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Summary

It is increasingly assumed that there is no one-size-fits-all approach to dietary recom-

mendations for the management and treatment of chronic diseases such as obesity.

This phenomenon that not all individuals respond uniformly to a given treatment has

become an area of research interest given the rise of personalized and precision

medicine. To conduct, interpret, and disseminate this research rigorously and with

scientific accuracy, however, requires an understanding of treatment response het-

erogeneity. Here, we define treatment response heterogeneity as it relates to clinical

trials, provide statistical guidance for measuring treatment response heterogeneity,

and highlight study designs that can quantify treatment response heterogeneity in

nutrition and obesity research. Our goal is to educate nutrition and obesity

researchers in how to correctly identify and consider treatment response heteroge-

neity when analyzing data and interpreting results, leading to rigorous and accurate

advancements in the field of personalized medicine.
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1 | INTRODUCTION

In clinical trials, one may expect to observe consistent outcomes across

an entire treatment group. Even in tightly controlled experimental set-

tings, however, numerous measurable and unmeasurable factors could

contribute to differences in outcomes observed among experimental

units. Treatment response heterogeneity (TRH), or differences in treat-

ment effects, not merely differences in outcomes among persons, has

been explored in nutrition and obesity research with the rise in interest

in precision or personalized medicine by clinicians and scientists alike.1 A
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goal of characterizing and understanding TRH is to develop more per-

sonalized and tailored treatments based on individual characteristics that

have a higher likelihood of success.2 Classically, researchers have relied

on secondary analyses of clinical trials to estimate treatment effects for

subgroups of individuals that are determined by certain values of

genetic, behavioral, or metabolic variables. A treatment-by-subgroup

(e.g., sex, genotype, and presence/absence of metabolic disease) interac-

tion can be assessed to determine how treatment effects differ across

subgroups. However, individuals can belong to many subgroups, and the

reasons for a treatment effect following a dietary change or caloric

restriction (or any number of other interventions) cannot be simplified to

a single grouping factor. Ignoring these considerations can lead to mis-

characterization of treatment effects and will confuse, rather than

advance, the burgeoning field of personalized medicine. As the con-

sumer, clinical, and scientific interest in “responder analyses” and preci-

sion treatments continues to grow, understanding and implementing

proper design and analysis plans to investigate TRH are needed.3 In this

review, we aim to dispel a common misunderstanding of variability in

outcome as representing variability in treatment response, describe

study designs beyond a parallel randomized controlled trial (RCT) that

may offer a better opportunity to disentangle TRH, and outline consider-

ations for statistical analysis. Although we draw on several examples

from outside the nutrition and obesity field, similar principles and meth-

odology can be applied to obesity-related research.

2 | DEFINING TRH

2.1 | Change is not response

When assessing the degree of TRH in a study, a precise definition of a

true effect is needed to distinguish this from a change in an outcome

variable from one time point to the next, such as in a pre/post design

when two conditions are being compared in a study: a treatment (T) and

a control (C). Suppose that at a particular time, an outcome will be mea-

sured on an individual, for example, weight change, which we will

denote as Y. At that particular time, two possible outcomes for that indi-

vidual may be considered: the outcome if on treatment T, Y(T), and the

outcome if on control C, Y(C). However, only one of these outcomes will

be realized in the data depending on which treatment, T or C, was

assigned to that individual. The other unobserved outcome has been

called a counterfactual.4 The pair of outcomes, Y(T) and Y(C), are poten-

tial outcomes, and this potential outcomes framework has been referred

to as Rubin's causal model after the work of Rubin.5 The effect of the

treatment with respect to the control at that particular time, denoted D,

is given by D = Y(T) – Y(C), which we will call the treatment response. A

population mean treatment effect is typically estimated in experimental

studies. However, our focus herein is TRH, which is how much the vari-

able D varies across individuals. However, in the traditional single ran-

domization trial, D cannot be observed for any individual, each

individual having only been exposed to T or C. Despite this, much can

be learned about the effect of a test treatment versus a control treat-

ment across a group of individuals using controlled trial designs.

