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Abstract
Aims/hypothesis  High-throughput metabolomics technologies in a variety of study designs have demonstrated a consistent 
metabolomic signature of overweight and type 2 diabetes. However, the extent to which these metabolomic patterns can be 
reversed with weight loss and diabetes remission has been weakly investigated. We aimed to characterise the metabolomic 
consequences of a weight-loss intervention in individuals with type 2 diabetes.
Methods  We analysed 574 fasted serum samples collected within an existing RCT (the Diabetes Remission Clinical Trial 
[DiRECT]) (N=298). In the trial, participating primary care practices were randomly assigned (1:1) to provide either a weight 
management programme (intervention) or best-practice care by guidelines (control) treatment to individuals with type 2 diabetes. 
Here, metabolomics analysis was performed on samples collected at baseline and 12 months using both untargeted MS and targeted 
1H-NMR spectroscopy. Multivariable regression models were fitted to evaluate the effect of the intervention on metabolite levels.
Results  Decreases in branched-chain amino acids, sugars and LDL triglycerides, and increases in sphingolipids, plasmalo-
gens and metabolites related to fatty acid metabolism were associated with the intervention (Holm-corrected p<0.05). In 
individuals who lost more than 9 kg between baseline and 12 months, those who achieved diabetes remission saw greater 
reductions in glucose, fructose and mannose, compared with those who did not achieve remission.
Conclusions/interpretation  We have characterised the metabolomic effects of an integrated weight management programme previ-
ously shown to deliver weight loss and diabetes remission. A large proportion of the metabolome appears to be modifiable. Patterns 
of change were largely and strikingly opposite to perturbances previously documented with the development of type 2 diabetes.
Data availability  The data used for analysis are available on a research data repository (https://​resea​rchda​ta.​gla.​ac.​uk/) with 
access given to researchers subject to appropriate data sharing agreements. Metabolite data preparation, data pre-processing, 
statistical analyses and figure generation were performed in R Studio v.1.0.143 using R v.4.0.2. The R code for this study has 
been made publicly available on GitHub at: https://​github.​com/​laura​corbin/​metab​olomi​cs_​of_​direct.
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Abbreviations
BCAA​	� Branched-chain amino acid
DiRECT	� Diabetes Remission Clinical Trial
NHS	� National Health Service
PA	� Dataset with data transformed to a pres-

ence/absence phenotype with missing values 
replaced with 0 and non-missing values with 1

PC	� Principal component
PCA	� Principal component analysis
QC	� Quality control
RNT	� Dataset with data transformed using a rank-

based inverse normal transformation
SRR	� Summary relative risk
TG	� Triglyceride

Introduction

For conditions like type 2 diabetes where there is a clear 
relationship between risk factors, intermediate metabolic 
phenotypes and disease, attention has turned to metabo-
lomics as a potentially useful tool for elucidating the bio-
logical mechanisms underpinning disease pathology [1, 
2]. Studies to date have demonstrated a strong and consist-
ent metabolomic signature of prevalent type 2 diabetes 

[3] and incident disease [4, 5]. Unsurprisingly, given the 
strong overlap in the metabolomic signature of type 2 dia-
betes and its precursors (overweight/obesity and insulin 
resistance) [6, 7], many of the metabolomic perturbations 
observed in individuals diagnosed with disease also appear 
to have a role in disease development [8, 9]. However, it 
remains to be determined whether the changes observed 
reflect a systemic ‘downstream’ response to high glucose 
per se or else ‘upstream’ excess adiposity [10, 11].

To help elucidate the role of metabolites in type 2 diabe-
tes, studies that evaluate the metabolomic response to disease 
remission following interventions are critical. Weight loss is 
a key intervention for individuals with type 2 diabetes, with 
proven efficacy and evidence of sustainability of the meta-
bolic benefits for up to 10 years [12, 13]. While there have 
been metabolomics studies of weight loss, the reliability and 
robustness of results published to date have been questioned 
(e.g. due to small sample sizes and single-arm designs) [14]. 
There remains a need to characterise the molecular underpin-
nings of existing interventions targeting diabetes remission 
through weight loss. Accordingly, we took samples from a 
seminal RCT involving an intensive weight management pro-
gramme, the Diabetes Remission Clinical Trial (DiRECT), 
with the aim of characterising the metabolomic footprint of 
this intervention.
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Methods

Study design and participants

DiRECT was a 2 year open-label, cluster RCT conducted at 
49 primary care practices in Scotland and the Tyneside region 
of England between 25 July 2014 and 5 August 2016 (isrctn.
org registration no. ISRCTN03267836). The trial was carried 
out to assess whether effective weight management, delivered 
in a primary care setting, could produce sustained remission 
of type 2 diabetes. The protocol has been published elsewhere 
[15], as have the baseline characteristics of the groups [16]. In 
brief, general practices were randomly assigned (1:1) to pro-
vide either a weight management programme (intervention) or 
best-practice care by guidelines (control), with stratification for 
study site (Tyneside or Scotland) and practice list size (>5700 
or ≤5700). Individuals aged 20–65 years who had been diag-
nosed with type 2 diabetes within the past 6 years, had a BMI 
of 27–45 kg/m2 and were not receiving insulin were recruited. 
The intervention (Counterweight-Plus, https://​www.​count​
erwei​ght.​org/) comprised withdrawal of glucose-lowering and 
antihypertensive drugs, total diet replacement (3452–3569 kJ 
[825–853 kcal]/day formula diet for 3–5 months), stepped food 
reintroduction (2–8 weeks) and structured support for long-
term weight-loss maintenance. Ethics approval was granted 
by West 3 Ethics Committee in January 2014, with approvals 
by the National Health Service (NHS) health board areas in 
Scotland and clinical commissioning groups in Tyneside. All 
participants provided written informed consent.

