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SUMMARY
Organisms must adapt to fluctuating nutrient availability to maintain energy homeostasis. Here, we term the
capacity for such adaptation and restoration ‘‘metabolic elasticity’’ and model it through ad libitum-fasting-
refeeding cycles. Metabolic elasticity is achieved by coordinate versatility in gene expression, which we call
‘‘gene elasticity.’’ We have developed the gene elasticity score as a systematic method to quantify the elas-
ticity of the transcriptome across metabolically active tissues in mice and non-human primates. Genes
involved in lipid and carbohydrate metabolism show high gene elasticity, and their elasticity declines with
age, particularly with PPARg dysregulation in adipose tissue. Synchronizing PPARg activity with nutrient
conditions through feeding-timed agonism optimizes their metabolic benefits and safety.We further broaden
the conceptual scope of metabolic and gene elasticity to dietary challenges, revealing declines in diet-
induced obesity similar to those in aging. Altogether, our findings provide a dynamic perspective on the dys-
metabolic consequences of aging and obesity.
INTRODUCTION

Aging is a complex biological process characterized by long-term

deterioration of bodily functions. The multifactorial nature of the

aging process—including contributions from genetics, environ-

ment, diet, and lifestyle—crystallizes within a gradually evolving,

ultimately maladaptive metabolic response to nutrient environ-

ments. The importance of such age-related disruption of nutrient

sensing to health and longevity is reflected in the impact of genet-

ically or pharmacologically manipulating key nutrient-sensing

pathways, including those downstream of insulin/insulin growth

factor (IGF), mTOR, AMPK, and sirtuins.1–3 A hallmark of aging is

decliningmetabolic flexibility, which refers to the inefficient switch

of fuel utilizationbetween carbohydrates and fatty acids according

to their relative availability.4–6 Although metabolic flexibility nicely

describes discrete biochemical adjustments that occur during

the transition between feeding states, it does not speak to the

broader battery of physiologic changes that defendmetabolic ho-

meostasis against the challenges of daily life.

In a modern society, nutrient scarcity is usually transient and

often quickly reverts to nutrient abundance, requiring the body to

adapt its metabolic program accordingly. The ability to efficiently

redirect and then restoremetabolic processes in response to tem-

porarystresses isnotaccuratelydescribedbyexisting terminology

such as metabolic flexibility. Here, we introduce ‘‘metabolic elas-

ticity’’ to signify the ability of an organism to respond to a distur-
Cell Metabo
bance in energy balance and return to its baseline metabolic ho-

meostasis. Metabolic elasticity likely relies upon underlying

elasticity in theexpressionofmetabolically relevant genes. Inorder

to characterize this relationship, we developed a scoring system

that integrates gene-expression dynamics, restorability, and sta-

tistical significance in key metabolic organs during an ad libitum-

fasting-refeeding (AL-F-R) cycle. Using this rubric, we discovered

aging-associateddeclines inbothmetabolic andgene-expression

elasticity. Importantly, we identified PPARg as the top transcrip-

tional regulator of elastic genes in adipose tissue. Manipulating

gene-expression elasticity by reinforcing PPARg activity results

in a feeding status-dependent improvement in metabolic health.

To broaden the metabolic elasticity concept, we examined the

metabolic elasticity and gene elasticity score (GElaS) in diet-

induced obesity and found similar impairments in metabolic and

gene-expression elasticity as in aging. In sum, our study intro-

duces metabolic elasticity as an effective means of assessing

metabolic health and a feasible strategy to curbmetabolic decline

in aging and obesity.
RESULTS

Developing a gene-expression elasticity score system to
quantify metabolic elasticity
Organisms often enter an energy-conserving adaptive state

upon caloric deprivation and revert to the previously established
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homeostatic state after resolution of the disturbance, requiring

the body to expediently redirect metabolic processes to tightly

maintain energy balance. We adopt the term ‘‘metabolic

elasticity’’ to describe the efficiency of such adaptation. We

see metabolic elasticity play out, for example, in the reduction

and subsequent restoration of the metabolic parameters such

as circulating levels of glucose, insulin, and free fatty acids

(FFAs) across an AL-F-R cycle inmice (Figure 1A). Such elasticity

also manifests in other metabolic parameters such as body

weight, including both lean and fat components (Figure 1A).

Maintaining metabolic elasticity should largely rely upon

elastic alterations at the transcriptome level, which we refer to

as ‘‘gene elasticity.’’ To establish gene elasticity, we performed

RNA sequencing (RNA-seq) for four major metabolic organs,

including epididymal white adipose tissue (eWAT), subcutane-

ous WAT (sWAT), liver, and muscle, during an AL-F-R cycle in

healthy young mice (Figure 1B). As expected, the ad libitum

and refeeding samples are largely grouped together while fasting

samples remain distinct in the principal-component analysis

(PCA), indicating that the transcriptome is elastic and can revert

to the pre-established baseline state after refeeding (Figure S1A).

‘‘Expression dynamics’’ is often used to describe alterations in

the transcriptome or gene expression between two metabolic

states. However, this term does not include the restoration of

the transcriptome to its original state following the resolution of

a nutrient challenge. We thus introduced an additional analytic

factor to expression dynamics—restorability—which represents

the extent to which genes can bounce back to their ad libitum

expression after an AL-F-R cycle (Figure 1C). In order to

concisely quantify this analysis, we developed the GElaS, which

integrates expression dynamics, restorability, and statistical sig-

nificance into a single metric of metabolic elasticity at the gene

level (Figure 1C) (detailed in STAR Methods).

GElaS correlates strongly with dynamic changes in gene

expression (i.e., fold changes between F and AL or R and F) dur-

ing the AL-F-R cycle. Genes with low GElaS change little in their

expression during fasting or refeeding, while those with high GE-

laS exhibit stronger changes in expression (Figures 1D and S1B).

We must emphasize that GElaS is not equivalent to expression

dynamics. Each tissue we examined expresses some genes

with low GElaS despite high expression dynamics during a

nutrient challenge (Figures 1E and S1C). This is because the inte-

grative design of GElaS also heavily weighs genes’ statistical sig-

nificance and restorability during an AL-F-R cycle (Figure S1D).

Elastic genes are enriched in lipid and carbohydrate
metabolism
To examine the functional relevance of GElaS, we ranked genes

according to their GElaS and conducted gene ontology (GO)

analysis in a sliding window of 500-gene width across the rank.

Genes with high GElaS are connected to a large number of GO

terms, while genes with low GElaS are much less related to bio-

logical pathways (Figures 1F and S1E). The GOs associated with

top GElaS genes are enriched in lipid and carbohydrate meta-

bolism (Figure 1G), congruent with the prominence of lipid-

and carbohydrate-metabolic genes among the highest GElaS:

Angptl8, Irf4, Dgat2, Pnpla3, Scd2, Lep, Acyl, and Pdk4 in the

eWAT and Angptl8, Gck, Igfbp1, Pcsk9, Cidec, Fgf21, and

Fasn in the liver (Figure 1H). Furthermore, the top 500 GElaS
1662 Cell Metabolism 35, 1661–1671, September 5, 2023
genes in distinct metabolic organs demonstrate significant over-

lap, with the highest degree of overlap observed between eWAT

and iWAT (Figures S1F and S1G), suggesting that the regulatory

mechanisms underlying GElaS tend to be conserved across

different organs.

Cell-type heterogeneity within each tissue7–9 calls into ques-

tion the specific source(s) of metabolic elasticity. We employed

several single-nucleus/-cell RNA-seq datasets to assess the dis-

tribution of elastic genes in different cell populations within each

organ. In adipose tissue, the genes with top GElaS are preferen-

tially expressed in adipocytes, while the genes with low GElaS

are broadly detected in all cell types (Figures 1I and S1H). Simi-

larly, the most elastic genes in liver are preferentially distributed

in hepatocytes (Figure S1I). Collectively, these data suggest that

metabolic elasticity arisesmainly from the definingmetabolic cell

type of each organ.

