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Abstract

Several observational studies have reported an association between obesity and pri-

mary liver cancer (PLC), while the causality behind this association and the compari-

son of the risk effects of different obesity indicators on PLC remain unclear. In this

study, we performed two-sample Mendelian randomization (MR) analyses to assess

the associations of genetically determined liver fat, visceral adipose tissue (VAT), and

body mass index (BMI) with the risk of PLC. The summary statistics of exposures

were obtained from two genome-wide association studies (GWASs) based on the UK

Biobank (UKB) imaging cohort and the Genetic Epidemiology Research on Adult

Health and Aging (GERA) cohort. GWAS summary statistics for PLC were obtained

from FinnGen consortium R7 release data, including 304 PLC cases and 218 488

controls. Inverse-variance weighted (IVW) was used as the primary analysis, and a

series of sensitivity analyses were performed to further verify the robustness of

these findings. IVW analysis highlighted a significant association of genetically deter-

mined liver fat (OR per SD increase: 7.14; 95% CI: 5.10-9.99; P = 2.35E-30) and VAT

(OR per SD increase: 5.70; 95% CI: 1.32-24.72; P = .020) with PLC but not of BMI

with PLC. The findings were further confirmed by a series of MR methods. No evi-

dence of horizontal pleiotropy between these associations existed. Our study sug-

gested that genetically determined liver fat and VAT rather than BMI were

associated with an increased risk of PLC, which suggested that visceral fat distribu-

tion is more predictive of the clinical risk of PLC than common in vitro measures.
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What's new?

Obesity is associated with increased risk of primary liver cancer (PLC). However, the causality of

obesity in PLC is difficult to determine based on existing observational studies, and little is

known about whether specific fat distribution impacts PLC risk. Here, the authors employed

Mendelian randomization to investigate associations between PLC risk and genetically deter-

mined liver fat deposition and visceral fat distribution. Genetically predicted liver fat and visceral

adipose tissue (VAT) distribution were more strongly linked to increased PLC risk than body

mass index. VAT and especially fat deposition in the liver are promising clinical measures for

predicting PLC risk.

1 | INTRODUCTION

Primary liver cancer (PLC) is the sixth most commonly diagnosed can-

cer and the third leading cause of malignant tumor-related mortal-

ity.1,2 Hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (ICC) are the two principal classifications of PLC.

HCC accounts for approximately 80% of the overall PLC cases, fol-

lowed by ICC, which represents 14.9% of cases.3 The most common

cause of PLC is chronic viral hepatitis (including hepatitis B or hepati-

tis C virus); however, nonalcoholic fatty liver disease (NAFLD) is pro-

jected to emerge as the leading cause of PLC in many countries in the

near future.4 As the underlying condition of NAFLD, obesity has been

reported to be independently associated with an increased risk of PLC

in a majority of previous observational studies.5-7

Due to the convenience of measurement, body mass index (BMI)

is most commonly used as an indicator of obesity. However, as an

indirect indicator, BMI only reflects overall obesity and fails to account

for the distribution of fat (ie, central, peripheral or in a specific organ).8

Visceral adipose tissue (VAT) and liver fat, indicators of abdominal obe-

sity and ectopic fat deposition in the liver, respectively, have become

preferable indicators reflecting the distribution of fat and discriminating

obesity-related disease risk, which can be accurately measured by

magnetic resonance imaging (MRI) or computed tomography (CT).9,10

Several observational studies also previously demonstrated that VAT

and liver fat were independent risk factors for PLC.11,12 Although

associations between obesity and PLC were reported by these observa-

tional studies, it remains difficult to determine the causality behind

these associations due to the limitations of reverse causality and

confounding bias in observational studies. In addition, the comparison

of the detrimental effects of overall obesity and specific fat distribution

on PLC was rarely considered in previous studies.

Mendelian randomization (MR) has become a powerful method

to identify the potential causal relationship between risk factors and

diseases by utilizing single-nucleotide polymorphisms (SNPs) as

instrumental variants to effectively avoid the confounding and

reverse-causality biases of causal estimation and strengthen causal

inference.13-15 In this study, we performed two-sample MR analyses

to assess the association of genetically determined obesity with the

risk of PLC and to compare the strength of the predictive effect of

different indicators that reflect overall obesity and specific fat

distributions on PLC risk.

