type 2 diabetes and coronary heart disease (8–11).
Waist circumference (WC) or waist-to-hip ratio (WHR) can
serve as proxies for abdominal adiposity, and these meas-
ures can also be adjusted for overall adiposity (WCadjBMI

and WHRadjBMI, respectively). Abdominal fat tissue is meta-
bolically active, releasing metabolites such as free fatty
acids, inflammatory molecules, and hormones directly to
the liver, which can cause damage (12). Conversely, fat de-
posits in the gluteofemoral area are less metabolically ac-
tive (13), act as a metabolic sink for lipid storage (14) and
offer protection against cardiometabolic diseases (14), glu-
cose intolerance (15), and type 2 diabetes (16). Therefore,
abdominal obesity may be a better predictor of type 2 dia-
betes and cardiovascular diseases than BMI (17,18).

Genome-wide association studies (GWAS) have identi-
fied hundreds of genetic variants that predispose to higher
BMI (19) and higher WHRadjBMI (20). These variants are
primarily associated with gene expression in the central
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nervous system and adipose tissue, respectively. Prior re-
search on weight loss and weight regain has focused on in-
dividual variants associated with BMI (21–25). The impact
of genetic risk scores for either BMI and WHRadjBMI on
overall and abdominal obesity after initial weight loss has
not yet been evaluated, to our knowledge.

In this study, we assessed the impact of polygenic scores
for higher BMI and WHRadjBMI on changes in general and
abdominal obesity after weight loss in the Look AHEAD
(Action for Health in Diabetes) trial.

RESEARCH DESIGN AND METHODS

Study Participants
We conducted a secondary analysis of the Look AHEAD
trial (26,27), a multicenter, randomized controlled study
that examined the impact of an intensive lifestyle interven-
tion (ILI) compared with a control group (Diabetes Support
and Education [DSE]) on health outcomes among partici-
pants with type 2 diabetes and overweight or obesity. Both
groups received an educational session on diabetes and car-
diovascular risk factors, and the DSE group also had the
option to attend three additional sessions on nutrition,
physical activity, and social support. The ILI group received
a plan for diet and physical activity modification with the
goal of achieving and maintaining a weight loss of approxi-
mately 7%. In the first 6 months, the ILI participants had
one individual and three group meetings per month, with
decreasing frequency over the course of the trial (26,28).
Medications were prescribed by personal physicians not af-
filiated with the trial (27). All participants provided in-
formed consent for the Look AHEAD study and the use of
genetic data, and the study was approved by the University
of Connecticut Institutional Review Board. Race and eth-
nicity were self-reported using questions from the 2000
U.S. Census questionnaire (27).

Anthropometric Measures
Weight was measured twice at each clinical examination us-
ing a calibrated digital scale, with participants wearing light,
indoor clothing. WC was measured three times, at the mid-
way point between the bottom of the ribs and the top of
the hips, using a tape measure (21). Height was measured
twice using a stadiometer. The average of the weight, WC,
and height measures was calculated at each time point. The
measurement of weight and WC was performed annually
(21).

Genetic Data
All participants were genotyped using the Illumina Infinium
Global Screening Array-24 version 1.0 BeadChip platform.
The quality control (QC), performed on 3,160 samples, in-
cluded a call-rate threshold of 97%, removal of duplicates
and mismatches for sex check, and exclusion of participants
with an estimated homozygosity outside the core sex cluster.
The QC was also performed on 642,824 markers aligned to
Genome Reference Consortium Human Build 37 (GRCh37),

which included a call-rate threshold of 97%, a Hardy-Weinberg
equilibrium threshold of 0.0004 in each ethnicity group,
and the exclusion of duplicates. After the QC, whereby a
total of 13,038 markers were removed, 629,788 markers
were imputed for each race by MiniMac V3 (29) using
the 1000Genomes reference panel (30). Monomorphic var-
iants (minor allele frequency = 0 or 1) and variants with an
imputation score <0.7 were excluded.