The enrichment of elastic genes in lipid and
carbohydratemetabolism is recapitulated in non-human
primates
The relevance of metabolic elasticity extends beyond mice to

non-human primates, as we observed during an AL-F-R cycle

in crab-eating macaques (Figure 2A). To test if the GElaS system

is applicable to higher mammals, we conducted RNA-seq fol-

lowed by GElaS analysis on biopsies of subcutaneous and

visceral (omental) WATs (sWAT and vWAT), liver, and muscle

from 12 adult crab-eating macaques (9.4–20.3 years old) during

ad libitum, fasting, and refed states (Figure 2B). Similar to our ob-

servations inmice, genes with high GElaS show stronger expres-

sion changes during the AL-F-R cycle than genes with lowGElaS

(Figures 2C and S2A). High-GElaS genes are also more con-

nected than low-GElaS genes to GO terms (Figures 2D and

S2B), particularly lipid and carbohydrate metabolism pathways

(Figures 2E and S2C). Indeed, key players in energy metabolism

feature prominently among the topmost elastic genes. These

include as PCK1, APOLD1, and SREBF1 in vWAT; SREBF1,

PCK1, and PNPLA3 in sWAT;GCK, FGF21, and SREBF1 in liver;

and DDIT4, SREBF1, and MYOD1 in muscle (Figures 2F and

S2D). To determine if the GElaS correlates across species, we

plotted the elastic genes with GElaS > 0.5 in each species and

found a clear positive association (Figures 2G and S2E). Key

metabolic regulators, including SREBF1, PCK1, and ANGPTL4,

number among the top elastic genes in both species (Figure 2G).

The poor correlation in sWAT may be due to distinct subcutane-

ous depots harvested from mice (inguinal) and monkeys

(abdominal). Also as in mice, overlaying single-nucleus gene-

expression data10 on GElaS reveals that gene elasticity tends

to be confined to the major metabolic cell type of each tissue

(i.e., adipocytes in WAT; hepatocytes in liver), while those with

low GElaS do not show cell-type specificity within tissues

(Figures 2H and 2I).

Metabolic elasticity and GElaS decline during aging
Although we have focused on nutrient conditions per se as

drivers of metabolic and gene elasticity, these effects depend

heavily on age. Aging blunts metabolic elasticity, significantly

attenuating the dynamism of multiple metabolic parameters

across the AL-F-R cycle, including fat and lean mass, blood

glucose, and FFA levels (Figures 3A and S3A). These age-related
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Figure 1. Gene elasticity is connected to major metabolism pathways

(A) Elastic changes of metabolic parameters including glucose, insulin, FFA, body weight, lean mass, and fat mass. The dots indicate the median values. The

boxes cover the range from 25% (Q1) to 75% (Q3) quantile (*p < 0.05, **p < 0.01, one-way ANOVA with Tukey’s test).

(B) A schematic diagram of RNA-seq samples of metabolic organs harvested at different nutrient states.

(C) Gene elasticity score (GElaS) is integrated from expression dynamics, restoration extent, and statistical significance during an AL-F-R cycle. AL, ad libitum; F,

fasting; R, refeeding.

(D) Dynamic changes of the high (top 500) and low (bottom 500) GElaS genes in eWAT during an AL-F-R cycle. Each group of genes is further divided into

fasting_up-refeeding_down (Up_Dw) and fasting_down-refeeding-up (Dw_Up) regulated subgroups. The distribution of gene expression (log2fragments per

kilobase per million [FPKM]) for each subgroup is plotted across AL, F, and R states. The violin plot indicates the distribution of gene expression. The dot is the

median value of gene expression. The box covers an expression range from 25% (Q1) to 75% (Q3) quantile (*p < 0.05, **p < 0.01, Mann-Whitney test).

(E) The relationship between dynamic changes (log2foldchange [FC] of expression) upon fasting (FvsAL) and GElaS in eWAT.

(F) The numbers of enriched GO (biological processes category) in a 500-gene window sliding across the GElaS rank in eWAT. The window slides with a 100-gene

step length from high to low GElaS.

(G) GOs enriched in genes with high (top 500) and low (bottom 500) GElaS are plotted across each examinedmetabolic organ. The criterion of enrichment is false

discovery rate (FDR) < 0.1. The lipid and carbohydrate biological pathways are enriched in high-GElaS but not low-GElaS genes.

(H) Top 20 elastic genes in each metabolic organ.

(I) The gene-expression distribution of genes with high (top 500) and low GElaS (bottom 500) across different cell populations in eWAT. The color indicates the

average expression of the high- or low-elastic genes in each cell type in the visualization of uniform manifold approximation and projection (UMAP).
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impairments in metabolic elasticity are likely driven by concor-

dant reductions in gene elasticity. Consistent with this possibil-

ity, lipid- and carbohydrate-metabolic pathways that are down-
regulated during aging11,12 are particularly enriched in highly

elastic genes (Figure 3B), supporting an interaction between GE-

laS and the aging process.
Cell Metabolism 35, 1661–1671, September 5, 2023 1663
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Figure 2. Gene elasticity in the non-human primate crab-eating macaques
(A) Elastic changes of metabolic parameters including glucose, insulin, and FFA during the AL-F-R cycle in crab-eating macaques. The dots indicate the median

values. The boxes cover the range from 25% (Q1) to 75% (Q3) quantile (*p < 0.05, **p < 0.01, one-way ANOVA with Tukey’s test).

(B) A schematic diagram for RNA-seq samples in the metabolic organs from the non-human primate crab-eating macaques.

(C) Dynamic changes in an AL-F-R cycle between the high (top 500) and low (bottom 500) GElaS genes in vWAT of crab-eating macaques. Up_Dw and Dw_Up

indicate the fasting_up-refeeding_down and fasting_down-refeeding-up regulated subgroups, respectively. The distribution of gene expression (log2FPKM) for

each subgroup is plotted across AL, F, and R states. The violin plot indicates the distribution of gene expression. The dot is the median value of gene expression.

The box covers an expression range from 25% (Q1) to 75% (Q3) quantile (*p < 0.05, **p < 0.01, Mann-Whitney test).

(D) The numbers of enriched GO (biological processes category) in a 500-gene window sliding from the high to low GElaS in vWAT. The step length is 100 bp for

slide-window analysis.

(E) Number of the gene in association with the lipid, glucose, and carbohydrate metabolism in the high (top 500) and low (bottom 500) GElaS genes in vWAT.

(F) Several key metabolic regulators such as PCK1, APOLD1, and SREBF1 are in the top of GElaS rank in vWAT. Circle color indicates the GElaS rank. y axis

represents the expression (log2FPKM). p value was calculated by limma and adjusted by Benjamini and Hochberg method (*FDR < 0.05, **FDR < 0.01).

(G) Scatterplot for elastic genes (GElaS > 0.5) in monkey and mouse. x axis is the log2(GElaS) for monkey, while y axis represents the log2(GElaS) for mouse. The

correlation analysis was performed by Pearson’s correlation.

(H and I) The gene-expression distribution of genes with high (top 500) and lowGElaS (bottom 500) across different cell populations in vWAT and liver, separately.