One such design is the pre/post study, and we now distinguish

change in outcome versus treatment response, the latter being described

above as D. The need for such clarification was highlighted by Senn.6

For example, suppose that at the beginning of a study (i.e., baseline), an

outcome such as current weight, denoted as G τ1ð Þ, is measured in an

individual. This individual is then given treatment T for a period of

time and the outcome measured again, resulting in a measurement

G τj
� �

, the weight of that individual at time j. The change in weight

from time 1 to time j is often interpreted as the response due to treat-

ment.7 However, the difference G τj
� ��G τ1ð Þ is what we denoted

Y Tð Þ in the above paragraph. The counterfactual outcome, Y(C), is

missing. If it is assumed that change in outcome is the same as treat-

ment response, then the assumption is also made that, had that individ-

ual been assigned to the control treatment C, the weight change for

that individual over that time period would have been zero. But as we

cannot know what the weight change of that individual would have

been in the control treatment, C, this is an unjustified assumption. This

assumption creates confusion not only in assessing the degree of TRH

but also in simply estimating a mean treatment effect. Information

regarding the counterfactual Y(C) is needed. Including a control group

in a randomized parallel group design can help to estimate this.

2.2 | Control groups or conditions are needed

A true counterfactual cannot be determined, as the same individual

cannot simultaneously receive both a treatment and a control condi-

tion. The use of an appropriate control group can improve causal

inference. At baseline, a group of individuals can be randomized to

receive either treatment (T) or control (C). After a time period, the out-

come of interest is measured. Depending on the condition to which

an individual is randomized, either Y(T) or Y(C) will be observable.

Although the effect in an individual is still not observable (because of

an unobserved D), an unbiased estimate of a mean treatment effect

can be computed by taking the difference in the averages of observed

Y(T) and Y(C). We denote this sample average difference by

d¼ y Tð Þ�y Cð Þ, where y Tð Þ andy Cð Þ) are the sample means of the out-

come variables for the treatment and control groups, respectively.

The quantity d is an unbiased estimate of a population mean effect,

denoted here as μD for the parameter and bμD for the sample estimator.

No assumption was needed (nor would be appropriate) to equate a

change over time with treatment response.

3 | TESTS FOR TRH

There remains a challenge in assessing the degree of TRH in a study.

We denote a measure of this heterogeneity by the variance of individ-

ual treatment effects, or the variance of D, represented by σ2D for a

population and s2D in a sample of individuals. The sample quantity, s2D,

cannot be computed from observed data because these data contain

no information to compute the sample correlation between the two

values Y(T) and Y(C). Because the two potential outcomes are not
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observable on any individual, there is no way to compute an estimate

of σ2D. This issue and ways to address it have been discussed else-

where.8,9 Herein, we focus on some key results shown in these refer-

ences and how they relate to a two-group parallel randomized design.

Although s2D cannot be computed from observed data, the sample

variance of outcomes in the two groups can be computed and are

denoted as s2y Tð Þ and s2y Cð Þ. The corresponding population quantities

would be denoted by σ replacing s. Williamson et al.7 argue in favor of

including the observed values in the control group in assessing

whether there is significant variability across individual values due to

treatment. This can be done by using the difference s2y Tð Þ – s2y Cð Þ (or

ratio s2y Tð Þ/s
2
y Cð Þ) to determine whether there is more (or less) variability

in observed individual outcomes in the treatment group than in the

control group. If s2y Tð Þ is greater than s2y Cð Þ, and this difference (ratio) is

significantly different from zero (from one), then there is evidence that

individual outcomes vary more under T versus C in a broader hypotheti-

cal population from which individuals were sampled. Potential causes of

this larger variation could be investigated, such as individual attributes

or covariates that may explain why, in the case of weight change, some

individuals lost more weight than others within the treatment group.