Genetic Risk Score
We constructed effect size–weighted genetic risk scores for
BMI and WHRadjBMI. To construct the genetic risk score for
BMI, we used summary statistics from a GWASmeta-analysis
of BMI of approximately 700,000 individuals of European an-
cestry, which identified 656 loci containing 941 independent
signals, using a significance threshold of P < 1 × 10�8 (19).
For WHRadjBMI, we also used data from a GWAS meta-
analysis of approximately 700,000 individuals of European
ancestry, which identified 346 loci containing 463 indepen-
dent signals, using a significance threshold of P < 5 × 10�9

(20). We used a threshold of P< 5 × 10�8 to select indepen-
dent loci within ± 500 kb of the index variant for both BMI
and WHRadjBMI. The final genetic risk scores included 894
independent single nucleotide polymorphisms (SNPs) for
BMI and 481 for WHRadjBMI (Supplementary Tables 5 and 6).
The scores were normally distributed among all ancestries
(Supplementary Fig. 2).

We aligned each SNP based on the trait-increasing allele.
The effect size of each trait-increasing allele was multiplied
by the number of risk alleles carried by an individual, and
the genetic risk score was calculated as the sum of the
weighted alleles carried by the individual. The genetic risk
scores for BMI and WHRadjBMI were significantly associated
with the respective baseline traits in Look AHEAD (for
BMI, P = 4.61 × 10�7; for WCadjBMI, P = 4.55 × 10�6)
(Supplementary Tables 1 and 2). The genetic risk scores
were also correlated with their respective traits (for BMI,
r = 0.12; for WCadjBMI, r = 0.04). The scores explained
1.41% and 0.38% of the variance in BMI and WCadjBMI, re-
spectively, when adjusting for age, age squared, sex, and
the first four genetic principal components.

We examined whether using a threshold of P = 0.00001
or P = 0.0001 for variant selection could improve the per-
formance of the WHRadjBMI genetic score. However, our
findings showed that the performance of the score was not
improved. When using thresholds of P < 0.00001 and P <
0.0001, the association between the WHRadjBMI genetic
score and the outcome trait had P values of 9.1 × 10�4 and
0.021, respectively.

Statistical Analysis
We investigated the impact of genetic variants on weight
change in individuals who successfully lost $3% of their
initial body weight during the first year of the intervention
(n = 822 women and n = 593 men) (31). The outcome
measures were weight loss and WC reduction during the
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1-year weight loss, as well as change in weight and WC
from year 1 to year 2 and year 1 to year 4. Data are re-
ported as mean ± SD. Linear regression models were used
to test genetic associations, using R version 4.1.2 (32). All
analyses were adjusted for age, self-reported sex, height,
and baseline values of the outcome traits.

Because the majority of participants in this study were
of White ancestry and the genetic variants being studied
were originally identified in primarily White European
populations, a separate analysis was conducted for this
group. The analyses of combined ancestries were further
adjusted for the first four genetic principal components
(PC) to account for differences in genetic ancestry
(Supplementary Fig. 1).

We also examined the outcomes separately in the two
intervention arms and in the subset of participants who
regained weight from years 1 to 2 and years 1 to 4.

In the analyses of weight change, we additionally ad-
justed for the year 1 value of body weight as well as the in-
tervention type (ILI/DSE) when examining the full study
population. In the analyses of changes in WC, we adjusted
for the year 1 value of WC, as well as corresponding
changes in body weight. Before the analyses, we confirmed
that the outcome traits followed a normal distribution, by
visual inspection of the residuals from each model.

Data and Resource Availability
The code is available upon request to the authors. The
Look AHEAD data are available in the National Institute
of Diabetes and Digestive and Kidney Diseases repository.
The genetic data are not available, because of limitations
in consent.