The color indicates the average expression of the high- or low-elastic genes in each cell type in the UMAP visualization.
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To examine the implications of gene elasticity for aging, we

calculated the number of aging-regulated genes (AR genes)11

within a 500-gene window sliding across GElaS rank. Across

all examined organs in both mouse and human, gene windows

at the high-GElaS end contain a larger number of AR genes
1664 Cell Metabolism 35, 1661–1671, September 5, 2023
(Figures S3B and S3C). Further, genes with high GElaS exhibit

age-related changes in expression that are greater in both

magnitude (Figures S3D and S3E) and dynamism (i.e., larger

standard deviations over time) (Figure S3F) than those genes

with low GElaS. In an expression-independent analysis, we
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Figure 3. Gene elasticity is impaired during aging

(A) The relative values of body weight, fat mass, lean mass, insulin, glucose, and FFA in one AL-F-R cycle. The values are normalized to the fasting state of young

and aged mice, respectively.

(B) The biological pathways in association with the elastic genes (blue) and the genes downregulated during aging (red).

(C) The GElaS distribution in young and aged samples. The box covers a GElaS range from 25% (Q1) to 75% (Q3) quantile. The black line in the box represents the

median value of GElaS. The statistical significance of GElaS average was conducted by Mann-Whitney test.

(D) The number of differential elastic genes between the young and aged mice. Up, upregulated genes; Dw, downregulated genes.

(E) Relative expression determined by real-time PCR for the differential elastic genes in eWAT. The gene expression is normalized to and scaled by the expression

of fasting state in both young and aged samples.

(F) Relative expression by real-time PCR for the differential elastic genes in liver.

(G) Functional enrichment (top 30) for the differential elastic genes with decreased GElaS during aging (eWAT).

Data are represented as mean ± SEM (A, E, and F). *p < 0.05, **p < 0.01, two-sided Student’s t test (A, E, and F) or Mann-Whitney test (C).
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employed genome-wide association study (GWAS) datasets

(GWAS Catalog of EBI, gwas_catalog_v1.0.2)13 and calculated

the number of genes bearing aging trait-associated SNPs in

elastic versus non-elastic genes. Across both WAT depots and

liver, we found a higher proportion of genes connected to aging

traits in the elastic group (Figure S3G), supporting the relevance

of gene elasticity to human genetics in the context of aging.

These results indicate that aging preferentially affects the

abundance of elastic genes (Figures S3D–S3F). However, it is

unknown if aging affects gene elasticity per se, as genes’ elastic-
ity depends on their response to nutrient fluctuations rather than

their transcript abundance. To directly assess the impact of ag-

ing on gene elasticity, we performed RNA-seq on metabolic or-

gans in 18-month-old mice during an AL-F-R cycle. In keeping

with the age-related loss of metabolic elasticity, GElaS declines

with age across all examined organs (Figure 3C). This concerted

loss of both metabolic and gene elasticity may explain the widely

appreciated decline in metabolic health during aging.5,14,15

To identify genes whose elasticity is most affected by

aging, we set
��GElaSaged �GElaSYoung

�� = jDGElaSj> 0:5 as the
Cell Metabolism 35, 1661–1671, September 5, 2023 1665
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Figure 4. PPARg agonist treatment in different nutrient status results in distinct metabolic consequences

(A) The TFs enriched in the genes with downregulated GElaS inWAT during aging. The rank is according to the average ranking score (yellow line) between eWAT

and sWAT. A smaller score represents a stronger enrichment. The red line indicates the number of tissues where TFs are significantly enriched.

(B) Gene network of PPARg’s target genes. The color indicates the DGElaS between the young and aged mice.

(C) A schematic diagram of workflows for Rosi treatment in IF treatment. Aged mice were subjected to IF and Rosi treatment (as described in STAR Methods).

(D) Body weight changes during the treatment. n = 18 (Veh), 18 (Rosi_Fast), and 15/17 (Rosi_Feed). The low asterisk indicates the statistical significance between

Rosi_Fast and Veh.

(E) Insulin tolerance test (ITT) for the Veh (n = 17), Rosi_Fast (n = 18), and Rosi_Feed (n = 14) groups. The high and low asterisks indicate the statistical significance

for Rosi_Fast versus Veh and Rosi_Feed versus Veh, respectively.

(F) Area under the curve (AUC) of ITT (%).

(G and H) Glucose tolerance test (GTT) and its AUC in the three groups of mice. n = 10/group. The high and low asterisks indicate the statistical significance for

Rosi_Fast versus Veh and Rosi_Feed versus Veh, respectively.

(legend continued on next page)
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cut-off for differential elastic genes—those whose elasticity

varies significantly with age. We identified 1,899, 2,052, 1,302,

and 1,155 differential elastic genes in eWAT, sWAT, liver, and

muscle, respectively, between young and aged mice (Figure 3D;

Table S1). Aging-related changes in gene elasticity are generally

tissue specific, but we have found a substantial number of differ-

ential elastic genes shared by eWAT and iWAT (Figures S3H–

S3K). The majority of differential elastic genes become less

elastic during aging (Figure 3D), consistent with the global GElaS

changes (Figure 3C). qPCR confirmed the decreased elasticity of

some key regulators of carbohydrate and lipid metabolism in

eWAT and liver (Figures 3E, 3F, and S3L). Furthermore, pathway

analysis of genes with reduced GElaS revealed significant

enrichment in lipid, carbohydrate, and sterol metabolism

(Figures 3G and S3M–S3O).

Metabolic elasticity is applicable to intermittent fasting
and diet challenge
As intermittent fasting (IF) is known to confer a variety of beneficial

effects on metabolic health in aging rodents,16,17 we next investi-

gated the impact of IF on metabolic elasticity. As expected, a

6-week IF treatment was sufficient to reduce body weight and

improve insulin sensitivity in agedmice (Figures S4A–S4C), attest-

ing to the success of our IF intervention. Indeed, this IF regimen

improved the elasticity of several metabolic parameters, including

body weight, fat mass, lean mass, and levels of insulin and lipids

(Figures S4A–S4C). These improvements in metabolic elasticity

with IFmirror those of gene elasticity, reflected in a generalized in-

crease in metabolic-gene GElaS across adipose tissue and liver

(Figures S4D–S4F). Interestingly, glucose elasticity decreased

rather than increased following IF (Figures S4A and S4C), due to

an IF-associated fall in glucose levels in both AL and R states (Fig-

ure S4B), and this change indicates bettermaintenanceof glucose

homeostasis.Overall, these data support a role for restoringmeta-

bolic elasticity in IF’s arrest of aging-related metabolic decline.

The findings presented thus far have been largely derived from

alternating fasting-refeeding nutrient challenges. To determine

whether metabolic elasticity can be applied to other types of

nutrient challenges, we fed 2- and 18-month-old animals a

high-fat diet (HFD) for 1 week, followed by 1-week chow diet re-

covery period (Figure S4G). Body weight, fat mass, insulin,

glucose, and FFA levels rose during theweeklong HFD treatment

in both young and old mice, but all of these changes reversed af-

ter switching back to chow diet (Figure S4H). However, the elas-

ticity of these parameters was higher overall in young mice than

in old mice (Figures S4I and S4J). These results suggest that

metabolic elasticity can be extended from a feeding-state-based

challenge to a diet composition-based challenge, while aging

impairs metabolic elasticity under each of these conditions.
(I) The global gene-expression changes induced by Rosi_Fast and Rosi_Feed trea

changes from 25% (Q1) to 75% (Q3) quantile. The dot in the box indicates the m

(J) The biological processes influenced by Rosi treatment were analyzed by GSEA

These pathways have a higher NES (normalized enrichment score) in Rosi_Feed

(K) The elastic scores of top-changed PPARg’s target genes in eWAT were deriv

(L) Representative images of bone marrow adiposity of the femurs from the Veh,

(M) Quantification of bone marrow adiposity in Veh (n = 18), Rosi_Fast (n = 17), a

(N) The expression of markers of cardiac hypertrophy and lipotoxicity in the hear

Data are shown as mean ± SEM (D–H, M, and N). *p < 0.05, **p < 0.01, one-way
Identification of PPARg as a key regulator of gene
elasticity in adipose tissues
Decreases in GElaS during aging suggest dysregulation of the

transcriptional response to nutrient fluctuations, in turn implicating

transcription factors (TFs). To identify potential transcriptional reg-

ulators of metabolic elasticity, we conducted TF-enrichment anal-

ysis by ChEA318 targeting genes exhibiting decreased elasticity in

adipose tissues (Figure 3D). The top candidates include a number

of crucial regulators of metabolism and adipogenesis, including

C/EBPa, FOXO1, KLF9, and SREBP1 (Figure 4A). Foremost

among these is PPARg, a key coordinator of glucose and lipid

metabolism.19,20 Treatment with thiazolidinedione (TZD) agonists

alleviates metabolic dysfunction and extends lifespan in aged

mice.21 Correspondingly, the majority of PPARg’s target genes

do exhibit decreased GElaS during aging (Figure 4B), further sup-

porting a role for its dysregulation in the aging-related decline of

metabolic elasticity.