Williamson et al.7 are mostly careful to refer to Y(T) and Y(C) as

“changes” rather than “responses.” However, the improper use of

responsewhen referring to a change in outcome is still prevalent in nutri-

tion and obesity literature. Such incorrect terminology can add to confu-

sion regarding the effectiveness of a treatment across individuals.6

3.1 | TRH variance can be bounded

As a correlation is constrained to the interval �1 to 1, a lower and

upper bound for the variance of D (s2D) can be computed, and thus, a

lower and upper bound for σ2D can be estimated.8,10 The lower bound

for the sample variance s2D is given by sy Tð Þ � sy Cð Þ
� �2

, which occurs

when the sample correlation between the two potential outcomes is

equal to 1. An upper bound for s2D is given by sy Tð Þ þ sy Cð Þ
� �2

, which

occurs when the sample correlation is equal to �1. If the difference

sy Tð Þ � sy Cð Þ are statistically different from zero, then it is a reasonable

conclusion that some TRH exists in the population.7 The degree of

this heterogeneity could be even greater than that indicated by the

quantity sy Tð Þ � sy Cð Þ
� �2

, but it would not exceed that given by the

quantity sy Tð Þ þ sy Cð Þ
� �2

(barring random sampling variations). In clinical

studies, it may be more reasonable to assume that the correlation

between potential outcomes Y(T) and Y(C) is closer to 1 than �1, but

there is not a way to test this assumption from typically observed

data. One approach to testing whether σ2D > 0 is the F test for equal

population variances. An interesting conclusion, then, from the results

discussed here is that the same F test is also a test for the presence of

TRH. If the result of such an F test is significant, then it may be worth-

while to investigate further whether other variables, that is, covariates,

may explain why some individuals respond differently to treatment

T versus C. Furthermore, if there is evidence that the degree of treat-

ment heterogeneity in a population is large, then the mean treatment

effect may be misleading when evaluating the effect of treatment

T versus C in a population.7,9 We note that presence of TRH does not

always manifest itself in terms of an increase variance in the treatment

group compared to the control group.11,12 In fact, Senn13 (in Section 3.2)

shows a striking example where heteroscedasticity is present between

the positive control group and treatment group. Yet, the variance is

reduced as the treatment effect increases. Thus, the F test for equal

population variances is appropriately a two-sided F test that reject the

null hypothesis of equal variances for small or large variance ratios.

Thus far, we have considered Y(T) and Y(C) to be continuous

outcomes (e.g., weight change). Different techniques are needed

when evaluating TRH with binary outcomes (e.g., success

vs. failure).14,15 Regardless of whether the outcomes are binary or

continuous, the challenge in trying to accurately evaluate TRH

results from Y(T) and Y(C) not being observable together for an indi-

vidual in a two-group parallel study. In fact, at any particular time

point, Y(T) and Y(C) can never be observed together for an individ-

ual, what Paul Holland named the “fundamental problem of causal

inference.”16 However, if circumstances allow, a different random-

ized trial design may be employed that, when combined with some

less onerous assumptions that may be reasonable depending on the

treatment under study, a “value” for Y(T) and Y(C) may be “avail-
able” for an individual, thus allowing observation of a quantity that

represents D, the individual effect of treatment T versus C. Exam-

ples discussed in this review include crossover, Balaam, continuous-

dose designs, and Loop designs.

3.2 | Assessing TRH as a function of observed
scalar prerandomization covariates: Good
old-fashioned moderator analysis

Despite the plethora of advanced options available to test for TRH,

there are several scenarios where a simpler approach, “good old-

fashioned moderator analysis,” may suffice. Limiting the number of

moderator variables examined in these scenarios is paramount so that

the analyses remain manageable, because the inclusion of numerous

moderators in this approach can become unwieldy quickly with the

need to interpret higher-order interaction terms and diminished

power to detect individual effects.

Examining TRH as a function of observed scalar prerandomization

covariates may be particularly useful in iterative approaches

to improving interventions for vulnerable and underserved popula-

tions, where moderation and mediation analyses are considered in

tandem.17 By identifying putative moderators, such as race/ethnicity

or socioeconomic status, a priori and outlining interactive effects in

subsequent analysis of primary outcomes, it becomes possible to

empirically evaluate underlying mechanisms of key disparities

observed. This approach has the potential to mitigate disparities by

both lending insight into any needed implementation refinements for

these groups, as well as by potentially identifying alternative behav-

ioral determinants specific to the underserved populations.

Another example of when moderator analysis may be a judicious

strategy to examine TRH occurs when there is theory to suggest
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effect modifiers at the outset of a study. Baseline-by-treatment inter-

actions represent one such scenario, in which treatment effects

depend on an individual's initial status.18 Interactive effects of this

kind may manifest in baseline severity leading to either greater or

lesser treatment responsiveness.19 For example, a baseline-

by-treatment interaction was demonstrated in an RCT in patients with

type 2 diabetes.20 Study results showed that participants at higher

risk benefited more from a combination drug therapy targeting glyce-

mic control than did individuals with lower HbA1c levels at baseline.