The trial was conducted over a period of 2 years with 
principal data collection points scheduled at baseline, 12 
months and 2 years. Blood samples were collected and a 
range of clinically relevant outcomes measured, including 
liver function tests, cholesterol and triglycerides (TGs) [15]. 
In this study, we analysed samples from the baseline and 12 
month time points using both an untargeted MS approach 
(Metabolon, Durham, NC, USA) and 1H-NMR spectroscopy 
(Nightingale Health, Finland). For all other data used in our 
analyses, we used the same version of the trial database as 
used for the main trial analysis at 12 months, as reported by 
Lean et al [17]. These data comprised an intention-to-treat 
population of 149 participants per group (total N=298).

Sample collection and metabolite data acquisition

Participants were asked to fast overnight before the blood 
draw. Sample handling procedures are described in elec-
tronic supplementary material (ESM) Methods. In total, 574 
serum samples collected from 302 unique individuals during 
the trial were sent for metabolomic analysis. All analysts 
were blinded to intervention/control status. Samples were 

sent first to Metabolon. The dataset returned (‘MS data’) 
included 1276 metabolite features comprising 959 com-
pounds of known identity (named biochemicals with the 
majority matched to purified standards) and 317 compounds 
of unknown structural identity (unnamed biochemicals, indi-
cated by a superscript ‘a’ in the main-text tables). Remaining 
sample material was then sent to the MRC Integrative Epi-
demiology Unit Metabolomics Facility (University of Bris-
tol) for 1H-NMR analyses (after one further freeze–thaw). 
The dataset returned (‘NMR data’) included 148 primary 
measures quantified in absolute concentrations as well as 
79 additional ‘derived measures’ such as ratios and percent-
ages. Further details of the metabolite data acquisition can 
be found in ESM Methods.

Metabolite data preparation

Data quality checks were carried out locally using a pre-
release version of the R package metaboprep [18] with 
samples and features excluded from subsequent statistical 
analysis based on a pre-defined set of quality control (QC) 
metrics. Full details of the procedures are given in ESM 
Methods and data summaries produced are included within 
the associated GitHub repository (https://​github.​com/​laura​
corbin/​metab​olomi​cs_​of_​direct). Data were restricted to 
include only those individuals present in the trial database 
(N=298) and for whom both a baseline (T0) and 12 month 
follow-up (T1) sample were present in the filtered metabolite 
data. Two processed datasets were derived: (1) RNT dataset, 
for which metabolite data were transformed (across indi-
viduals within timepoint) using a rank-based inverse normal 
transformation (where tied ranks were split by assigning a 
random order); and (2) PA dataset, for which metabolite data 
were transformed to a presence/absence phenotype such that 
missing values were replaced with 0 and non-missing values 
(i.e. those with an abundance measure) were replaced with 1.

Statistical analysis

An overview is shown in Fig. 1. We analysed all available data 
according to group allocation with the control group as the 
reference and effect estimates therefore representing the dif-
ference in the intervention group relative to the control group.

Linear regression model  In our evaluation of the effect of 
the intervention on metabolite levels, outcomes (metabo-
lite levels at T1) were compared between groups with lin-
ear regression models applied to the RNT dataset. Where 
metaboliteT0 or metaboliteT1 was missing (unquantified) for 
an individual, that individual was excluded from the analy-
sis for that specific metabolite yielding varied sample sizes 

https://www.counterweight.org/
https://www.counterweight.org/
https://github.com/lauracorbin/metabolomics_of_direct
https://github.com/lauracorbin/metabolomics_of_direct
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across metabolites. Models were adjusted for study centre 
and practice list size along with the baseline measurement 
of the outcome (metabolite at T0), age and sex, all fitted as 
fixed effects:

where metaboliteT1 is metabolite level at 12 months, ‘study 
centre’ is a binary variable (Tyneside or Scotland), ‘list size’ 
is a binary variable indicating practice list size (>5700 or 
≤5700), age is participant age at baseline (years), sex is a 
binary variable (male/female), metaboliteT0 is metabolite 
level at baseline and allocation is a binary exposure vari-
able indicating the individual’s treatment group (control or 
intervention). Model β represents the expected difference in 
metabolite level at T1 expressed as normalised SD units per 
unit difference in the dependent variable after adjusting for 
metabolite level at T0 (in the case of allocation this is the 
mean difference between groups in metabolite at T1). Results 
from this analysis were considered to be the primary result 
for all metabolite features with <40% missing (unquantified) 
data at the 12 month timepoint. This missingness threshold 
was selected based on the increase in the SE of the treat-
ment group effect estimated from the linear model when 
the number of observations fell below this level (see ESM 
Fig. 1). The Holm [19] method was used to adjust p values 

metaboliteT1 ∼ study.centre + list.size + age + sex

+ metaboliteT0 + allocation

for multiple testing and an adjusted p value of <0.05 was 
considered as evidence for association. Extended methods 
relating to the linear regression model can be found in ESM 
Methods.

Pathway enrichment analyses  Hypergeometric-based 
enrichment analyses were conducted to evaluate the enrich-
ment of classes in the subset of associated features derived 
from the linear model as compared with all features that 
were tested by the same model. Metabolite super-pathway 
designation provided by Metabolon was used for the enrich-
ment analysis, with NMR-derived metabolites allocated to 
super pathways following the approach of Wahl et al [20].