If this were the case, optimizing PPARg activity would enhance

GElaS and metabolic health during aging. As PPARg activity is

induced by feeding and repressed by fasting,22,23 we sought to

reinforce its activity at its physiologic peak. To do so, we admin-

istered the TZD PPARg agonist rosiglitazone (Rosi) during the

feeding phase of IF in aged animals (Rosi_Feed) (Figure 4C).

As a control, we administered Rosi treatment during the

fasting phase to perturb the normal cycle of PPARg activity

(Rosi_Fast) (Figure 4C). IF augmented body-weight changes dur-

ing the fasting/feeding phase switch from approximately 6.5% to

10.5% after a 4-week treatment in the control group, indicating

an enhanced metabolic response to IF (Figure 4D). The body-

weight changes increased more quickly in the Rosi_Feed

group than controls but diminished in the Rosi_Fast group

(Figure 4D), indicating a stronger metabolic response in the

Rosi_Feed group. The Rosi_Feed treatment concordantly

improved insulin sensitivity (Figures 4E and 4F) and glucose

tolerance (Figures 4G and 4H), while Rosi_Fast attenuated the

drug’s ability to improve glucose tolerance and frankly worsened

insulin sensitivity.

Toassess the transcriptomiceffectsof theseTZDtreatment reg-

imens, we compared patterns of gene expression in eWAT and

sWAT, where PPARg is the most abundantly expressed.

Rosi_Feed treatment promoted global gene-expression changes

more strongly than Rosi_Fast (Figure 4I). Gene set enrichment

analysis (GSEA) showed that Rosi_Feed promoted pathways

related to mitochondrial metabolism and fatty acid catabolism in

adipose tissues, whereas Rosi_Fast blunted or even repressed

these gene-expression programs relative to vehicle control (Fig-

ure 4J). Thesedatademonstrate that themetabolic consequences

of PPARg activation are dependent on feeding state (Figures 4D–

4J), raising the question ofwhether such feeding-state-dependent
tment in eWAT and sWAT (Mann-Whitney test). The box covers a range of fold

edian value of gene-expression changes.

(gene set enrichment analysis). The selected pathways are plotted in heatmap.

group (NES > 2.5 and FDR < 0.05).

ed from the qPCR results.

Rosi_Fast, and Rosi_Feed group mice.

nd Rosi_Feed (n = 15) groups.

t of these mice (n = 6). Rpl23 was used as the reference gene.

ANOVA with Tukey’s test (D–H, M, and N) or Mann-Whitney test (I).

Cell Metabolism 35, 1661–1671, September 5, 2023 1667
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effects correlate with alterations in gene elasticity. We selected 11

PPARg targets based on theirDGElaS in adipose tissueduring ag-

ing (Figure 4B) and conducted qPCR in adipose tissue samples

from Rosi_Feed and Rosi_Fast groups. As expected, the gene-

expression elasticity of examined targets was enhanced in the

Rosi_Feed group but not in the Rosi_Fast group (Figure 4K),

reinforcing the PPARg-mediated connection between gene-

expression elasticity and metabolic health.

Despite the clear benefits of PPARg activation, clinical use of

TZD agonists has waned, due mainly to their significant adverse

effects. Given the feeding dependence of Rosi’s metabolic ben-

efits, we likewise considered whether its adverse effects vary

with nutrient status. Bone loss figures prominently among the

common side effects of TZDs because they tilt the balance of

skeletal remodeling toward marrow fat expansion.24 Although

Rosi treatment during the fasting phase significantly increased

marrow adiposity, Rosi treatment during the feeding phase did

not (Figures 4L and 4M). Cardiac hypertrophy is another major

side effect of TZDs, attributed to enhanced expression of pro-hy-

pertrophic genes and genes associated with lipid toxicity.25,26

We observed upregulation of pro-hypertrophic genes (Nppb,

Myh7, Acta1, and Bnp) and lipid-metabolic genes (Fasn,

Fabp4, Scd1, Cd36, Cpt1a, and Srebf1) predominantly in the

hearts of Rosi_Fast mice but not in the Rosi-Feed group (Fig-

ure 4N). These data indicate that synchronization of PPARg ag-

onism with its physiologic activity cycle can improve TZDs’ ther-

apeutic index, while dyssynchrony shifts their benefit-to-risk

ratio in the opposite direction.

The declines in metabolic elasticity and GElaS are
recapitulated in obesity
The results presented earlier have established metabolic elastic-

ity and GElaS as meaningful approaches for manifesting meta-

bolic decline associated with aging. To explore the potential

applicability of these concepts to other metabolic conditions,

we adopted a diet-induced obesity mouse model. 8 weeks of

HFD feeding led to significant increases in body weight and fat

mass, along with elevated glucose, insulin, and FFA levels in

the bloodstream (Figure S5A). We further evaluated the meta-

bolic plasticity of these parameters in an AL-F-R cycle and, not

unexpectedly, observed marked reductions in obese mice

(Figures 5A and S5B).

To evaluate the influence of obesity on GElaS, we conducted

RNA-seq on eWAT, sWAT, liver, and muscle from chow- and

HFD-fed animals (Figure S5C). First, we sought to account for

the significant change in adipose tissue cell populations that

occurs in obesity, notably including increased immune cell infil-

tration.27 We, therefore, asked whether the elastic genes under

HFD remained predominantly expressed in adipocytes, as

observed in lean mice (Figure 1I), or if their expression became

dispersed across different cell types. By comparing the high-GE-

laS genes with single-nucleus RNA-seq (snRNA-seq) data in

HFD-fed mice, we found that genes with high GElaS were still

preferentially expressed in adipocytes (Figures 5B and S5D).

Importantly, GElaS in HFD samples was significantly lower

across all examined organs compared with chow-fed controls

(Figure 5C). In line with this observation, the majority of HFD-in-

duced differential elastic genes were down-regulated (Figure 5D;

Table S2). The genes with decreased GElaS were predominantly
1668 Cell Metabolism 35, 1661–1671, September 5, 2023
involved in lipid, carbohydrate, and nucleotide metabolism

pathways (Figures 5E and S5E–S5G). Collectively, our results

demonstrate a significant decline in GElaS in metabolic organs

in diet-induced obesity, mirroring the pattern in aging

(Figures 3C and 3D).