One approach to determining TRH from moderator analysis is

moderated multiple regression (MMR) analysis. MMR investigates het-

erogeneous treatment effects via the general, or generalized, linear

model by incorporating an interaction term between the treatment

indicator and a pretreatment covariate. Presuming random assign-

ment, assumptions include that putative moderators are measured

before treatment and do not correlate with treatment allocation.21

The framework permits evaluation of both categorical and continuous

covariates, with the former requiring an appropriate coding scheme of

the variable, such as dummy or effect coding.22 The simplest MMR

model is given by:

Yi ¼ β0þβ1Tiþβ2Ziþβ3TiZiþεi,

where Yi is the outcome for individual i, β0 is the model intercept, β1

is the partial regression coefficient corresponding to the effect of

treatment (T), β2 is the partial regression coefficient corresponding to

the effect of the pretreatment covariate (Z), β3 is the partial regression

coefficient corresponding to the interactive effect (TZ) of treatment

and the pretreatment covariate, and εi is the residual in the model dis-

tributed as independent and identically distributed (i.i.d.) with N(0,σ2).

Modeling lower-order terms ensures that effects are not confounded

and that the test of significance for the interaction is accurate, as esti-

mates of variance for model parameters are not orthogonal. Mean

centering variables in the model can facilitate interpretation of lower-

order terms.23

A test of statistical significance for TRH is given by the t statistic

for β3. Statistical significance of β3 indicates the model is nonadditive,

such that treatment effects are conditional on levels of the pretreat-

ment covariate. Researchers can alternatively use nested models

(i.e., R2 Δ) to test for heterogeneous treatment in MMR:

F¼
R2
2�R2

1ð Þ= k2�k1ð Þ

1�R2
2ð Þ= N�k2�1ð Þ

,

where R2
2 is the R2 associated with a model that includes both main

effects and the interaction and R2
1 is the R2 associated with a main-

effects-only model. The k2 are the degrees of freedom of the model

that includes both main effects and the interaction, and k1 are the

degrees of freedom of the model that includes only main effects.

The square root of the F statistic from the R2 Δ test will equal the

absolute value of the t-test statistics for β3. For tests involving one

degree of freedom, the results of the F test are equivalent to that of a

t test; however, we focus on the F test because it is more general

(i.e., when k2� k1 > 1).

Graphing simple slopes of the treatment effect at different values

of the covariate lends insight into how the slope changes in the pres-

ence of a significant interaction:

bY¼bβ0þbβ2Zþ bβ1þbβ3Z
� �

T:

When the pretreatment covariate is categorical, the user may plot

simple effects of treatment at values of Z that code group member-

ship. When the pretreatment covariate is continuous, it is useful to

plot simple effects at �1sd below the mean of Z, +1sd above the

mean of Z, and at the mean of Z to characterize effect heterogeneity

across a wide range of data in which most observed scores will fall

(assuming normally distributed data).

Finally, computing an effect size for the interaction term in the

MMR model will help to portray the practical significance of

the effect. Variance-explained measures are most used, and f2 gives

the variance explained by the interaction above and beyond lower-

order effects in the model:

f2 ¼ r2Y:MI� r2Y:M
1� r2Y:MI

,

where r2Y:MI is the squared multiple correlation associated with the full

MMR model and r2Y:M is the squared multiple correlation associated

with a main effects model that does not include the interaction.

In the case of continuous outcome, estimation and inference of

multiplicative interaction are easily implemented in any software.