2 | DESIGN AND METHODS

2.1 | Study overview

We employed genetic variation as an instrumental variants to assess the

associations of genetically determined overall obesity (BMI) and fat distri-

bution (ectopic fat deposition [liver fat], abdominal obesity [VAT]) with

PLC utilizing MR methods. As depicted in Figure 1, three important

assumptions underpin the MR analysis. First, genetic variants proposed

as instrumental variables must be related to the exposures. Second,

genetic variants must be independent of all potential confounders. Third,

genetic variants must affect the outcomes only through the exposures,

not via alternative pathways. The summary data of the genetic variants

used in this study were obtained from three publicly available genome-

wide association studies (GWASs) of patients of European ancestry.

2.2 | Data sources for instrument-outcome
associations

The summary statistics for liver fat and VAT were obtained from the

GWAS based on the UK Biobank (UKB) imaging cohort of patients of

European ancestry, which produced the largest sample size (including

measurements of liver fat in 32 858 patients and VAT in 32 860 patients)

for data of abdominal imaging-derived phenotypes, where liver fat and

VAT were calculated with percentage and volume as continuous variables,

respectively (GWAS ID of liver fat: ebi-a-GCST90016673; GWAS ID of

VAT: ebi-a-GCST90016671).16 We acquired genetic variants of BMI from

a GWAS based on the large, ethnically diverse Genetic Epidemiology

Research on Adult Health and Aging (GERA) cohort with 427 509 calen-

dar year-averaged BMI measurements from 100 418 adults, including

315 347 European-ancestry BMI measurements in the MRC-IEU Project

(GWAS ID: ebi-a-GCST006368).17 GWAS summary statistics for the

outcome of PLC were obtained from FinnGen consortium R7 release

data, and the phenotype “malignant neoplasm of liver and intrahepatic
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bile ducts” was adopted in the present study, which included 304 PLC

patients and 218 488 controls (GWAS ID: finn-b-C3_LIVER_INTRAHE-

PATIC_BILE_DUCTS).18 FinnGen is a public-private partnership

research project that combines imputed genotype data generated

from newly collected and legacy samples from Finnish biobanks

and digital health record data from Finnish health registries

(https://www.finngen.fi/en) with high coverage of Finnish

descent.18 All the aforementioned GWASs were available from the

IEU GWAS database (https://gwas.mrcieu.ac.uk/).

2.3 | Genetic instrument selection

In this study, all genetic variants significantly associated with the

exposures (P < 5 � 10�8) were identified, and only those that were

not in linkage disequilibrium with other SNPs within a 5000 kb win-

dow with a threshold of r2 < 0.3 were considered instrumental vari-

ants of the exposures. To ensure that the genetic instruments could

link the exposure to outcome, SNPs that were not available in the out-

come dataset were excluded. The intensity of instrumental variants

was assessed by calculating the F-statistic via the formula

F¼ N�K�1
K

� �
R2

1�R2

� �
, where R2 represents the proportion of the varia-

tion in exposures explained by the SNPs, N represents the sample size

and K represents the number of SNPs in genetically proxied expo-

sures.19 An F-statistic of at least 10 was required to rule out bias from

weak instrumental variables.20 Ultimately, 37 SNPs for liver fat, 8

SNPs for VAT and 353 SNPs for BMI were selected as genetic instru-

ments in this MR study. The characteristics of all SNPs used as instru-

mental variants are presented in Tables S1-S3.

2.4 | Mendelian randomization estimates

A series of two-sample MR studies were conducted to explore the

associations of genetically determined liver fat, VAT and BMI with

PLC. In the primary analysis, inverse-variance weighted (IVW) was

used to examine the effect of genetically determined liver fat, VAT

and BMI on the risk of PLC.13 For each genetic variation that satis-

fied the instrumental variable hypothesis, IVW used a meta-analysis

approach combined with the Wald estimates for each SNP result to

obtain an unbiased overall estimate.21 In the sensitivity analyses,

penalized IVW, maximum likelihood, MR-robust adjusted profile

score (MR-RAPS) and MR-pleiotropy residual sum and outlier

(MR-PRESSO) were applied to further validate the robustness of the

primary analysis by their respective strengths. Penalized IVW can

improve the robustness and accuracy of estimates by attenuating

partial candidate instruments.22 When standard errors are corrected

for the presence of many weak instruments, maximum likelihood can

provide unbiased robust estimates.23 In addition, MR-RAPS corrects

for horizontal multiplicity by using robust adjusted contour scores,

thereby reducing the bias caused by horizontal multiplicity.24 Finally,

MR-PRESSO was utilized to automatically detect outliers in IVW lin-

ear regression and provide corrected MR estimates with outlier

correction.25

Cochran's Q statistic was calculated to quantify the heterogeneity

among the genetic instruments and provide evidence for selecting the

appropriate analytical methods.26 In addition, we employed the inter-

cept term of MR-Egger regression methods to reflect directional hori-

zontal pleiotropy across all variants.27 The iterative “leave-one-out”
analysis was performed by omitting each instrument SNP in turn to