Given that both aging and obesity lead to decreases in meta-

bolic elasticity and GElaS, we next asked whether these two

conditions similarly affected each gene.We observed a generally

positive correlation between obesity- and aging-induced GElaS

alterations (Figures 5F, 5G, S5H, and S5I). Additionally, the dif-

ferential elastic genes in HFD-fed mice and aging exhibited sig-

nificant overlap (Figure S5J). Among the commonly affected

genes are many key metabolic regulators, such as Lep and

Fasn in eWAT, Lep and Acaca in sWAT, Srebf1 and Gck in liver,

and Lpl and Hk2 in muscle (Figures 5F, 5G, S5H, and S5I). Thus,

GElaS is modulated in a similar manner at the gene level in

obesity and aging, underscoring the intertwined nature of these

two health challenges.

DISCUSSION

We have developed the term metabolic elasticity to depict ani-

mals’ ability to switch to an adaptive metabolic state with

changes in nutrient availability and then back to the pre-estab-

lished state when nutrient conditions renormalize. Metabolic

elasticity likely arises from similar dynamism in the expression

of metabolism-related genes, which we term ‘‘gene’’ or ‘‘tran-

scriptome elasticity.’’ These concepts are particularly salient in

the context of aging and obesity, as we have discovered similar

age- and obesity-related impairments in both metabolic and

gene elasticity. We have also developed a system for quantifica-

tion of gene elasticity using GElaS. Genes with higher GElaS are

highly enriched in pathways of lipid and carbohydrate meta-

bolism, but their elasticity wanes with age and obesity. Our find-

ings contrast with existing, purely static transcriptomic studies of

aging and obesity in which thesemetabolic pathways are usually

overshadowed by predominant inflammatory pathways.7,11,12

Overall, our study provides a new angle on metabolic physiology

and gene-expression alterations in response to nutrient condi-

tions and highlights an elasticity strategy to curb metabolic

dysfunction.

One of the most striking findings in this study is the generalized

decrease of gene elasticity in aging and obesity, which raises

several further points. First, a decrease in elasticity can result

from compromised ability to enter an adaptive state upon nutrition

status changes and/or failure to return to the pre-established

metabolic state upon nutrient status restoration. To what extent

each of these possibilities contributes to elasticity reduction dur-

ing aging and obesity, and the mechanisms underlying these

different patterns, remain to be further explored. Second, there

is broad consensus that metabolic flexibility—the ability to adapt

to nutritional changes by switching fuel utilization between carbo-

hydrates and fatty acids—is impaired with aging and obesity.5,28

Although impaired metabolic elasticity and metabolic inflexibility

depict two related but distinct aspects of metabolic changes,

the causal relationship between them is currently unclear. Third,

many earlier studies on transcriptomic changes during aging

and obesity—some on quite a large scale7,8,12,29—are valuable

for having covered a broad range of cell types and aging time
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Figure 5. Gene elasticity is impaired during high-fat-diet-induced obesity

(A) The relative values of metabolic parameters including body weight, fat mass, lean mass, insulin, glucose, and FFA in one AL-F-R cycle between chow and

high-fat diet mice. The values are normalized to the fasting state of young and aged mice, respectively. Chow, chow diet; HFD, high-fat diet. Data are shown as

mean ± SEM (*p < 0.05, **p < 0.01, two-sided Student’s t test).

(B) The gene-expression distribution of genes with high (top 500) and low GElaS (bottom 500) across different cell populations in high-fat diet eWAT.

(C) The GElaS distribution in chow and high-fat diet samples. The black line in the box indicates the median value of GElaS. The statistical significance of GElaS

average was performed by Mann-Whitney test (*p < 0.05, **p < 0.01).

(D) The number of genes with up- and downregulated GElaS between chow and high-fat diet samples. Up, upregulated gene; Dw, downregulated gene.

(E) Functional enrichment (top 30) for the differential elastic genes with decreased GElaS during high-fat diet (eWAT).

(F and G) Scatterplot for DGElaS of AgedvsYoung and HFDvsChow in (F) eWAT and (G) Liver. x axis is the DGElaS for AgedvsYoung, while y axis represents the

DGElaS for HFDvsChow. The correlation analysis was conducted by Pearson’s correlation.
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points. Unfortunately, most, if not all, of these studies have

focused on a single metabolic state, such as ad libitum or fasting.

Failure to take into account feeding-state dynamics underesti-

mates the complexity of metabolic changes in aging and obesity,

favoring a dynamic and elastic interpretation of the transcriptomic

alterations in place of traditional static analyses.

Although GElaS often correlates with metabolic elasticity, we

do not intend to imply a direct causal relationship between tis-

sue-specific GElaS and systemic metabolic elasticity. GElaS de-

scribes changes at the transcriptome level in certain examined

tissues. It is conceivable that gene elasticity may exert pleio-

tropic effects on metabolic health. However, changes in gene

elasticitymay not directly translate into alteredmetabolic elastic-
ity, as metabolic elasticity, conveyed by different metabolic pa-

rameters, can be influenced by various factors at the systemic

and local levels. Furthermore, the same gene often shows

different GElaS alterations in different organs (Figures S3H–

S3K) because its expression regulation can be heavily influenced

by distinct cellular environments. As such, establishing general

causal connections between GElaS of specific genes in a partic-

ular organ and particular aspects of metabolic elasticity remains

challenging.

Our work puts forth an innovative concept—metabolic elastic-

ity—to describe the dynamic nature of metabolic processes

required for maintaining energy homeostasis during environ-

mental fluctuations. Further, we have developed GElaS to depict
Cell Metabolism 35, 1661–1671, September 5, 2023 1669
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the elasticity of gene expression that underlies metabolic

elasticity. These concepts have enabled us to reveal aging-

and obesity-induced declines in elasticity at both the physiolog-

ical and transcriptomic levels.We foresee this concept of elastic-

ity, approached using GElaS, extending to conditions beyond

aging and obesity, including diabetes, exercise, cancer, and

many others. We expect that all of these conditions can be re-

framed as dynamic and elastic processes rather than solely as

snapshots of single metabolic states or transitions.
Limitations of the study
In our study, we have established an elasticity score system to

quantify changes in metabolic and gene elasticity associated

with aging and obesity. However, manipulating the GElaS of a

particular gene to investigate its specific influence on metabolic

health still presents a significant challenge for the field. Although

the gene elasticity profile has been provided for the major meta-

bolic organs during aging and obesity, the protein and metabo-

lite elasticity have not been evaluated, and how they change is

still unknown in aging and obesity. The datasets are generated

from the male animals, which limits the observation for the

female animals. Moreover, having human metabolic and gene

elasticity data would provide more information for clinical

medicine.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Crab-eating macaques (Macaca

fascicularis): visceral (omental) white

adipose

HuaZheng Laboratory

Animal Breeding Centre

N/A

Crab-eating macaques (Macaca

fascicularis): subcutaneous white adipose

HuaZheng Laboratory

Animal Breeding Centre

N/A

Crab-eating macaques (Macaca

fascicularis): liver

HuaZheng Laboratory

Animal Breeding Centre

N/A

Crab-eating macaques (Macaca

fascicularis): muscle

HuaZheng Laboratory

Animal Breeding Centre

N/A

Chemicals, peptides, and recombinant proteins

Rosiglitazone Abcam Ab12461

Trizol Sigma T9424

NucleoSpin RNA Set for NucleoZOL Macherey-Nagel 740406

High-Capacity cDNA Reverse

Transcription Kit

Applied Biosystems

(Fisher Scientific)

43-688-14

AzuraView GreenFast qPCR Blue Mix LR Azura Genomics 50737RC103

Deposited data

RNA-seq data for eWAT, sWAT, liver, and

muscle during the AL-F-R cycle in young

and aged mice

This paper NGDC (https://ngdc.cncb.ac.cn):

CRA008068.

RNA-seq data for the biopsies from liver,

muscle, subcutaneous and visceral

(omental) white adipose tissues in Crab-

eating macaques (Macaca fascicularis)

during the AL-F-R cycle

This paper NGDC (https://ngdc.cncb.ac.cn):

CRA008075.