Exploratory analysis of associated metabolites and clinical phe-
notypes  Where metabolites were found to be associated with 
the intervention, several follow-up analyses were performed 
(see ESM Methods for full details). To evaluate the extent to 
which the association between metaboliteT1 and allocation 
could alternatively be explained by weight change, the pri-
mary model above was re-fitted with the addition of ‘weight 
change’ as a fixed effect. To begin to understand the potential 
relevance of metabolite levels to diabetes remission, over and 
above their role as proxies for weight loss, metabolite change 
was compared in individuals who did and did not achieve dia-
betes remission within quantiles of weight change. Finally, a 
principal component analysis (PCA)-based investigation was 

Dataset for analysis
NMR data: 258 individuals (115 intervention group)
MS data: 261 individuals (117 intervention group)

Linear model applied to RNT data to 
estimate the effect of group 

(intervention/ control) on metabolite 
level at T1

Primary analysis of intervention effect 
(metabolites with <40% missing data)

Logistic regression applied to PA data 
to estimate enrichment/depletion of 

metabolites at T1 by group 
(intervention/control) 

Linear model applied to RNT data 
without group fitted and residuals 

extracted

List of associated 
metabolites 

extracted based 
on Holm-

corrected p<0.05

Hierarchical clustering performed on 
residuals and metabolite clusters 

defined based on a tree cut height of 
0.8

List of associated metabolites reduced 
such that only one metabolite per 

cluster remains

Enrichment analysis performed on 
associated subset based on super-

pathway designations

Sample PCA performed based on the 
subset of representative associated 

metabolites

Spearman’s correlation analysis 

performed between principal 
components and quantitative clinical 

phenotypes

List of associated metabolites extracted 
based on p<0.05

Primary analysis of intervention effect
(metabolites with ≥40% missing data)

Calculate variance 
in metabolite level at 

T1 explained by 
model components

Exploratory analysis of associated 
metabolites

Comparison of intervention effect to 
metabolic footprint of incident type 2 

diabetes

List of associated 
metabolites 

extracted based 
on unadjusted 

p<0.05

Fig. 1   Statistical analysis overview. PA, data transformed to a presence/absence phenotype with missing values replaced with 0 and non-missing 
values with 1; RNT, data transformed using a rank-based inverse normal transformation; T1, 12 month time point (post intervention)



Diabetologia	

1 3

conducted into the relationship between the metabolites found 
to be associated with the intervention and the change in a sub-
set of clinical phenotypes selected based on their relevance to 
the long-term health of individuals with type 2 diabetes.

Comparison of intervention and incident type 2 diabetes foot-
prints  To assess the extent to which the changes we see here 
in response to the DiRECT intervention are equal and opposite 
to those observed prior to development of type 2 diabetes, we 
extracted summary relative risk (SRR) estimates from a recent 
meta-analysis of prospective cohort studies [5]. Metabolites 
were matched as far as possible against those with meta-anal-
ysis results (presented in Supplementary Table 7 of Morze 
et al [5]) using either Human Metabolome Database (HMDB) 
identifiers or biochemical names. Where the metabolite was 
measured by both platforms, the instance with the smallest p 
value was retained. Intervention effects (β extracted from the 
linear model) were plotted against loge SRRs extracted from 
the meta-analysis. We focused the comparison on those metab-
olites where there was evidence of association with the inter-
vention based on an unadjusted p value threshold of <0.05. 
Analysis with all matched metabolites is also made available.

Logistic regression model  A logistic model was applied to 
the PA datasets to compare the presence of each metabolite 
by allocation as follows:

where metaboliteT1 is metabolite presence at 12 months (1, 
present; 0, absent) and metaboliteT0 is metabolite presence 
at baseline (1, present; 0, absent) and allocation is as defined 
above. In this exploratory model, no covariates were fitted to 
maximise the power of the test. Model βs for the exposure, 
‘allocation’, represent the coefficient for intervention group, 
that is the loge OR between intervention group and control 
group. Results from this analysis, in which we assume miss-
ing data are due to very low levels of the metabolite (below 
that which can be detected) or to complete absence of the 
metabolite, were considered the primary result for all fea-
tures with ≥40% missing (unquantified) data. A p value of 
<0.05 was considered as evidence for association with no 
adjustment made for multiple testing.

Results

Study characteristics

At 12 months, mean body weight had fallen by 10 kg in the 
intervention group and by 1 kg in the control group (adjusted 
difference –8.8 [95% CI –10.3, –7.3] kg, p<0.0001) and 

metaboliteT1 ∼ metaboliteT0 + allocation

almost half of the 149 participants in the trial arm (46%) 
had achieved type 2 diabetes remission (as defined in the 
trial protocol) as compared with six participants (4%) in the 
control arm [17]. Baseline characteristics were similar when 
comparing the intervention group with the control group in 
the subset of participants with metabolomics data (Table 1). 
Following in-house QC, the NMR data comprised 567 sam-
ples and 225 metabolic features (147 primary measures and 
78 derived measures) and the MS data comprised 571 sam-
ples and 1254 metabolites (ESM Table 1). After merging 
with trial data there were 258 individuals in the NMR data-
set (115 intervention and 143 control) and 261 individuals in 
the MS dataset (117 intervention and 144 control) available 
for statistical analysis.

Effect of intervention on metabolites: linear 
regression model

Results from the multivariable linear model formed the 
primary result for all 147 NMR metabolites and 78 NMR-
derived measures with a minimum (median) sample size of 
199 (258). Of the NMR metabolites tested at 12 months, 
59 (26%) were altered by the intervention (Holm-corrected 
p<0.05) (including 27 derived measures) with 41 (69% of 
those altered) showing an increase in response to treatment 
(ESM Fig. 2, ESM Table 2). The strongest association was 
seen for glucose (β −0.71 [95% CI −0.92, −0.50], Holm-
corrected p=3.77×10−8). Results from the linear model 
formed the primary result for 1064 (85%) of the MS metabo-
lites, with a minimum (median) sample size of 93 (260). Of 
the metabolites tested, 127 (12%) were associated with the 
intervention (Holm-corrected p<0.05) with 72 (57% of those 
associated) showing an increase in response to treatment 
(ESM Fig. 2, ESM Table 3). The strongest association was 