However, in the case of binary outcome, in addition to the multiplica-

tive interaction, the additive interaction can also be considered.24–27

It is important to mention that the presence or absence of interaction

can sometimes be scale dependent (multiplicative vs. additive), which

is also related to the idea of ordinal versus disordinal or rank versus

non-rank interaction.28,29

4 | STUDY DESIGNS

Previous sections of this review have outlined why conventional trial

designs, such as the two-group parallel RCT, cannot estimate the total

amount of TRH. We have outlined that participants in research inter-

ventions can be partitioned into an infinite number of “subgroups”
based on both measurable and nonmeasurable covariates. Conducting

analyses based on one or even multiple of these covariates cannot

give an accurate estimation of all sources of TRH.30 Additionally, a

change (in the outcome of interest) is not the same as a response to

an intervention. Therefore, this section will outline trial designs in

which the participant is exposed to both control and intervention

treatments.
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4.1 | Factorial designs (FDs): Assessing whether
treatments affect other treatments' effects

It is possible that the response of an individual to a treatment may

depend on previous exposures, including whether the individual has

been exposed to another treatment. A potential mitigation of these

effects is the FD. FD measures the effects of more than one experi-

mental factor in the same study. An example is a study that includes

two factors, each with two levels, called a 2-by-2 factorial. For exam-

ple, an experiment included the presence or absence of sucralose as

one factor and the presence or absence of sucrose as another

factor,31 resulting in four treatment groups: neither sucralose nor

sucrose; sucralose with no sucrose; no sucralose but with sucrose;

and both sucralose and sucrose. Other studies have included exercise

as one factor and diet as another or group or individual treatment as

one factor and personal preference for treatment modality

as another.32

FD permits the experimenter to determine whether the effects of

one factor (e.g., sucralose) are different in the presence of another

(e.g., sucrose). When such a difference exists, the factors are said to

interact, which is determined through a formal test for an interaction

effect, commonly through a two-way analysis of variance (ANOVA).

An interaction means that the outcome in the presence of both fac-

tors A and B together is not just the addition of the effects of factors

A and B alone. In FD, it is essential to test for interaction effects

before interpreting the effects of an individual factor. When an inter-

action effect exists, the interpretation of the effects of one factor is

dependent on the level of the other factor, and so averaging across

the two factors (as done in estimating the “main effects” of one factor

at a time) may be inappropriate. Instead, results are often discussed in

terms of “simple effects” when there is an interaction effect, which

are within-factor comparisons (e.g., with and without sucralose) while

holding levels of the other factor constant (e.g., when sucrose is or is

not provided). These effects are depicted in Figure 1.

The lack of an interaction effect implies that the level of the other

factor does not matter, and the two factors can be treated as indepen-

dent effects. In the 2-by-2 example described above, this means there

are two main effects: the difference in outcome in the presence or

absence of sucrose, each averaged over levels of sucralose, and the

difference in outcome in the presence or absence of sucralose, each

averaged over levels of sucrose. The lack of an interaction effect

implies that the effects of the levels of one factor do not depend on

the levels of other factors. The advantage of FD when there is no

interaction effect is efficiency: When the design is balanced, the study

can test two independent factors at the same time with twice as many

participants for each factor.

The 2-by-2 FD concept can be generalized to situations in which

one of the factors is not experimentally assigned. Consider a study in

which the effects of a low-carbohydrate diet are thought to be differ-

ent from those of a low-fat diet (factor A) depending on whether the

participant has a particular genotype thought to be associated with

carbohydrate metabolism.33 Although diet was assigned, genotype

was not. This applies to testing for differences between race and sex

as well. FD can be generalized to experimental factors that are cate-

gorical (described above, e.g., sucrose vs. sucralose), discrete

(e.g., number of treatment sessions in a treatment), or continuous

(e.g., percent of energy consumed as carbohydrate) and can be used in

a variety of research, including enzyme kinetics,34 in vitro chemical

research,35 and animal studies.36

There are statistical factors to consider when selecting FD. In

many (but not all) situations, the power for an interaction test (INT) is

much lower than the power for main effects.37,38 When the

F IGURE 1 Examples of interaction effects, main effects, and simple effects for a 2 � 2 factorial design. This example assumes two factors
(A and B) each with two levels (1 and 2). Consider from the text the examples of factor A representing sucralose, with level 1 being no sucralose
and level 2 being sucralose, and similarly for factor B representing sucrose, with level 1 being no sucrose and level 2 being sucrose. Interaction
effects should be formally tested before attempting to test for or interpret main effects because by definition the effect of one factor depends on
the effect of another. However, simple effects can be tested whether or not there is an interaction effect. If the researcher is willing to accept
there is no interaction effect, then main effects are more highly powered. See Figure 2 for examples of interaction effects.
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interaction term is of major interest, the study should be powered to

test the interaction test. Because the main effects are averaged over

the levels of the other factor, the main effects have twice as many

observations in a balanced design than do any simple effects or inter-

action effects. Next, as described above, interpreting main effects

without considering whether there is an interaction effect risks mises-

timating the effect size of the treatments, which depend on the level

of the other factor. If a study is designed as a factorial, then removing

an interaction effect from the model should be done with care.