RNA-seq data for the Rosi-treatment This paper NGDC (https://ngdc.cncb.ac.cn):

CRA008081.

RNA-seq data for eWAT, sWAT, liver, and

muscle during the AL-F-R cycle in chow and

high-fat diet mice

This paper NGDC (https://ngdc.cncb.ac.cn):

CRA010713.

Mouse reference genome (GRCm39) GENCODE https://www.gencodegenes.org

Crab-eating macaques reference

genome (v6.0)

Ensembl https://www.ensembl.org

Single nuclei RNA-seq dataset for eWAT

and sWAT in mouse

Emont et al.8 https://singlecell.broadinstitute.org/

single_cell/study/SCP1376/a-single-cell-

atlas-of-human-and-mouse-white-

adipose-tissue

Single cell RNA-seq dataset for Liver

in mouse

Tabula Muris Consortium https://github.com/czbiohub-sf/

tabula-muris

Single nuclei RNA-seq dataset for Crab-

eating macaques

Han et al.10 https://db.cngb.org/nhpca

Experimental models: Organisms/strains

Mouse (C57BL/6J) The Jackson Laboratory https://www.jax.org

Crab-eating macaques (Macaca

fascicularis)

HuaZheng Laboratory

Animal Breeding Centre

N/A

Oligonucleotides

Primers for this paper, see Table S3 This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Quality control of RNA-seq: fastqc v0.11.9 Andrews30 http://www.bioinformatics.babraham.ac.

uk/projects/fastqc

RNA-seq Mapping: STAR v2.7.7a Dobin et al.31 https://github.com/alexdobin/STAR

Counting reads: featureCounts v2.0.1 Liao et al.32 http://subread.sourceforge.net

R system: R v4.0.2 R Core Team https://cran.r-project.org

Programming environment of R: RStudio

v1.4.1103

RStudio Team https://www.rstudio.com

Input/Output data: data.table v1.14.3 Dowle and Srinivasan33 https://github.com/Rdatatable/data.table

Gene expression analysis: limma v3.44.3 Ritchie et al.34 https://bioconductor.org/packages/

release/bioc/html/limma.html

Functional enrichment analysis:

gprofiler2 (v0.2.0)

Kolberg et al.35 https://cran.r-project.org/web/packages/

gprofiler2/vignettes/gprofiler2.html

Functional enrichment visualization:

EnrichmentMap v3.3.2

Merico et al.36 https://apps.cytoscape.org/apps/

enrichmentmap

Cytoscape Shannon et al.37 https://cytoscape.org

Gene Set Enrichment Analysis (GSEA v4.0) Subramanian et al.38 https://www.gsea-msigdb.org/gsea/

index.jsp

TF enrichment analysis: ChEA3 Keenan et al.18 https://maayanlab.cloud/chea3

Single-cell analysis: Seurat v4.0.4 Hao et al.39 https://satijalab.org/seurat

Matrix analysis: matrixStats v0.58.0 Bengtsson40 https://CRAN.R-project.org/

package=matrixStats

Statistical analysis for matrix:

matrixTests v0.1.9

Koncevi�cius41 https://github.com/KKPMW/matrixTests

Statistical analysis: ggsignif v0.6.1 Constantin and Patil42 https://const-ae.github.io/ggsignif

Data visualization: ggplot2 v3.3.3 Wickham43 https://ggplot2.tidyverse.org

Data visualization: ComplexHeatmap

v2.7.6.1010

Gu et al.44 https://github.com/jokergoo/

ComplexHeatmap

Quantum FX mCT Scanner Perkin-Elmer CLS149276

Analyze 12.0 Analyze Direct N/A

Bio-rad CFX Conect, Real-Time system Bio-rad N/A

Bio-rad CFX Manager CFX Manager 3.1 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Dr. Lei Sun (sun.lei@duke-nus.

edu.sg).

Materials availability
This study did not generate unique reagents.

Data and code availability
The computer core code used for the data analysis in this paper is available at GitHub (https://github.com/zhouqz/GElaS). The RNA-

seq data for eWAT, sWAT, liver, and muscle during the AL-F-R cycle in young and aged mice are available at NGDC (https://ngdc.

cncb.ac.cn/): CRA008068. The RNA-seq data for the biopsies from liver, muscle, subcutaneous and visceral (omental) white adipose

tissues in Crab-eating macaques during the AL-F-R cycle are available at NGDC (https://ngdc.cncb.ac.cn/): CRA008075. The RNA-

seq data for the Rosi-treatment is available at NGDC (https://ngdc.cncb.ac.cn/): CRA008081. The RNA-seq data for eWAT, sWAT,

liver, andmuscle during the AL-F-R cycle in chow and HFDmice are available at NGDC (https://ngdc.cncb.ac.cn/): CRA010713. The

values used to generate graphs are available in Data S1. All other relevant materials and data supporting the major findings of this

study are provided in the article and its additional information files and are also available from the corresponding author on reason-

able request.
Cell Metabolism 35, 1661–1671.e1–e6, September 5, 2023 e2

mailto:sun.lei@duke-nus.edu.sg
mailto:sun.lei@duke-nus.edu.sg
https://github.com/zhouqz/GElaS
https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/alexdobin/STAR
http://subread.sourceforge.net
https://cran.r-project.org
https://www.rstudio.com
https://github.com/Rdatatable/data.table
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/gprofiler2/vignettes/gprofiler2.html
https://cran.r-project.org/web/packages/gprofiler2/vignettes/gprofiler2.html
https://apps.cytoscape.org/apps/enrichmentmap
https://apps.cytoscape.org/apps/enrichmentmap
https://cytoscape.org
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://maayanlab.cloud/chea3
https://satijalab.org/seurat
https://CRAN.R-project.org/package=matrixStats
https://CRAN.R-project.org/package=matrixStats
https://github.com/KKPMW/matrixTests
https://const-ae.github.io/ggsignif
https://ggplot2.tidyverse.org
https://github.com/jokergoo/ComplexHeatmap
https://github.com/jokergoo/ComplexHeatmap


ll
Resource
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
All mice (male, 2-18 months) were on C57BL/6J background and maintained under standard laboratory conditions with standard

chow diet (PicoLab rodent diet 20, 5053; Purina Mills). Mice were housed on a 12-hour light/dark cycle with free access to food

and water at an ambient temperature of 23 ± 1�C. The health status checks were conducted regularly in the animal breeding facility.

All animal experiments were performed in accordance with NIH guidelines for Animal Care and Use, approved and overseen by

Columbia University Institutional Animal Care and Use Committee (IACUC).

For glucose tolerance test (GTT), mice were fasted overnight for 16 hr (5 p.m. to 9 a.m.) and intraperitoneally injected with glucose

at a dose of 2 g/kg,BW. Blood glucose levels were measured at basal state (0 min) and then at 15, 30, 60, 90, and 120 minutes after

injection. Insulin tolerance test (ITT) was performed after a 4-hr (9 a.m. to 1 p.m.) fasting period through the intraperitoneal injection of

human insulin (0.75 U/kg,BW). Blood glucose levels were measured at the indicated times via tail vein bleeding using OneTouch

glucometer. We used Infinity Triglyceride Reagent (Thermo Scientific) and NEFA-HR (Fujifilm Wako) to measure plasma triglyceride

and FFA levels, respectively. Plasma insulin was measured using Insulin ELISA kit (Mercodia).