Table 1   Baseline characteristics (N=261)

Summary statistics were calculated based on the MS sample (after 
QC) (N=261)

Characteristic Intervention group 
(n=117)

Control group 
(n=144)

Mean SD (%) Mean SD (%)

Sex, n
  Female 49 42 55 38
  Male 68 58 89 62
Age, years 53.7 7.1 56.2 6.9
BMI, kg/m2 34.8 4.5 34.3 4.3
Weight, kg 100.3 16.8 99.0 16.0
Fasting glucose, mmol/l 9.3 3.2 8.8 2.6
Total cholesterol, mmol/l 4.3 1.1 4.3 1.1
HDL-cholesterol, mmol/l 1.1 0.3 1.2 0.3
TG, mmol/l 2.0 1.5 1.9 0.9
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seen for a metabolite identified as erythronate (β −0.82 [95% 
CI −0.99, −0.65], Holm-corrected p=2.84×10−15), although 
the identity of this metabolite has not yet been confirmed by 
Metabolon based on a standard. For most metabolites, there 
was little evidence for between-group (control/intervention) 
differences in levels at baseline; one out of 186 associated 
metabolites (4-hydroxychlorothalonil) had p<0.05/186 (Wil-
coxon rank sum test) (for boxplots, see GitHub repository: 
https://​github.​com/​laura​corbin/​metab​olomi​cs_​of_​direct).

In the intervention group, we observed a decrease in 
phosphatidylethanolamines, branched-chain amino acids 
(BCAAs) and related metabolites (i.e. those allocated to 
the same super- and sub-pathways) and sugars, and in the 
relative abundance of TG to total lipids within specific lipid 
fractions (e.g. TG/total lipids ratio in small, medium and 
large LDL particles). In contrast, increases were seen in 
lipids including sphingolipids, plasmalogens and metabo-
lites assigned to the ‘fatty acid metabolism (acyl choline)’ 
sub-pathway and for amino acids from the sub-pathways 
‘glycine, serine and threonine metabolism’ and ‘urea cycle; 
arginine and proline metabolism’. There was also evidence 
(from NMR) for an increase in the intervention group of the 
proportion of cholesterol and cholesteryl esters relative to 
total lipids in a variety of lipid fractions and an increase in 
the ratio of polyunsaturated fatty acids to total fatty acids.

Pathway enrichment analyses

Enrichment analyses gave evidence for enrichment in the 
associated metabolites for NMR-derived measures (2.4-fold, 
p=5.08×10−6) and for the carbohydrate super pathway (2.4-
fold, p=0.011) (ESM Fig. 3). This suggests that metabolites 
allocated to these groups were overrepresented in the list of 
associated metabolites.

Exploratory analysis of associated metabolites 
and clinical phenotypes

For the vast majority of metabolites examined, when weight 
change was added as a fixed effect to the primary linear model, 
the intervention effect on metabolite level at 12 months was atten-
uated, as demonstrated by a qualitative reduction in the variance 
explained by allocation (ESM Tables 2, 3). In a small number 
of cases (seven for NMR and one for MS), adjusting for weight 
change did not result in the attenuation of the intervention effect 
(e.g. ‘omega-3 fatty acids’ [n-3 fatty acids] [NMR] and sphin-
gomyelin [d17:1/14:0, d16:1/15:0]a [MS], where the superscript 
‘a’ indicates that the compound has not been confirmed based 
on a standard). For some metabolites, there was evidence for 
metabolite change explaining additional variance in remission 
status beyond that explained by weight change (ESM Table 4). 
For example, a difference in mean metabolite change by remis-
sion status was seen within individuals in the first quantile of 

weight change (−31.6 kg to −9.0 kg) for 1,5-anhydroglucitol 
(p=8.52×10–5), MS-measured glucose (p=4.64×10–5) and other 
sugars (ESM Fig. 4). Although some of this difference may be 
attributable to residual variance in weight change (within quan-
tiles), at least in the case of the aforementioned metabolites, the 
association of metabolite change with remission status remained 
after adjustment for weight change when fitted in a linear regres-
sion model (data not shown).

Prior to PCA, a hierarchical clustering approach allocated 
the 1289 metabolites with <40% missing data to 238 metab-
olite clusters (ESM Table 5). Using these clusters, the full 
list of 186 associated metabolites was reduced to a set of 61 
approximately independent, representative features for use 
in the PCA, of which 51 had at least a putative identification 
(Table 2 and ESM Table 6). The PCA analysis (ESM Fig. 5 
for resultant scree plot) exhibited separation of participants 
on principal component 1 (PC1; which explained 21% of the 
variance) according to both their allocation to intervention 
or control arms of the trial and their remission status at 12 
months; this pattern is illustrated in Fig. 2. There was also 
evidence for a correlation between the metabolomic foot-
print of the intervention (as captured by the PCs) and clinical 
indicators of metabolic health (e.g. HbA1c), as well as sev-
eral phenotypes relevant to non-alcoholic fatty liver disease 
(ESM Results, ESM Table 7 and ESM Figs 6A, B, 7).

Comparison of intervention and incident type 2 diabetes foot-
prints  Of 622 unique metabolites with (unadjusted) p<0.05 in the 
primary analysis, 79 were matched to entries in the meta-analysis 
results [5], including 13 that passed the threshold for association 
in the primary analysis (Holm-corrected p<0.05). In this subset of 
intervention-associated metabolites, the correlation between the 
intervention effect βs and the loge SRR of incident type 2 diabe-
tes extracted from the meta-analysis was −0.70 (95% CI −0.80, 
−0.57, p=6.0×10−13) (Fig. 3). When comparing estimates across 
all 143 matched metabolites, the correlation was −0.61 (95% CI 
−0.71, −0.50, p=4.9×10−16) (ESM Fig. 8, ESM Table 8).