RESULTS

Characteristics of the Study Population
The baseline characteristics of individuals who lost $3%
of their initial body weight during the first year of the in-
tervention were similar between the ILI and DSE groups
(Table 1). On average, the ILI group lost 10.94 ± 6.91 kg
of body weight (9.02 ± 7.87 cm of WC) and the DSE
group lost 6.81 ± 4.45 kg (5.04 ± 5.68 cm) during the first
year of the intervention. From year 1 to year 2, ILI partici-
pants regained, on average, 2.76 ± 4.68 kg (2.48 ± 5.62 cm
of WC) and DSE participants regained 0.64 ± 5.96 kg of
weight (0.44 ± 5.83 cm of WC). From year 1 to year 4, the
weight for the ILI participants changed by an average of
5.01 ± 7.84 kg of body weight (4.88 ± 7.61 cm of WC) and
1.47 ± 7.77 kg (1.92 ± 7.76 cm of WC) for the DSE.

Genetic Associations With Weight and WC Loss and
Regain
We first examined whether there were differences in the
effect of the BMI and WHRadjBMI genetic risk scores on
weight and WC loss and regain between the ILI and DSE
groups by testing for the significance of the interaction
term between the genetic risk score and study group

(Supplementary Table 4). We found no significant interac-
tion between the BMI or WHRadjBMI genetic risk score
and the study group in any of the analyses, so we com-
bined the ILI and DSE groups in all analyses and adjusted
for the study group as a covariate.

The BMI and WHRadjBMI genetic scores were not asso-
ciated with weight loss during the 1-year intervention
(Supplementary Table 1). The BMI score was also not asso-
ciated with the loss in WC (Supplementary Table 2). How-
ever, a higher WHRadjBMI genetic score was associated with
a smaller 1-year loss in WC, adjusted for weight loss, in
all ancestries (P = 0.022) (Supplementary Table 2) except
White ancestry (P = 0.166) (Supplementary Table 3).

The BMI and WHRadjBMI genetic scores were not associ-
ated with the change in body weight from year 1 to 2 or
years 1 to 4 (Table 2). The BMI score was also not associ-
ated with the change in WC from year 1 to 2 or years 1
to 4 (Table 3). However, the WHRadjBMI score was associ-
ated with a greater increase in WC after year 2 and year 4
in all ancestries (P = 6.8 × 10�4 and P = 0.012, respec-
tively) (Table 3) and in the White ancestry (P = 0.002 and
P = 0.037, respectively), independent of weight change
(Supplementary Table 3). We performed sex- and age-
stratified (#60 or >60 years) analyses and examined the
interaction between the genetic score and sex or age
(Supplementary Tables 7 and 8). No significant interactions
were found, indicating that the genetic effects on weight
loss or weight regain were not dependent on sex or age.

Of the study participants who lost $3% of their initial
body weight, a total of 1,009 participants (71.3%) regained
weight from year 1 to year 2 and 1,044 participants
(73.8%) regained weight from years 1 to 4, whereas other
participants either maintained or continued to lose weight.
To test genetic associations specifically with weight regain,
we conducted additional analysis of the subset of partici-
pants who regained weight. The WHRadjBMI genetic score
was significantly associated with WC regain from year 1 to
2 in all ancestries (P = 0.002) (Table 4) and White ancestry
(P = 0.008) (Supplementary Table 3) and was also associ-
ated with WC regain in all ancestries from years 1 to 4
(P = 0.019), independent of changes in body weight (Table 4).
The BMI and WHRadjBMI genetic scores were not associated
with weight regain from year 1 to 2 or years 1 to 4 in the
White ancestry group (Supplementary Table 3). The BMI
score was also not associated with WC regain from year 1 to
2 or years 1 to 4 (Supplementary Table 3). Hence, genetic pre-
disposition to higher BMI was not associated with either
weight loss or weight regain.

Our sample size was limited for identifying SNPs associ-
ated with weight loss and weight regain. None of the 894
independent SNPs for BMI reached a false discovery rate
threshold of <0.01 for association with weight loss or
weight regain (Supplementary Table 6). Similarly, none of
the 481 independent SNPs for WHRadjBMI reached a false
discovery rate <0.01 for WC loss or regain (Supplementary
Table 5).
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DISCUSSION

In the present analyses of 1,415 participants from the
Look AHEAD trial, individuals with a genetic predisposi-
tion to a higher WHRadjBMI experienced a smaller reduc-
tion in abdominal obesity weight loss during the first year
of a weight loss intervention and a larger regain in WC
over the following 3 years. Genetic predisposition to higher
BMI was not associated with either weight loss or weight
regain.