determine whether the results were caused by any individual SNP.25

Additionally, the statistical power of this MR study was evaluated

using a noncentrality parameter-based approach on a publicly avail-

able mRnd web tool (https://shiny.cnsgenomics.com/mRnd/).28

The results in this study are presented as odds ratios (ORs) per

SD increase with 95% confidence intervals (95% CIs). All statistical

tests were 2-sided, and a P value <.05 was considered to indicate sta-

tistical significance. All statistical analyses were carried out using the

“MendelianRandomization”, “TwoSampleMR”, “MR-PRESSO”, “gtx”
and “mr.raps” packages in R software, Version 4.2.3.

F IGURE 1 Conceptual
framework for this two-sample
Mendelian randomization study
on the association of overall
obesity and fat distribution with
primary liver cancer.
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3 | RESULTS

3.1 | Instrumental variants

Table 1 presents a characteristic overview of the instrument

variants employed in this MR study, with further details available in

Tables S1-S3. As displayed in Table 1, the phenotypic variances of

liver fat, VAT and BMI interpreted by the corresponding instrumental

variants were 10.43%, 0.86% and 5.90%, respectively. The F-statistics

for the genetic instruments of liver fat, VAT and BMI were 103.24,

35.48 and 55.89, respectively, indicating that the bias of weak instru-

ments in this MR study was almost nonexistent.

3.2 | Effect of genetically determined fat
distribution on PLC

Since a P value >.05 for the Cochran's Q statistic test indicated that

there was no heterogeneity among the instrumental variants, fixed-

effect IVW models were employed in the primary analysis (Table S4).

As shown in Figure 2, the results of the primary IVW analysis

highlighted a significant association of genetically determined liver fat

(OR per SD increase: 7.14; 95% CI: 5.10-9.99; P = 2.35E-30) and VAT

(OR per SD increase: 5.70; 95% CI: 1.32-24.72; P = .020) with PLC

but not of BMI with PLC (OR per SD increase: 1.53; 95% CI:

0.99-2.38; P = .058). Consistent with the stronger OR of liver fat, it

could be inferred that genetically determined liver fat may have a

more significant effect on PLC than genetically determined VAT, while

BMI does not exhibit these associations.

3.3 | Sensitive analyses

In the sensitive analyses, a significant association of increased geneti-

cally determined liver fat percentage with the risk of PLC was further

confirmed by a series of MR methods, including penalized IVW (OR:

6.17; 95% CI: 4.30-8.78; P = 1.79E-23), maximum likelihood

(OR: 7.47; 95% CI: 5.31-10.51; P = 7.00E-31), MR-RAPS (OR: 7.29;

TABLE 1 Characteristics for the genetic variants used in present Mendelian randomization study.

Exposure SNPs Used SNPs Sample size Population Variance, %a F-statisticb Power, %c

Liver fat 41 37 32 858 European 10.43 103.24 100

Visceral adipose tissue 8 8 32 860 European 0.86 35.48 100

Body mass index 356 353 315 347 European 5.90 55.89 100

aPhenotypic variance explained by the corresponding genetic instruments in this Mendelian randomization study (Associations of liver fat/visceral adipose

tissue/body mass index with primary liver cancer).
bF-statistics that quantify the strength of the selected instrumental variables were done with the formula of F¼ N�K�1

K

� �
R2

1�R2

� �
, where R2 is the proportion

of variation in exposures explained by the SNPs, N is the sample size and K is the number of SNPs in genetically proxied exposures.
cPower was calculated using the previously described online method (https://shiny.cnsgenomics.com/mRnd/).

F IGURE 2 Summary Mendelian randomization estimates of the associations of liver fat/visceral adipose tissue/body mass index with primary
liver cancer.
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95% CI: 5.16-10.28; P = 1.00E-199) and MR-PRESSO (OR: 7.14; 95%

CI: 4.84-10.52; P = 7.52E-12). In addition, the association of geneti-

cally determined VAT with the risk of PLC were robust according to

the results of penalized IVW (OR: 5.70; 95% CI: 1.32-24.72; P = .020),

maximum likelihood (OR: 5.92; 95% CI: 1.33-26.39; P = .020), MR-

RAPS (OR: 5.87; 95% CI: 1.27-27.22; P = .024) and MR-PRESSO (OR:

5.70; 95% CI: 1.68-19.36; P = .027). Furthermore, although the asso-

ciation of BMI with PLC did not reach statistical significance in the pri-

mary analysis and other sensitivity analyses (P > .05), MR-PRESSO

(OR: 1.52; 95% CI: 1.04-2.23; P = .031) still implicated a potentially

detrimental role of BMI in the risk of PLC (Figure 2).