Removing it from the model effectively accepts the null hypothesis

and therefore implicitly changes the model from testing whether an

interaction exists to declaring that the two factors can be treated as

operating independently. Selection of model terms that are based on

theory may be appropriate, that is, maintaining the 2-way ANOVA

and including interaction effects, similar to how p-value-based selec-

tion of variables through stepwise regression has fallen out of favor.39

An FD is relevant to TRH when the heterogeneity of treatment

effects can be determined by some other unmeasured patient factor

(i.e., dietary or exercise regimens). Here, it may appear that TRH

exists, when really the TRH is driven by a separate factor shared by

some patients. However, if these factors are actually measured, it may

be possible to find that TRH exists within levels of that measured fac-

tor. If individuals are treated with a pharmaceutical, what is the incre-

mental effect of adding an intensive lifestyle intervention? When one

of the factors is an inherent characteristic (e.g., race and sex), FD can

test whether the effects are different depending on that prognostic

factor using a generalization of FD. Such cases are limited in causation

because the factor is observed rather than assigned (e.g., whether race

is the cause of the difference or whether factors associated with

race caused the difference). Nonetheless, FD can identify factors in

which the expected effects might differ among levels of a factor. We

further note that even within a particular assigned level of each of the

two treatments in the 2-by-2 FD, there could still be individual TRH

that cannot be directly estimated.

4.2 | Crossover designs

This design randomizes a sequence of treatments to an individual,

such that the individual will receive all treatments (T and C) over a

sequence of several cycles with the goal of studying differences

between treatments.40 By receiving both T and C, individual treat-

ment effects can be estimated (technically, this may depend on addi-

tional assumptions; see Senn40 for more details), while also estimating

an average treatment effect. As discussed above, unlike trials in which

an individual receives only one condition, crossover designs can esti-

mate individual effects directly because of multiple measurements on

each patient in both T and C conditions. The variance of the estimated

individual treatment effects can therefore be used to quantify the

degree of TRH. Despite this benefit of crossover designs, very few

have conducted assessments of treatment heterogeneity when ana-

lyzing data from crossover trials.

Gewandter et al.41 assessed TRH in four crossover designs for

fentanyl's effectiveness to reduce episodes of extreme pain in cancer

patients. Following the approach suggested by Ezzet and

Whitehead,42 the researchers used a mixed-effects model with fixed

effects for treatment and random effects for each patient and

treatment–patient interaction for binary data. By considering both a

patient-level random effect and a treatment–patient interaction,

patient heterogeneity on outcome can be separated from the treat-

ment heterogeneity seen in patients. Random effect models43,44 also

provide benefit in that the variance of these effects is estimated and

can be used in hypothesis testing. These researchers additionally

investigated whether the patient-level random effect variance was

0 (i.e., no treatment heterogeneity) and found that three of the four

studies had significant treatment heterogeneity for fentanyl.41 The

authors suggested that this approach could be used in other crossover

designs, which might warrant future genomic or biomarker studies to

determine whether these factors are driving the apparent TRH, thus

leading toward more personalized medicine.

Other models for estimating TRH in crossover designs that have

yet to become popular are Bayesian hierarchical models,45,46 which

assume that each patient has their own treatment effect, denoted μi,

that is drawn from a (Gaussian) distribution centered around some

grand treatment effect μ0. Several authors have used Bayesian hierar-

chical models to estimate a shared treatment effect from pooled

n-of-1 trials.47–50 By pooling these n-of-1 trials together, with varying

numbers of cycles and treatment sequences for each patient, the

authors were able to create effects of a crossover design. Another

example of Bayesian hierarchical models in n-of-1 trials comes from

Mitchell et al.,48 who sought to determine whether methylphenidate

(MPH) provided a useful treatment of fatigue in 43 Australian adults

with advanced stage cancer with at most three cycles of treatment

and placebo. The authors assumed that the difference in fatigue

scores for each day, denoted Yic, had a normal probability distribution,

with mean μi and variance σ2i . μi is therefore the individual treatment

effect of patient i, which is assumed to have a normal distribution with

mean μ0, which represents the overall treatment effect.