Weight loss and maintenance are controlled by a complex
interplay of biological and behavioral mechanisms, and ge-
netic diversity in these mechanisms can affect the effective-
ness of weight loss and maintenance efforts (33). Despite
this, there is a lack of research on how genetic variation af-
fects weight regain. Furthermore, to our knowledge, there

have been no studies that have examined the relationship
between genetic factors and changes in abdominal obesity
after weight loss interventions. One study found that a
higher WHRadjBMI genetic risk score was associated with
less weight loss (34), but no influence was found for a
BMI genetic risk score. Another study found that a higher
WHRadjBMI genetic risk score was associated with a smaller
loss of abdominal obesity during the first year of weight
loss interventions (21). In the present study, we replicate
these associations with a more comprehensive genetic risk
score and, additionally, we show that a higher WHRadjBMI

genetic risk score also was associated with a higher regain
of abdominal fat in the years that follow weight loss. Fur-
thermore, our findings indicate that the detrimental effect
of the WHRadjBMI genetic risk score on WC during the

Table 1—Baseline characteristics (mean ± SD) of the individuals who lost $$3% of their initial body weight during the 1-year
weight loss

Combined ILI DSE PDifference*

Baseline
Participants, n 1,415 1,088 327
Race/ethnicity, n (%)

White 952 (67.28) 729 (67.00) 223 (68.20) 0.6883
Black 187 (13.22) 147 (13.51) 40 (12.23) 0.5223
Hispanic 233 (16.47) 180 (16.54) 53 (16.21) 0.9822
Other 43 (3.04) 32 (2.94) 11 (3.36) 0.8246

Age, years 59.48 ± 6.63 59.41 ± 6.65 59.73 ± 6.59 0.4568
Weight, kg 101.30 ± 19.86 100.76 ± 19.77 103.10 ± 20.06 0.0713
Height, cm 167.51 ± 9.66 167.51 ± 9.60 167.49 ± 9.87 0.8376
WC, cm 113.97 ± 14.08 113.63 ± 14.16 115.09 ± 13.74 0.0934
WHRadjBMI GRS 466.18 ± 11.14 466.12 ± 11.21 466.39 ± 10.92 0.7062
BMI GRS 864.77 ± 18.12 864.96 ± 18.17 864.12 ± 17.96 0.4560

Change baseline to year 1
Participants, n 1,414 1,088 326
Weight, kg �9.99 ± 6.66 �10.94 ± 6.91 �6.81 ± 4.45 5.95 × 10�34

Weight change, % �9.76 ± 5.72 �10.72 ± 5.84 �6.56 ± 3.84 3.69 × 10�41

WC, cm �8.10 ± 7.61 �9.02 ± 7.87 �5.04 ± 5.68 1.75 × 10�22

WC, % �6.99 ± 6.30 �7.80 ± 6.46 �4.30 ± 4.81 2.28 × 10�24

Change year 1 to year 2
Participants, n 1,377 1,059 318
Weight, kg 2.27 ± 5.08 2.76 ± 4.68 0.64 ± 5.96 6.93 × 10�9

Weight change, % 2.57 ± 5.29 3.09 ± 5.03 0.83 ± 5.75 3.82 × 10�10

WC, cm 2.01 ± 5.73 2.48 ± 5.62 0.44 ± 5.84 5.16 × 10�8

WC, % 2.01 ± 5.38 2.45 ± 5.34 0.53 ± 5.27 2.12 × 10�8

Year 2
Weight, kg 93.71 ± 19.10 92.70 ± 19.08 97.07 ± 18.81 2.90 × 10�4

WC, cm 107.84 ± 14.42 107.05 ± 14.55 110.48 ± 13.68 1.02 × 10�4

Change year 1 to year 4
Participants, n 1,382 1,063 319
Weight, kg 4.19 ± 7.96 5.01 ± 7.84 1.47 ± 7.77 4.96 × 10�12