Effect of intervention on metabolites: logistic 
regression model

Data from the logistic model (based on the PA dataset and 
able to detect and describe the presence of xenobiotics) 
formed the primary result for 190 of the MS metabolites, 
most of which were classified as xenobiotics or unidenti-
fied molecules (Table 3 and ESM Table 9). Of these, 19 (12 
identified) were associated with the intervention (p<0.05), 
with 11 (8 identified) showing depletion in the intervention 
group. Metformin showed the strongest association and was 
present in 26% (31/117) of the 12 month samples from those 
in the intervention group compared with 78% (112/144) in 
the control group (see also ESM Results).

https://github.com/lauracorbin/metabolomics_of_direct
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Table 2   Metabolites associated with intervention from linear model (named/annotated representative features only)

Biochemical name Super pathway Sub-pathway Source β Lower
95% CI

Upper
95% CI

Holm-corrected p value

Erythronatea Carbohydrate Aminosugar metabolism Metabolon −0.82 −0.99 −0.65 2.84×10−15

N-Lactoyl isoleucine Amino acid Leucine, isoleucine and 
valine metabolism

Metabolon −0.87 −1.08 −0.66 5.96×10−11

1-(1-Enyl-palmitoyl)−2-
oleoyl-GPC 
(P−16:0/18:1)a

Lipid Plasmalogen Metabolon 0.59 0.43 0.74 2.28×10−9

β-Alanine Nucleotide Pyrimidine metabolism, 
uracil containing

Metabolon −0.68 −0.87 −0.49 9.86×10−9

Glucose Carbohydrate Glycolysis, gluconeo-
genesis and pyruvate 
metabolism

Metabolon −0.75 −0.95 −0.54 2.13×10−8

1-Stearoyl−2-oleoyl-GPE 
(18:0/18:1)

Lipid Phosphatidylethanola-
mine

Metabolon −0.67 −0.86 −0.48 3.26×10−8

Glycosyl cera-
mide (d18:2/24:1, 
d18:1/24:2)a

Lipid Hexosylceramides Metabolon 0.64 0.46 0.82 5.16×10−8

Hydroxy-CMPFa Lipid Fatty acid, dicarboxylate Metabolon 0.35 0.24 0.45 2.60×10−7

Sphingomyelin 
(d18:1/22:2, d18:2/22:1, 
d16:1/24:2)a

Lipid Sphingomyelins Metabolon 0.54 0.38 0.70 3.59×10−7

Isoleucine Amino Acid NA Nightingale −0.62 −0.82 −0.41 2.66×10−6

Betaine Amino Acid Glycine, serine and threo-
nine metabolism

Metabolon 0.52 0.35 0.68 4.36×10−6

4-Ethylphenylsulfate Xenobiotics Benzoate metabolism Metabolon 0.65 0.43 0.86 1.07×10−5

Alanine Amino Acid Alanine and aspartate 
metabolism

Metabolon −0.63 −0.83 −0.42 1.14×10−5

Palmitoylcholine Lipid Fatty acid metabolism 
(acyl choline)

Metabolon 0.66 0.43 0.88 2.94×10−5

6-Bromotryptophan Amino Acid Tryptophan metabolism Metabolon 0.57 0.37 0.77 6.49×10−5

3β,7α-Dihydroxy−5-
cholestenoate

Lipid Sterol Metabolon −0.41 −0.55 −0.26 1.12×10−4

4-Hydroxychlorothalonil Xenobiotics Chemical Metabolon 0.36 0.23 0.50 2.84×10−4

Palmitoyl sphingomyelin 
(d18:1/16:0)

Lipid Sphingomyelins Metabolon 0.49 0.30 0.67 3.35×10−4

Cholesterol esters to total 
lipids ratio in medium 
VLDL

NMR ratio/percentage NA Nightingale 0.49 0.29 0.69 4.76×10−4

N-Acetylmethionine Amino acid Methionine, cysteine, 
SAM and taurine 
metabolism

Metabolon 0.51 0.31 0.71 7.35×10−4

Bilirubin (Z,Z) Cofactors and vitamins Haemoglobin and por-
phyrin metabolism

Metabolon 0.48 0.29 0.67 7.98×10−4

Arachidonoylcarnitine 
(C20:4)

Lipid Fatty acid metabolism 
(acyl carnitine)

Metabolon 0.46 0.28 0.64 9.66×10−4

Tryptophan betaine Amino acid Tryptophan metabolism Metabolon 0.49 0.29 0.68 1.70×10−3

3-Methyl−2-oxovalerate Amino acid Leucine, isoleucine and 
valine metabolism

Metabolon −0.47 −0.66 −0.28 1.91×10−3

TGs in small HDL Lipid NA Nightingale −0.43 −0.62 −0.24 2.18×10−3

1-Arachidonoyl-GPC 
(20:4n6)a

Lipid Lysophospholipid Metabolon 0.46 0.27 0.64 2.22×10−3

Total cholesterol in very 
large HDL

Lipid NA Nightingale 0.39 0.22 0.56 2.46×10−3

α-Hydroxycaproate Lipid Fatty acid, monohydroxy Metabolon −0.62 −0.87 −0.37 2.47×10−3
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Discussion

We observed a broad metabolomic signature associated 
with the intervention, with differences observed in metabo-
lites from every one of the biochemical classes (or super 

pathways) represented. Under a conservative correction for 
multiple testing, 26% of NMR-derived metabolites and 12% 
of MS-derived metabolites were altered by the intervention, 
suggesting that a sizeable proportion of metabolite changes 
in type 2 diabetes are modifiable. We report a lipid pattern 

Table 2   (continued)