In addition, MR-Egger regression indicated no evidence of direc-

tional pleiotropy for the associations of genetically determined liver

fat (PIntercept = .415), VAT (PIntercept = .441) and BMI (PIntercept = .187)

with the risk of PLC. Associations between each instrumental variant

for liver fat and VAT and the risk of PLC are shown in Figure 3.

4 | DISCUSSION

In the present study, we performed two-sample MR methods to

investigate the potential causal associations between obesity and the

risk of PLC in the European population. Our study demonstrated that

of three indicators of obesity, genetically determined liver fat and

VAT (reflecting specific fat distribution), but not BMI (reflecting over-

all obesity), were significantly associated with PLC. Furthermore, the

comparison of ORs indicates a stronger effect of genetically deter-

mined liver fat on PLC than VAT. These results suggest that specific

fat distribution, especially ectopic fat deposition in the liver, is a major

determinant for PLC.

With recent advances in the treatment of HBV and HCV infec-

tion, the burden of PLC due to viral hepatitis is declining, while the

prevalence of NAFLD-related PLC is rising rapidly.4 As the underlying

condition of NAFLD, obesity has previously been reported to be inde-

pendently associated with an increased risk of PLC in substantial

observational studies. A meta-analysis including 28 prospective cohort

studies with 8 135 906 subjects indicated that obesity (high BMI) is

an independent risk factor for the occurrence of PLC (hazard

ratio = 1.69).7 Another study utilized the Liver Cancer Pooling Project

(LCPP), based on a consortium of 13 US prospective cohort studies

with data from 1 541 143 people, and found that obesity was associ-

ated with a 62% increased risk of ICC.6 Moreover, a comprehensive

systematic literature review and meta-analysis of observational stud-

ies showed that higher body fatness at a young age increased the risks

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 3 Associations of SNPs for liver fat/ visceral adipose tissue/ body mass index with primary liver cancer. (A) Scatter plot for SNPs of
liver fat associated with primary liver cancer; (B) Scatter plot for SNPs of visceral adipose tissue associated with primary liver cancer; (C) Funnel
plot for instrumental variables of liver fat in relation to primary liver cancer; (D) Funnel plot for instrumental variables of visceral adipose tissue in
relation to primary liver cancer; (E) Forest diagram for leave-one-out of the association between liver fat variants and primary liver cancer and
(F) Forest diagram for leave-one-out of the association between visceral adipose tissue variants and primary liver cancer.
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of developing HCC later in life.5 However, given that observational

studies inevitably have confounding and reverse causality bias due to

the methodological limitations, the MR method can be used to com-

pensate for these defects.29 In addition, previous studies mostly used

indicators that reflect overall obesity as exposures while ignoring

some indicators that can reflect specific fat distribution. Therefore,

we used MR methods to test the effects of genetic predisposition to

exposures on outcomes, eliminating confounders and reverse causal-

ity to assess and compare the causal effects of different indicators

reflecting overall obesity (BMI) and specific fat distributions (VAT and

liver fat) on the risk of PLC.

As the predominant indicator for assessing obesity, BMI has some

inevitable drawbacks. It can only reflect overall obesity, neglecting fat

deposition in specific areas,8 rendering it inadequate for a comprehen-

sive explanation of the pathophysiological mechanisms associated

with the development of PLC. With the development of imaging

technology and superiorities in medical artificial intelligence, we can

use MRI to calculate fat levels in specific parts of the body, which is

generally regarded as the gold standard for the measurement of body

composition.16 VAT and liver fat are two indicators reflecting

abdominal obesity and ectopic fat deposition in the liver, respectively.