Weight change, % 4.83 ± 8.31 5.75 ± 8.27 1.77 ± 7.70 1.27 × 10�14

WC, cm 4.19 ± 7.75 4.88 ± 7.61 1.92 ± 7.76 3.89 × 10�9

WC, % 4.21 ± 7.30 4.90 ± 7.23 1.907 ± 7.09 9.43 × 10�11

Year 4
Weight, kg 95.41 ± 19.64 94.83 ± 19.75 97.37 ± 19.15 0.0361
WC, cm 109.91 ± 14.60 109.39 ± 14.62 111.66 ± 14.44 0.0113

*Intergroup P values between ILI and DSE are derived from two-sample t test if the data followed a normal distribution, deter-
mined by examining histograms. For nonnormal distributed traits (weight loss from baseline to year 1 and relative weight loss), the
Wilcoxon test was used. For ancestries, the x2 test was applied due to the categorical variables. GRS, genetic risk score.
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weight loss and weight maintenance periods leads to a
compounded effect on abdominal adiposity.

Previous research on the association between individual
BMI risk variants and weight loss or regain has yielded
mixed results, with some studies finding an association
and others reporting a weak or no association (25,35,36).
In the present study, we included 894 variants in the BMI
score and did not observe an association between them
and weight loss during a lifestyle intervention. Addition-
ally, this study is one of the first to examine whether BMI-
associated variants predict weight gain after weight loss.

We did not find any associations between BMI-associated
variants and change in weight after initial weight loss. Fur-
thermore, we found that the BMI-increasing genetic risk
score was not associated with the change in abdominal
obesity during the 1-year weight loss intervention or after.
Overall, our results suggest that obesity risk variants identi-
fied in cross-sectional studies may not influence longitudinal
changes in body weight during weight loss interventions.
This finding suggests that biological mechanisms regulat-
ing weight change during such interventions may differ
from those that determine body weight in a stable state.

Table 2—Associations of BMI and WHRadjBMI genetic scores with weight change from year 1 to 2 and years 1 to 4 in
individuals who initially lost $$3% of their initial body weight
Associations by outcome and
group Beta Standard error P N Adjustments

ILI1DSE
Weight change years 1 to 2
WHRadjBMI GRS 0.019 0.012 0.127 1,386 Intervention arm, sex, baseline

age, PC1–PC4, baseline weight,
baseline height, year-1 weight

BMI GRS 0.006 0.008 0.428 1,386 Intervention arm, sex, baseline
age, PC1–PC4, baseline weight,
baseline height, year-1 weight

Weight change years 1 to 4
WHRadjBMI GRS �0.014 0.018 0.448 1,388 Intervention arm, sex, baseline

age, PC1–PC4, baseline weight,
baseline height, year-1 weight

BMI GRS 0.009 0.012 0.446 1,388 Intervention arm, sex, baseline
age, PC1–PC4, baseline weight,
baseline height, year-1 weight

ILI
Weight change years 1 to 2
WHRadjBMI GRS 0.009 0.013 0.475 1,067 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
year-1 weight

BMI GRS 0.001 0.008 0.932 1,067 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,

year-1 weight
Weight change years 1 to 4
WHRadjBMI GRS �0.007 0.020 0.735 1,068 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
year-1 weight

BMI GRS 0.006 0.013 0.657 1,068 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,

year-1 weight

DSE
Weight change years 1 to 2
WHRadjBMI GRS 0.049 0.030 0.107 319 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
year-1 weight

BMI GRS 0.026 0.019 0.164 319 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,

year-1 weight
Weight change years 1 to 4
WHRadjBMI GRS �0.034 0.040 0.398 320 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
year-1 weight

BMI GRS 0.021 0.025 0.394 320 sex, baseline age, PC1–PC4,
baseline weight, baseline height,

year-1 weight

GRS, genetic risk score; PC, (genetic) principal component.
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Table 3—Associations of BMI and WHRadjBMI genetic scores with WC change from year 1 to 2 and years 1 to 4 in individuals
who initially lost $$3% of their initial body weight
Associations by outcome and
group Beta Standard error P N Adjustments