Biochemical name Super pathway Sub-pathway Source β Lower
95% CI

Upper
95% CI

Holm-corrected p value

Sphingomy-
elin (d17:1/14:0, 
d16:1/15:0)a

Lipid Sphingomyelins Metabolon 0.38 0.23 0.54 2.57×10−3

1-Stearoyl-GPC (18:0) Lipid Lysophospholipid Metabolon 0.50 0.30 0.71 2.70×10−3

Total cholesterol to total 
lipids ratio in small 
LDL

NMR ratio/percentage NA Nightingale 0.44 0.24 0.63 4.08×10−3

3-Hydroxyoctanoate Lipid Fatty acid, monohydroxy Metabolon −0.52 −0.73 −0.30 5.14×10−3

Non-esterified cholesterol 
in small HDL

Lipid NA Nightingale −0.40 −0.59 −0.22 5.24×10−3

Carnitine Lipid Carnitine metabolism Metabolon 0.40 0.23 0.57 5.67×10−3

2-Docosahexaenoylglyc-
erol (22:6)a

Lipid Monoacylglycerol Metabolon 0.55 0.32 0.79 6.05×10−3

γ-Glutamylglutamine Peptide γ-Glutamyl amino acid Metabolon 0.45 0.25 0.64 8.94×10−3

Histidine Amino acid Histidine metabolism Metabolon 0.50 0.28 0.72 1.07×10−2

Ornithine Amino acid Urea cycle; arginine and 
proline metabolism

Metabolon 0.45 0.25 0.65 1.24×10−2

2-Hydroxybutyrate/2-
hydroxyisobutyrate

Amino acid Glutathione metabolism Metabolon −0.49 −0.70 −0.27 1.40×10−2

1-Palmitoyl−2-
arachidonoyl-GPE 
(16:0/20:4)a

Lipid Phosphatidylethanola-
mine

Metabolon −0.40 −0.58 −0.22 1.45×10−2

Glycerol Lipid NA Nightingale −0.48 −0.71 −0.24 1.57×10−2

n−3 Fatty acids Lipid NA Nightingale 0.34 0.17 0.50 1.71×10−2

Aconitate (cis or trans) Energy TCA cycle Metabolon −0.45 −0.65 −0.25 2.01×10−2

5-Methylthioadenosine Amino acid Polyamine metabolism Metabolon −0.48 −0.69 −0.26 2.06×10−2

5α-Androstan−3β,17β-
diol monosulfate (2)

Lipid Androgenic steroids Metabolon −0.38 −0.55 −0.21 2.48×10−2

Cholesteryl esters in large 
HDL

Lipid NA Nightingale 0.32 0.16 0.49 2.52×10−2

Glycoprotein acetyls, 
mainly a1-acid glyco-
protein

Peptide NA Nightingale −0.32 −0.49 −0.16 2.57×10−2

Taurine Amino acid Methionine, cysteine, 
SAM and taurine 
metabolism

Metabolon 0.45 0.24 0.66 2.83×10−2

Glycine Amino acid Glycine, serine and threo-
nine metabolism

Metabolon 0.40 0.22 0.59 3.07×10−2

Oxalate (ethanedioate) Cofactors and vitamins Ascorbate and aldarate 
metabolism

Metabolon 0.40 0.21 0.58 4.69×10−2

Effect estimates (β) shown for the fixed effect ‘allocation’ where control group is considered the reference group with effect estimates, therefore 
representing the difference seen in the intervention group relative to the control group (in normalised SD units). For additional metadata see 
ESM Tables 2, 3, 6
a Compound has not been confirmed based on a standard
CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine; NA, not appli-
cable; SAM, S-adenosylmethionine
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change with reduction in TG-rich lipoproteins across the 
lipoprotein cascade, but enrichment of (lyso)plasmalogens 
and reversal of amino acid changes associated with type 2 
diabetes, as well as a reduction in a range of sugars beyond 
glucose, including fructose and mannose.

A major strength of this study is the use of samples and 
clinical data collected from a relatively large (compared 
with existing literature) cluster randomised trial with a well-
matched control arm. Measuring metabolites both at base-
line and at 12 months added to the robustness of the analysis 
while the use of two complementary metabolomics platforms 
increased the overall coverage of the metabolome beyond that 
which has been evaluated previously. However, the MS data 
are semi-quantitative meaning that these findings require 

further validation using targeted techniques to allow absolute 
quantification. Twelve-month samples were not available from 
participants who dropped out of the trial; this was only a small 
number and since the primary analyses concerned paired 
baseline and 12 month measures, bias from this differential 
missingness was minimised. While our study design ena-
bled us to conduct a thorough evaluation of the metabolomic 
impact of the Counterweight-Plus intervention overall, it is 
challenging to attribute those changes to specific elements of 
the intervention (e.g. to fat loss per se or ‘upstream’ changes 
in diet). Results from attempts here to extract the weight-loss 
effects should be interpreted with caution, especially given 
that these analytical manoeuvres alter the trial structure and, 
as such, have the potential to introduce bias.