Studies have reported that a large amount of VAT contributes to a

high prevalence of NAFLD, supporting the utilization of these two

indicators for a more accurate interpretation of the mechanisms

underlying NAFLD-related PLC.30 With the help of MRI and

image processing technology such as triple-echo chemical shift MR

technology, we can calculate the volume of VAT and percentage of

liver fat precisely and assess their levels.31

Our study revealed that genetically determined liver fat and VAT,

as opposed to BMI, were significantly associated with PLC, which pro-

vided several referential clinical inspirations. Certain individuals may

have a normal BMI with nonvisible abdominal obesity or ectopic fat

deposition in the liver,10 resulting in missed screening and surveillance

for PLC in this population. Thus, employing in vitro measures such as

BMI as an indicator of obesity to screen the population at high risk of

PLC may be limiting. Therefore, it may be practical to conduct a fur-

ther comprehensive assessment in conjunction with imaging examina-

tions to assess VAT and liver fat levels instead of focusing solely on

BMI, thereby screening high-risk groups and monitoring them more

frequently for PLC. In addition, effective preventive measures such as

a healthy low-fat diet and even the application of relevant

lipid-lowering drugs in patients with high VAT and liver fat are

of great significance for the secondary prevention of PLC. More

experimental studies are needed to explore the effect of fat distribu-

tion on PLC clinical risk by intervening in VAT and liver fat.

Liver fat deposition leads to NAFLD, nonalcoholic steatohepatitis

(NASH) and cirrhosis, eventually leading to PLC, which is the main

mechanism by which obesity leads to PLC,32 and previous studies

have reported some of the molecular mechanisms involved. The

low-grade chronic inflammatory environment of obesity facilitates

macrophage aggregation and the large release of proinflammatory

cytokines (eg, tumor necrosis factor alpha [TNF-α] and interleukin

[IL]-6), affecting key signaling pathways and leading to progression

from hepatic steatosis to more advanced NAFLD and NASH.33,34

Fat-induced TNF-α leads to insulin resistance by inducing activation

of the JNK signaling pathway and is involved in cell apoptosis, prolif-

eration and angiogenesis of gene transcription, while IL-6 activates

STAT3 and promotes cell growth and differentiation.35,36 In addition,

IL-1 and TNF-α are key to both liver fat accumulation (NAFLD) and

fat-induced liver inflammation (NASH) via TNFR6 signaling.33 In

addition, oxidative stress caused by liver fat activates immune cells in the

liver, produces large amounts of reactive oxygen species and exacerbates

liver damage and fibrosis, playing an important role in the progression of

NAFLD to PLC.37 Moreover, it was documented that liver fat is associ-

ated with the generation of lipotoxic lipid species (eg, triacylglycerols,

diacylglycerols and sphingolipids), which further contributes to NAFLD.38

Furthermore, metabolic disorder, driven by excessive obesity in the

context of high leptin and low adiponectin, leads to the progression of

NAFLD and hepatocellular carcinomas.39,40

To our knowledge, this is the first study using BMI, VAT and liver

fat as indicators of obesity to explore the associations between genet-

ically determined obesity and PLC by the MR method, with almost

negligible bias of weak instrumental variants and horizontal pleiotropy.

Moreover, our conclusions were corroborated by multiple sensitivity

analyses, suggesting higher robustness of the findings. However, there

are several undeniable limitations of this study. First, the number of

PLC cases accounted for a relatively low proportion of the total sam-

ple size in the original GWAS, which may affect the statistical power,

and no other suitable large-sample GWAS of PLC is available for repli-

cation.14 However, we ensured that the study had high statistical

power (100%) through authoritative online calculations. Second, plau-

sible heterogeneity may exist among the participants of the exposure

cohorts (GERA and UKB) and the outcome cohort (FinnGen), which

might have potentially influenced the findings of our two-sample

Mendelian randomization study.41 Third, given that GWASs are a

meta-analysis of multiple population studies without individual-level

data, it is difficult to completely rule out potential population stratifi-

cation bias. However, the population in our study was mostly from

European backgrounds; thus, the possibility of population stratifica-

tion bias was minimal. Fourth, we cannot rule out the possibility that

the Finnish population is a genetic isolate, which may cause biased

estimation of the relationships between risk loci for liver fat, VAT and

BMI with PLC. Future studies based on large-sample GWASs of PLC

covering the entire European population are needed to validate our

findings. Fifth, the accurate calculation of VAT and liver fat is particu-

larly dependent on image processing software and AI algorithms. In

the future, more advanced processing software and algorithms are

needed to accurately calculate VAT and liver fat to better predict PLC.

In summary, our study suggested that genetically determined liver

fat and VAT but not BMI were significantly associated with an

increased risk of PLC, which suggested that visceral fat distribution is

more predictive of the clinical risk of PLC than common in vitro mea-

sures. Therefore, it is of great practical significance for the clinical pre-

vention of PLC to screen high-risk groups by evaluating VAT and liver

fat levels with internal imaging examination. In the future, more high-

quality GWASs of total PLC as well as the HCC and ICC subtypes
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based on the same large-sample population are needed to conduct

subgroup analyses to verify and supplement our findings.
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