Another study design that can allow for estimation of individual

treatment effects is the Balaam design. The Balaam design is consid-

ered when there is evidence to suggest that the treatment response

of the experimental unit (for example, an individual in a clinical dietary

trial) may vary depending on the sequence in which treatments are

F IGURE 2 The Balaam design with treatment sequence CC, CT,
TC, and TT. Individuals are randomized to each of the 4 treatment
sequences.
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assigned. For example, in a crossover design, the true effect of treat-

ment T may be impacted by the individual having been exposed to

C first in addition to or in the absence of a treatment C residual effect.

The Balaam design, first introduced as a two-period design with

t treatment levels and t2 experimental units, refers to a study design

in which each of the experimental units in the study is randomly

assigned to a pair or sequence of treatments.51 In this design, individ-

uals are randomized each of the t2 treatment sequences. Unlike the

traditional crossover design in which experimental units will abso-

lutely receive both treatments, the Balaam design allows for cases in

which sample units receive the same treatment at both periods (CC or

TT). Balaam outlines a very simple randomization procedure of the

experimental units in the treatment sequence.51 First, the

t treatments are randomly assigned unique labels and then the experi-

mental units are randomly assigned to one of the t2 treatment

sequences.

From a statistical viewpoint, the Balaam design has appealing

characteristics because it yields treatment effect estimates unbiased

by the presence of period-by-treatment effects.40,52 Statistical opti-

mality (in terms of lower variance of the treatment effect estimates

when compared with a parallel design) is attained when the design is

balanced, and an equal number of individuals is assigned to each of

the treatment sequences. The period-by-treatment effect and the

treatment residual effects cannot, unfortunately, be disentangled in

this case, and thus, there are limitations to this design. Carryover

effect is at least a manifestation of a TRH (i.e., that the effect of treat-

ment differs as a result of preceding treatment), and an accurate esti-

mation of such effect is vital to an appropriate analysis.52,53

Unfortunately, treatment effect estimates in the Balaam design can be

suboptimal (larger variance) compared with the traditional crossover

design even in the absence of carryover effect.53 Mori and Kano54

proposed a new treatment effect estimate, and an associated test that

they demonstrate is very powerful in detecting the presence of a

treatment effect in a Balaam design. Another limitation is the often-

restrictive assumption of constant carryover effect routinely assumed

in the Balaam design. Candel53 extended the Balaam design to accom-

modate and provide means to estimate and test a broad form of

assumed carryover mechanisms. This has a direct application in

pharmacological studies, where pharmacological carryover between

placebo and treatment or treatment to another treatment can be

complex.52,53

Finally, in a Ballam design, we believe that under (moderate) cer-

tain assumptions, we can estimate the variance of TRH. This will be

followed elsewhere.

4.3 | The Loop design and other n = 1 trials

In the Balaam design discussed above, an individual is randomized to

receive one of four allocations: TT, TC, CC, or CT.51 However, like the

two-period crossover design (where an individual would receive either

TC or CT), this design is limited in its ability to separate the true role of

the intervention from other sources of variability in determining

individual response. To solve this, Loop et al. proposed the repeated

randomization design (RRD), which is similar to the Balaam design, but

with a greater number of randomizations and study periods.55 With

multiple randomization periods, multiple observations on the individ-

ual's response to both the treatment and control conditions are gath-

ered. This allows for estimation of the mean treatment effect for the

individual and the variance of this mean treatment effect.56 Addition-

ally, by studying individual covariates, we can also understand the

characteristics associated with a more desirable response to treat-

ment. This design therefore can provide a more accurate estimate of

TRH than traditional RCTs.

The RRD trial can be described as a type of n = 1 study, in which

subjects are studied on an individual level. Multiple observations are

made on the individual, in either an observational setting or an inter-

ventional setting. In an observational n = 1 trial, data are gathered on

the individual over time, without introduction of an intervention.

When designing this kind of trial, consideration is needed of how

participants' behaviors may change during repeated monitoring.57 A

run-in observation period may be necessary to ensure participants'

familiarity with data collection. For interventional n = 1 trials, partici-

pants may be subjected to treatment or control conditions alternately

or through RRD.