Amino acid
Carbohydrate
Cofactors & vitamins
Energy
Lipid
NMR derived
Nucleotide
Peptide
Unclassified
Xenobiotics

Super pathway

T
reatm

entgroup
R
em

ission
status

−4 −3 −2 −1 10 32

Fig. 2   Clustering to show treatment group allocation and type 2 diabetes 
remission status. Heatmap shows metabolite levels at 12 months derived 
from covariate-adjusted RNT data for the 61 intervention-associated 
representative metabolites. Further description of plot generation can be 

found in ESM Methods. ‘Remission status’ indicates participant’s type 2 
diabetes status at 12 months, such that white indicates no remission and 
black indicates remission. In the case of ‘treatment group’ allocation, 
blue indicates control and orange indicates intervention group
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Characteristic changes in metabolite profile

Many of the metabolites influenced by the intervention have 
also been identified as potential risk factors for type 2 diabe-
tes development with opposite and proportionate effect sizes. 
For example, we see decreased concentrations of BCAAs 
following dietary intervention where plasma concentrations 
of these BCAAs are frequently elevated in type 2 diabe-
tes [5, 9, 21]. The decrease we observe in BCAAs largely 
agrees with existing findings from smaller, targeted studies 
of weight-loss interventions [14, 22, 23]. While not all stud-
ies report this decrease in BCAAs after diet-induced weight 
loss [24], this may be due to a lack of power to discern 
what is likely to be a smaller effect than that from equiva-
lent analyses considering surgical interventions. By using an 
untargeted metabolome-wide approach, in this work we were 
able to further characterise the plasticity of this highly rel-
evant network. We observed concurrent decreases in several 
γ-glutamyl BCAA dipeptides allocated to the same cluster 

as the BCAAs themselves; γ-glutamyl amino acids are pro-
duced when the enzyme, γ-glutamyl transpeptidase, present 
mainly in the liver, catalyses the transfer of the γ-glutamyl 
moiety of glutathione to an amino acid [25].

Similarly to BCAAs, the reduction we see in the levels of 
several simple sugars, including the monosaccharides fruc-
tose, glucose and mannose, are opposite to the elevations 
seen in levels of these metabolites in the presence of obesity. 
While structurally similar, the predominant dietary sources, 
metabolic pathways and biological effects of these simple 
sugars are quite different though interdependent [26]. Man-
nose specifically has been associated not only with insulin 
resistance but also with higher risk of several chronic dis-
eases including type 2 diabetes and CVD [27]. The existing 
literature concerning the most strongly associated metabo-
lite from the MS dataset, erythronate, is limited; however, 
further insight into its relevance to type 2 diabetes can be 
gained by considering its relationship with other measured 
metabolites. In our data, erythronate sits in a cluster with 
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Fig. 3   Comparison of intervention and incident type 2 diabetes foot-
prints. Loge SRR estimates extracted from incident type 2 diabetes 
meta-analysis [5] plotted against mean intervention effects (βs) from 
our linear regression models (these βs represent the mean difference 
in metabolite levels at 12 months in the intervention group relative to 
the control group). Each point represents a metabolite that was associ-

ated with intervention in the primary analysis (unadjusted p<0.05) and 
could be matched to meta-analysis results; metabolites with Holm-cor-
rected p<0.05 in the primary analysis are labelled. Points are coloured 
according to the SRR-associated p value in the meta-analysis. The cor-
relation is −0.70 (95% CI −0.80, −0.57, p=6.0×10−13). See ESM Fig. 
8 for results including all matched metabolites
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(i.e. is correlated with) several common sugar alcohols (ribi-
tol, erythritol, arabitol/xylitol) that can be found naturally in 
fruits but that are also commonly used as artificial sweeten-
ers. Erythritol is predominantly excreted in urine, with the 
remaining 5–10% being oxidised to erythronate [28]. While 
designated as a xenobiotic in the Metabolon data and previ-
ously thought not to be produced endogenously [29], eryth-
ritol may in fact be produced endogenously from glucose 
[30]. This, together with preliminary evidence showing an 
association between erythritol and adiposity gain in young 
adults [30], serves to contextualise our findings of reduced 
levels of erythronate and related metabolites (ribitol, oroti-
dine and erythritol all had p<0.05 before Holm-correction) 
in participants in the intervention group.

Participants in the intervention arm saw increases in sev-
eral lipids previously associated with a favourable metabolic 
profile. Specifically, increases were seen in concentrations of 
several (lyso)plasmalogens, a special class of phospholipids 
characterised by the presence of a vinyl–ether bond at the 
sn-1 position. In a cross-sectional study of participants with 
overweight and obesity, plasmalogen levels were found to 
be inversely correlated with body fat percentage but seem-
ingly not related to BMI or WHR [31]. The lack of associa-
tion for these commonly used indicators of adiposity may 
be related to their suboptimal performance as proxies for 
adiposity in this relatively small sample of individuals all 
with BMI>25 kg/m2 (n=65). Alternatively, this may point 
towards a more complex interplay between metabolic health 
and plasmalogens.

Detecting associations with changes in exogenous 
factors

While changes to the metabolism can be expected in 
response to the intervention-induced weight loss expe-
rienced by many of those in the intervention group, we 
also expect the adoption of new dietary patterns and a 
change in medication regimes. At a metabolomic level, 
and notwithstanding possible limitations linked to limits 
of detection, we assume that, where we see high levels 
of missingness for given metabolites, these patterns are 
indicative of absence and/or very low concentration. This 
does mean that naive application of a linear model will 
be underpowered to detect mean differences in concentra-
tions. However, examining between-group differences in 
presence/absence can allow detection of meaningful rela-
tionships. To this end, the logistic regression analysis here 
revealed between-group differences in the frequency of 
detection of both potential dietary biomarkers and medica-
tions. For example, S-allylcysteine, a proposed biomarker 
for garlic consumption [32], was enriched in the interven-
tion group while ethyl glucuronide, a validated urine bio-
marker for alcohol consumption [33, 34] was depleted. The 
reduced presence of metformin in the intervention group 
at 12 months provides a useful positive control as well as 
offering an opportunity to verify medication usage. In the 
linear regression analysis, the association of omega-3 (n-
3) fatty acids with allocation did not attenuate with addi-
tional adjustment for weight change. This suggests that the 

Table 3   Metabolites associated with intervention from logistics model (named/annotated features only)

Effect estimates (βs) are given for the fixed effect ‘allocation’ and represent the coefficient for intervention group (i.e. the loge OR between inter-
vention group and control group). For results in full, see ESM Table 9
12,13-DiHOME, 12,13-dihydroxy-9Z-octadecenoic acid