ILI1DSE
WC change years 1 to 2

WHRadjBMI GRS 0.033 0.010 6.78 × 10�4 1,367 Intervention arm, sex, baseline age,
PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-2 weight
BMI GRS �0.004 0.006 0.529 1,367 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-2 weight
WC change years 1 to 4

WHRadjBMI GRS 0.026 0.010 0.012 1,372 Intervention arm, sex, baseline age,
PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-4 weight
BMI GRS 0.006 0.007 0.409 1,372 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-4 weight

ILI
WC change years 1 to 2

WHRadjBMI GRS 0.030 0.011 6.60 × 10�3 1,050 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-2 weight
BMI GRS �0.003 0.007 0.685 1,050 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-2 weight
WC change years 1 to 4

WHRadjBMI GRS 0.032 0.011 5.86 × 10�3 1,054 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-4 weight
BMI GRS 0.004 0.007 0.565 1,054 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-4 weight

DSE
WC change years 1 to 2

WHRadjBMI GRS 0.039 0.019 0.045 317 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-2 weight
BMI GRS �0.007 0.012 0.571 317 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-2 weight
WC change years 1 to 4

WHRadjBMI GRS �0.002 0.024 0.926 318 Sex, baseline age, PC1–PC4,
baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-4 weight
BMI GRS 0.002 0.015 0.901 318 Sex, baseline age, PC1–PC4,

baseline weight, baseline height,
baseline WC, year-1 weight and

WC, year-4 weight

GRS, genetic risk score; PC, (genetic) principal component.
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Consequently, there is a need for GWAS to identify ge-
netic variants specifically associated with weight loss and
weight regain to enable the design of appropriate poly-
genic scores and elucidate the underlying biology.

After weight loss, a coordinated decrease in energy ex-
penditure and an increase in appetite contribute to weight
regain. Previous research has identified many other po-
tential mechanisms for weight regain, such as decreased
resting metabolic rate and lowered leptin levels (37,38).
Adding a genetic association, or the lack thereof, to the
broader context of weight regain can contribute to our
understanding of the mechanisms behind the regain of
WC and guide future research. The distinct effects of the
BMI and WHRadjBMI genetic risk scores likely reflect their
distinct biological effects: genetic variants associated with
BMI primarily influence central nervous system–related
pathways, whereas WHRadjBMI variants have been impli-
cated in adipose tissue biology and insulin resistance (39),
and this seems to be an important factor for abdominal
fat mass change during weight loss (40). The role of these
variants associated with WHRadjBMI requires further in-
vestigation to determine whether they overlap with the

mechanisms previously associated with weight regain, such
as leptin or resting metabolic rate, or if they are indepen-
dent of them. This study adds new insights into the func-
tion of the variants associated both with overall adiposity
and body fat distribution, an important perspective for un-
derstanding the significance of this research.

We found no interaction between the genetic risk scores
and intervention arms on changes in weight and WC after
weight loss. This implies that the results may not be spe-
cific to lifestyle intervention and might also apply to other
types of weight loss interventions, such as pharmaceutical
treatment or obesity surgery. More research is needed to
determine if these results hold for different intervention
modalities. Currently, genetic variations for BMI and WHR
do not appear to influence weight loss or regain after obe-
sity surgery (41,42), although there may be potential in
combining clinical markers with genetic risk scores to im-
prove the predictability of weight loss response after sur-
gery (43).