All experiments involving non-human primates in this study were reviewed and approved by the Institutional Animal Care and

Use Committee of HuaZheng Laboratory Animal Breeding Centre. The non-human primates (Macaca fascicularis, male, 9.4-20.3

years old) were housed in the animal facilitates in HuaZheng Laboratory Animal Breeding Centre and maintained on a regular

12-hour light/dark cycle with an ambient temperature of 18�26 �C. Each monkey was fed with unlimited food for a specific duration

(30 minutes) twice a day, once in the morning and once in the evening. Additionally, 150 g of fruit was provided between meals, also

for a specific period of time (30 minutes). The veterinarian performed two daily health status checks in the animal facilities regularly.

METHOD DETAILS

RNA extraction and Real-Time PCR
Young (2 months) and aged (18 months) animals were sacrificed at ad libitum, fasting (16 hours), and refeeding (4 hours food access

after 16 hours fasting) states to harvest the liver, gastrocnemius muscle, epidydimal adipose tissue (eWAT) and inguinal adipose tis-

sues (sWAT) from the animals at ad libitum, fasting, and refeeding states, separately. The animals began fasting at 5:00 -6:00 pm in

the AL-F-R cycle. Tissues were lysed with TriZol reagent (Thermo Fisher). After phase separation through the addition of chloroform,

RNA was isolated using the NucleoSpin RNA kit (Macherey-Nagel). cDNA was synthesized from 1 mg total RNA by using the High-

capacity cDNA Reverse Transcription kit (Applied Biosystems). Quantitative real-time PCR (qPCR) was performed on a Bio-Rad

CFX96 Real-Time PCR system using the GoTaq qPCRMaster Mix (Promega). Relative gene expression levels were calculated using

the DDCt method with Rpl23 or Cyclophilin A as the reference gene. The primer sequences are provided in Table S3.

RNA sequencing
The strand-specific RNA-seq libraries were prepared and sequenced by Novogene. The quality of RNAs and libraries were examined

with Agilent 2100. RNA-seq libraries were multiplexed and RNA sequencing were performed using the Illumina’s NovaSeq 6000 plat-

form. FastQC (v0.11.9) was used for the quality control of RNA-seq data.30

The calculation of gene expression elasticity
TheRNA-seq dataweremapped to themouse genome (GRCm39) using STAR (2.7.7a), and feactureCounts (v2.0.1) was employed to

compute the read counts for each gene in each sample.31,32,45 Then we employed limma (v3.44.3) to conduct the differentially ex-

pressed analysis.34 The read counts were normalized by the TMM (Trimmed Mean of M-values) method and converted to the gene

expression (FPKM, fragments per kilobase per million). The Gene Elastic Score (GElaS) was calculated as:

GElaS = Sign � ���log2 FCFvsAL

�� � FDRFvsALweight + jlog2 FCRvsF

�� � FDRRvsFweight

� � Ratio
Here : Sign =

�
1

�
log2 FCFvsAL � log2 FCRvsF

�
< 0

0
�
log2 FCFvsAL � log2 FCRvsF

�
R0
Ratio = min
�jlog2 FCFvsAL

��; jlog2 FCRvsF

��� �max
�jlog2 FCFvsAL

��; jlog2 FCRvsF

���
FDRweight =

�
1 FDR< 0:05

log 10ðFDRÞ=log 10ð0:05Þ FDRR0:05

Here, Log2FC is log2FoldChange of gene expression. During the FoldChange calculation, each FPKM value will increase by 0.5 to

avoid number zero in log-transformed. FvsAL is Fasting vs. Ad libitum, while RvsF represents Refeeding vs. Fasting. FDR is False
e3 Cell Metabolism 35, 1661–1671.e1–e6, September 5, 2023
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Discovery Rate. Ratio indicates the restorability. Formetabolic parameters and Real-Time PCR data, p-value was used instead of the

FDR to calculate the elastic score.

Analyzing the relationship between GElaS and gene expression dynamics, restorability, statistical significance
To check the relationship between GElaS and gene expression dynamics, genes were ranked according to their GElaS and selected

the high GElaS group (top 500 genes) and the low GElaS group (bottom 500 genes). The gene expression fold changes upon fasting

and refeeding were compared between the high- and low-GElaS groups (Figure 1D). Moreover, the Spearman correlation analysis

was conducted to investigate the relationship between the GElaS and gene expression dynamics (fold changes upon fasting and

refeeding), restorability (Ratio in the formula above), statistical significance (Figure S1D), separately.

Functional enrichment analysis of sliding windows
A sliding window approach was applied to check the functional relevance of GElaS. Genes were ranked according to their GElaS and

subjected to Gene Ontology (biological process category) analysis using gprofiler2 (v0.2.0)35 in a 500-genes window sliding with

100-genes step length across the GElaS rank (Figures 1F and 2D). TheGObiological pathways were filtered out with query genes < 4,

background genes > 1000, or background genes < 15. Benjamini–Hochberg method was used to adjust the p-value and remained

the GO biological pathway with a criterion of adjusted p-value < 0.1.

The distribution of elastic and non-elastic genes across different cell types in tissues
The single-nucleus RNA-seq (snRNA-seq) of adipose tissue and single-cell RNA-seq (scRNA-seq) of liver were used to investigate

the gene expression distribution of the high-(top 500) and low- (bottom 500) GElaS genes in different cell types.8,9 The gene expres-

sion of snRNA-seq and scRNA-seq from the previous studies were averaged for elastic (top-500) and non-elastic (bottom 500) genes

in each cell type.8,9 The 2D UMAP (Uniform Manifold Approximation and Projection) plot was employed to display the expression

distribution of elastic and non-elastic genes across different cell types (Figure 1I).

GElaS analysis in non-human primates
The non-human primate experiments were approved and overseen by Institutional Animal Care and Use Committee (IACUC) of

HuaZheng Laboratory Animal Breeding Centre. Animals were anesthetized with ketamine hydrochloride (10-20mg/kg) and pentobar-

bital sodium (8-15mg/kg) and biopsies were taken from liver, muscle, subcutaneous and visceral (omental) white adipose tissues

(sWAT and vWAT). For biopsies at ad libitum, a cohort of 12 adult Crab-eating macaques (Macaca fascicularis, 9.4-20.3 years

old) were included in this study. After the biopsy procedure, animals will rest at least 3 weeks to recover before next procedure.

For fasting biopsies harvest, animals were fasted for 24 hours with water access and taken biopsies, followed by another

3-weeks rest. The animals started the fasting at 10:00 am after breakfast. For refeeding biopsies, animals were fasted for 24 hours

and then fed for 6 hours before biopsy harvest.

We conducted the RNA sequencing for the harvest biopsies. We mapped the RNA-seq data to the Crab-eating macaque genome

(Macaca fascicularis v6.0) using STAR (2.7.7a)31 and calculated the read counts for each gene across the samples using feacture-

Counts (v2.0.1).32 We performed the paired RNA-seq analysis based on the read counts by limma (v3.44.3),34 followed by GElaS

analysis as described above. To examine the cross-species correlation of GElaS between mice and monkeys, we obtained the or-

thologous genes between Crab-eating macaque and mouse from biomart (https://www.ensembl.org/biomart/martview) and

compared the GElaS for elastic genes (GElaS > 0.5 in both species). The single nuclei RNA-seq data was used to examine the

cell type distribution between high (top 500) and low (bottom 500)-elastic genes in the non-human primate Macaca fascicularis.10

The influence of aging on the expression of elastic genes
The aging-regulated genes (AR-genes) list and gene expression in each tissue at different age points were obtained from the previous

study.11 The aging-regulated genes for humans were identified using the method described previously.11 The gene expression data

of human tissues at different ages were from GTEx.46 The individuals from 50-59 and 60-79 years (50_59Y and 60_79Y) were re-

garded as the aged samples while the ones from 20-29 years (20_29Y) were marked as the young samples. The gene differentially

expressed between (50_59Y vs. 20_29Y) or (60_79Y vs. 20_29Y) was defined as the AR-gene of human. If a gene showed opposite

directional changes in these two comparisons, it was excluded from AR-gene list. The AR-genes number and aging-induced expres-

sion changes were calculated in a 500-genes width window sliding across the GElaS rank with 100-genes step length. The numbers

of AR-genes and themedium value of aging-induced fold changes in each windowwere plotted across the GElaS rank. The standard

deviation of expression across all aging points (8, 26, 60, 78, 104-weeks) was used to evaluate the expression dynamic across the

aging course from 8- to 104-week-old.