Biochemical name Super pathway Sub-pathway β Lower
95% CI

Upper
95% CI

p value State in 
intervention 
group

Metformin Xenobiotics Drug-metabolic −3.45 −4.37 −2.54 1.45×10−13 Depleted
I-Urobilinogen Cofactors and vitamins Haemoglobin and porphyrin 

metabolism
−0.93 −1.49 −0.36 1.26×10−3 Depleted

β-Guanidinopropanoate Xenobiotics Food component/plant −0.97 −1.56 −0.37 1.50×10−3 Depleted
Bradykinin, des-Arg(9) Peptide Polypeptide −0.99 −1.61 −0.37 1.82×10−3 Depleted
3-Hydroxyindolin−2-one 

sulfate
Xenobiotics Food component/plant −0.87 −1.44 −0.30 2.80×10−3 Depleted

Imidazole propionate Amino acid Histidine metabolism −0.86 −1.43 −0.29 2.97×10−3 Depleted
4-Ethylphenol glucuronide Xenobiotics Food component/plant 1.30 0.39 2.21 5.31×10−3 Enriched
S-Allylcysteine Xenobiotics Food component/plant 0.72 0.21 1.23 5.38×10−3 Enriched
Bendroflumethiazide Xenobiotics Drug-cardiovascular −3.01 −5.2 −0.83 6.79×10−3 Depleted
Ethyl glucuronide Xenobiotics Chemical −0.91 −1.58 −0.24 7.46×10−3 Depleted
Eicosapentaenoylcholine Lipid Fatty acid metabolism (acyl 

choline)
0.71 0.18 1.24 8.30×10−3 Enriched

12,13-DiHOME Lipid Fatty acid, dihydroxy 0.66 0.17 1.16 8.88×10−3 Enriched
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increased levels of these essential fats in participants from 
the intervention arm are due to dietary changes (sustained 
at 12 months) and are not directly related to weight loss.

Metabolite profile variation and clinically relevant 
biomarkers

Metabolic profile at 12 months, as captured by the inter-
vention-associated metabolites, was strongly correlated 
with weight change, possibly explaining much of the allo-
cation effect that we observe. Indeed, the changes we see 
in levels of glucose and BCAAs are characteristic of those 
seen with weight change in other settings [20, 35, 36]. We 
see a decrease in the TG/total lipids ratio across LDLs and 
VLDLs in participants in the intervention group, with what 
appears to be a corresponding increase in the total choles-
terol and/or cholesteryl ester/total lipids ratio in a similar 
subset of lipoproteins as would be expected given the previ-
ously characterised decrease in hepatic production of VLDL 
TG following dietary weight loss in type 2 diabetes [37]. 
These effects are in keeping with the proposed mechanism 
by which excess TG in the circulation triggers the trans-
fer of TGs from the core of TG-rich lipoproteins to LDL 
in exchange for cholesteryl esters by the cholesteryl ester 
transfer protein [38].

The metabolic profile at 12 months was also correlated 
with change in HbA1c, demonstrating the ability of the inter-
vention-associated metabolites identified to capture changes 
in glycaemic health as expressed by traditional clinical bio-
markers. However, we also found evidence of subtle dif-
ferences in the metabolome of those who achieved type 
2 diabetes remission as compared with those that did not 
despite similar levels of weight loss. For example, among 
those individuals who lost the most weight (greater than 
9.0 kg) during the trial, those who also achieved diabetes 
remission showed greater decreases in glucose, fructose 
and mannose, as compared with those who did not achieve 
remission. To some extent, this likely reflects the diagnos-
tic criteria on which remission status was based; indeed, 
1,5-anhydroglucitol (a proposed marker of short-term gly-
caemic control [39]) also appears in the list of metabolites 
that showed differential change by remission status. Based 
on the current analysis, we are unable to determine whether 
these differences reflect metabolic processes that contribute 
to remission or are simply a reflection of an individual’s 
current metabolic health status. Meanwhile, the correla-
tions observed between intervention-associated changes in 
metabolites and clinical indicators of liver health suggest 
that by conducting an in-depth analysis of metabolites in the 
presence of sustained improvements to liver health, as here, 
we can further investigate proposed biological systems, such 
as the twin cycle hypothesis [40], including in the context of 
variable individual response (see ESM Discussion).

Conclusion

In conclusion, we have characterised the impact of weight loss 
in type 2 diabetes at the level of the metabolome. The changes 
we observed were evident many weeks after the conclusion 
of the weight-loss phase of the intervention, indicating sus-
tained benefits to health. Our results suggest that previously 
described perturbations of metabolite profile in incident type 2 
diabetes are reversible with intentional weight loss while there 
is little evidence for any obvious adverse metabolic signals. 
The extent to which an individual’s metabolic profile is nor-
malised relative to the level seen in healthy control individu-
als requires further research. Of the clinical variables tested, 
weight change was most strongly correlated with the overall 
change in metabolic profile associated with the intervention. 
This suggests that weight change is upstream of many disease-
associated metabolite alterations, in line with growing consen-
sus of the importance of excess adiposity in the pathogenesis 
of diabetes and, as a treatment target, as reflected in recent 
ADA/EASD recommendations [41]. Use of data from an RCT 
of a clinically proven dietary intervention now adopted by the 
NHS for patients with type 2 diabetes makes these results both 
generalisable to the patient population and highly clinically 
relevant. Validation of our findings in larger studies and, in 
the case of MS data, the use of methods that allow absolute 
quantification is warranted. This work provides an opportunity 
for detailed comparisons of different weight-loss interventions 
(beyond weight and basic measures) in the future, including 
consideration of the multiple newly emerging pharmacologi-
cal therapies.
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