Abdominal obesity is a major risk factor for cardiometa-
bolic disease and type 2 diabetes (8,44). Previous studies in
the Look AHEAD trial have revealed that individuals who

Table 4—Associations of BMI and WHRadjBMI genetic scores with weight and WC regain from years 1 to 2 and years 1 to 4 in
the subset of individuals who lost $$3% of initial body weight and regained weight
ILI1DSE Beta Standard error P N Adjustments

Weight change years 1 to 2
WHRadjBMI GRS 0.008 0.009 0.388 1,010 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, year-1 weight

BMI GRS 0.000 0.006 0.970 1,010 Intervention arm, sex, baseline age,
PC1–PC4, baseline weight, baseline

height, year-1 weight

Weight change years 1 to 4
WHRadjBMI GRS �0.002 0.014 0.913 1,045 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, year-1 weight

BMI GRS 0.002 0.009 0.825 1,045 Intervention arm, sex, baseline age,
PC1–PC4, baseline weight, baseline

height, year-1 weight

WC change years 1 to 2
WHRadjBMI GRS 0.035 0.012 1.77 × 10�3 995 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-2 weight
BMI GRS 0.001 0.007 0.937 995 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-2 weight

WC change years 1 to 4
WHRadjBMI GRS 0.028 0.012 0.019 1,032 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-4 weight
BMI GRS 0.005 0.008 0.559 1,032 Intervention arm, sex, baseline age,

PC1–PC4, baseline weight, baseline
height, baseline WC, year-1 weight

and WC, year-4 weight

GRS, genetic risk score; PC, (genetic) principal component.
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experienced the least favorable change in WC during weight
loss had an increased risk of cardiovascular morbidity and
mortality, regardless of the amount of weight loss (45). The
negative impact of the WHRadjBMI genetic risk score on ab-
dominal obesity during weight loss and weight maintenance
may undermine the benefits of the weight loss intervention
(44).

The present study has several strengths, including the
use of data from the large and well-documented Look
AHEAD study, which resulted in significant weight loss
and reduction in WC during the first year of the interven-
tion, with annual follow-up of the participants. The use of
a polygenic approach with hundreds of SNPs improved
our ability to detect associations compared with previous
studies. However, the study also has limitations. The Look
AHEAD trial consisted of middle-aged and older (ages
45–76 years) participants with type 2 diabetes and over-
weight or obesity (>25 kg/m2). Thus, the results may not
be applicable to younger or nondiabetic populations. The
weight change in older participants in Look AHEAD may
have been influenced by aging and reduced lean mass (46).
Furthermore, some participants continued to lose weight
after the 1-year intervention. However, we conducted a
sensitivity analysis of those participants who regained weight
from years 1 to 2 or years 1 to 4 to ensure the robustness of
our findings.

Our study was limited to analyzing the associations be-
tween genetic variants and obesity in combining races and
ethnicities and in individuals of White ancestry, due to lack
of sufficient sample sizes for other races and Hispanic eth-
nicity. Despite this, some of the associations in the White
ancestry did not reach statistical significance, which may
have been due to the reduced sample size. Additionally, the
genetic variants used in the BMI and WHRadjBMI genetic
risk scores were primarily identified in populations of Euro-
pean ancestry, which may not be optimal for studying di-
verse ancestries. More research is needed to investigate
potential differences in the genetic effects on general and
abdominal obesity across different ethnicities. Additionally,
it would have been valuable to include WHR as an abdomi-
nal obesity outcome, but hip circumference was not mea-
sured in the Look AHEAD study. However, WC has been
suggested to be a better predictor of abdominal fat and
type 2 diabetes than WHR (47–49), and WC and WHR are
strongly correlated (39).

The key goal in managing obesity is to enhance the long-
term health outcomes of the individual. Although there is
genetic diversity in the biological and behavioral mecha-
nisms that control weight maintenance, interventions and
therapies are typically applied on the basis of their effective-
ness in general populations. However, to effectively address
obesity, it is essential to personalize interventions and target
specific populations. In this study, we found that a genetic
predisposition to higher WHRadjBMI was associated with a
smaller reduction in WC during a 1-year weight loss and a
greater increase in WC during the subsequent 3-year follow-up,

regardless of changes in body weight. Over a 4-year period,
the WHRadjBMI score was consistently associated with in-
creased WC, whereas the BMI score was not associated with
WC, indicating that WC change is regulated by a separate
pathway from overall obesity during weight change. To our
knowledge, these findings are the first of their kind and pro-
vide new insights into the mechanisms of weight regain.
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