The connection between gene elasticity and aging traits in humans
In an expression-independent analysis, the genes containing aging traits-associated SNPs were identified using the GWAS

(Genome-Wide Association Study) data (v1.0.2-associations_e104_r2021-09-23) from GWAS Catalog.13 A gene was categorized

as aging associated if its genomic region contains any SNP linked to aging traits (‘‘aging’’, ‘‘cognition, aging’’, ‘‘healthspan’’, ‘‘hip-

pocampal sclerosis of aging’’, ‘‘longevity’’, ‘‘longevity, aging’’, ‘‘longevity, healthspan, parental longevity’’, ‘‘parental longevity’’,

and ‘‘skin aging measurement’’). The orthologous genes between mouse and human were obtained from biomart (https://www.
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ensembl.org/biomart/martview) and matched from mouse to human. The number of genes containing aging traits-associated SNPs

in the elastic (top 1500) vs. non-elastic (bottom 1500) groups were compared to examine if gene elasticity is connected aging traits.

Identification of differential elastic genes between the young and aged mice
The genes were applied a cutoff of |GElaSAged � GElaSYoung

��=jDGElaSj > 0.5 to identify the differential elastic genes between the

young and aging mice. The biological pathway analysis of differential elastic genes was performed using gprofiler2 (v0.2.0).35 The

connection between the biological pathways was conducted using EnrichmentMap36 (Figure 3G).

Intermittent fasting and Rosiglitazone treatment
16-mon-old male C57BL/6J mice were subjected to 24-hour intermittent fasting starting at 5-6 pm every day for 6 weeks. Animals

weremonitored for weight changes and bodymass. GTT was performed at 5 weeks of IF after 24hr fasting, and ITT was performed at

5 weeks of IF after 4-hr fasting during the feeding phase. The temporal feeding behavior data during intermittent fasting were re-

corded (Table S4). Rosi (Rosiglitazone) (5 mg/kg$W) were given intraperitoneally to IF mice at a dosage of 5 mg/kg in every IF cycle

during the fasting (Rosi-Fast) or feeding phase (Rosi-Feed). We administered Rosi at a consistent time (5-6 pm, within 1-2 hours prior

to light off) for both Rosi-feed andRosi-fast groups, ensuring similar synchrony between circadian and pharmacological interventions

in both groups. PBS was injected in parallel with the feeding phase as the vehicle control (Veh). This dose is equal to 2.5 mg/kg daily

dose for regular treatment, for which reason the adverse effect on inducing bone loss by the 5-wk treatment was not obvious. The

eWAT and sWAT samples were collected at 3 days after the final Rosi administration, withmice returning to normal ad libitum feeding

in the interim to minimize potential acute effects of drug administration or severe metabolic challenges. We conducted the RNA-seq

for eWAT and sWAT from the vehicle control, Rosi-Fast, Rosi-Feed groups and investigated the expression changes of Rosiglitazone

treatment. GSEA (v4.0) was used to perform the Gene Set Enrichment Analysis and examine the effects of Rosiglitazone treatment in

the biological pathways.38

Transcription factor enrichment analysis
Transcription factor (TF) enrichment analysis was performed using ChEA3.18 ChEA3 integrates theChIP-Seq, co-expression, and co-

occurrence (biological function) to determine the target genes of TFs. For the TF enrichment analysis of the genes with down-regu-

lated GElaS during aging. We calculated the enrichment rank score for each TF by ChEA318 in the genes with down-regulated GElaS

during aging in eWAT and sWAT, separately. The average of enrichment rank score between eWAT and sWATwas computed and the

criteria of average score < 100 was adopted to identify the candidate TFs enriched in the genes with down-regulated GElaS during

aging (Figure 4A).

Bone processing and bone marrow fat analysis
Femurs were collected and fixed in 10% neutral buffered formalin (Sigma) overnight at 4 �C, and subsequently used for bone micro-

architecture analysis and bonemarrow fat quantification. For micro-architecture analysis, a Quantum FX mCT Scanner (Perkin-Elmer)

was used for scanning. For bone marrow fat quantification, femurs were decalcified in a 14% EDTA solution for at least 2 weeks with

frequent change of solution. The bones were then stained for 48 hours in 1% osmium tetroxide, 2.5% potassium dichromate solution

at RT, washed in tap water for at least 2 hours, and imaged by mCT. The software Analyze 12.0 was used to quantify lipid volume and

mCT scan parameters according to the bone micro-architecture add-on. Marrow adipose sections were determined based on

consistent 250 slice intervals measured from the identified growth plate of the femur.

Metabolic parameters in the chow-HFD-chow cycle during aging
Young (2 months) and aged (18 months) animals were undergone a chow-HFD-chow cycle, separately. The treatment for HFD and

chow diet followed by HFD are both for one week. The metabolic parameters including body weight, fat mass, and lean mass were

measured bymouseMagnetic resonance imaging (MRI) at start and end of HFD switch and at one week of chow diet after HFD treat-

ment. Tail blood were collected at these time points to measure glucose, insulin, and free fat acid (according to the above description

methods) in the chow-HFD-chow cycle for young and aged mice.

GElaS analysis during obesity
Mice at 8 weeks old were fed with HFD for 8 weeks and sacrificed at ad libitum, fasting, and refeeding states (as the above descrip-

tion). The epidydimal adipose tissue (eWAT), inguinal adipose tissues (sWAT), liver, and gastrocnemius muscle were harvested from

the animals in each state. We conducted the RNA sequencing for the metabolic organs in AL-F-R cycle during obesity. We mapped

the RNA reads to the mouse reference genomes using the STAR (2.7.7a)31 and calculated the read counts for each gene by feactur-

eCounts (v2.0.1).32 The R package, limma (v3.44.3) was used to conduct the differentially expressed analysis.34 GElaS was calcu-

lated as described above for the chow andHFDmice.We employed the same criteria to identify the differential elastic genes between

chow and HFD mice. The functional enrichment analysis was performed as described above for the genes with down-regulated

GElaS during obesity. The HFD snRNA-seq data was used to demonstrate the expression distribution for high (top 500) and low (bot-

tom 500) GElaS genes fromHFDmice.8 The relationship between AgedvsYoung andHFDvsChowwas conducted based on the Pear-

son’s correlation.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The one-way ANOVA with Tukey’s HSD post-hoc test was employed to calculate statistical significance for Figures 1A, 2A, 4D–4H,

4M, and 4N. The Mann-Whitney test was used to compute the p-value in Figures 1D, 2C, 3C, 4I, 5C, S1B, S2A, and S3F. The p-value

of Figure S3G was computed by the Chi-squared Test. The p-values in Figures 3A, 3E, 3F, 5A, S3A, S4A, S4B, S4D, S4E, S4H, S4I,

and S5A, were calculated by two-tailed Student’s t-test. No specific statistical method was employed to determine whether the data

exhibited aGaussian distribution. p-value in Figure S1Fwas computed by Fisher’s Exact test. A customary threshold of p-value < 0.05

was used to declare statistical significance. * and ** denote p-value < 0.05 and p-value < 0.01, respectively. Sample sizes are included

in the figure legends.
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