These n = 1 trials allow for investigation into the effect of various

treatments on an individual, identification of the more efficacious

treatment for an individual, and examination of the stability of

response over time. When considering interventional n = 1 trials in

nutrition and obesity research, it is crucial to consider the intervention

being investigated. Some treatments may not be suited for this type

of trial, such as those with long carryover effects or that are not

reversible (certain pharmaceuticals, surgery, etc.). However, interven-

tions like use of dietary supplements or single meal challenges may be

appropriate. A washout period, during which patient treatment is

stopped, between intervention periods may be necessary to mitigate

any carryover effects.

4.4 | Assessing whether choosing treatment
affects effects: Choice and preference designs

Random allocation of individuals to treatment groups ensures that

group differences in all known and unknown confounders are due to

chance and that statistical inferences made regarding treatment

effects have a valid false-positive error rate.58 This fact is central to

the value of randomized trials but is at odds with how treatments are

used in the real world. Treatments are not typically selected via ran-

dom assignment outside of clinical trials. Many treatments are the

result of a deliberate choice by a free-living individual. For example,

the decisions to increase consumption of yogurt for its purported pro-

biotic benefits, to skip (or not skip) breakfast as part of a weight-loss

diet, or to initiate an exercise program are all made with a high degree

of certainty that one is actually consuming yogurt, skipping breakfast,

or exercising. Implicit in each of these decisions is a preference for

that treatment over another treatment (or nontreatment). Individuals
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interested in the benefits of probiotics but with a distaste for yogurt

would likely prefer a non-yogurt treatment. Conversely, individuals

who enjoy yogurt might gladly choose it as a means to increase their

consumption of probiotics. Given an individual's infinitude of prefer-

ences, randomly assigning a treatment makes it likely that some indi-

viduals will be assigned a preferred treatment whereas others are not,

potentially leading to “resentful demoralization” or other thoughts

and feelings affecting response outcomes.59

A mismatch between treatment assignment and preference may

introduce heterogeneity in treatment responses in nutrition and obe-

sity research—perhaps with larger treatment effects among individuals

randomized to their preferred assignment. Several experimental

designs may account for participant preferences and have been used

in personalized nutrition and obesity research to examine the effect

of treatment preferences. The potential for patient preferences to

affect treatment effects was recognized by Brewin and Bradley,60

who stated, “If effectiveness is evaluated after random administration

to patients who may or may not desire the treatment, it will be diffi-

cult to distinguish between a treatment that failed because it was not

inherently effective and one that failed because it was not targeted

towards patients who understood why that treatment was given or

who were suitably motivated.” This critique is readily extended to ran-

domized trials in personalized nutrition and obesity research: Do

weight-loss studies that fail to find a statistically significant treatment

effect fail because the weight-loss treatment is generally ineffective,

or because it was not sufficiently tailored to the study population or

met with sufficient motivation? Participants randomized to a behav-

ioral weight-loss intervention that cannot be blinded, and in which

they may not be motivated to participate once assignment is known,

may be less adherent and more likely to drop out, complicating inter-

pretations of the treatment effect.61

To address such concerns generally, Brewin et al. proposed the

partially randomized preference trial (PRPT),60 also called the parallel

randomized and nonrandomized trial62 or comprehensive cohort

design.63 In this design, participant preferences are assessed before

randomization. Those without a preference are randomized to treat-

ment or control, whereas those with a preference are allowed to

select their preferred group. Motivational factors and other selection

effects could then be assessed by comparing the strength of the treat-

ment effect observed in those randomly assigned to the treatment

with the association observed in participants who selected the treat-

ment. In the fully randomized preference trial, proposed and implemen-

ted by Torgerson et al.,64 in a trial of exercise for back pain,

participant preferences are assessed before randomization, and all

consenting participants are randomized regardless of preferences,

allowing researchers to consider patient preferences in statistical

analyses.

The PRPT design is related to several other “hybrid” designs, so

termed because they accommodate patient preferences by incorpo-

rating both randomized and nonrandomized groups.62 The Zelen ran-

domized consent design, originally proposed to facilitate the

recruitment of participants into randomized trials, is distinctive

because it randomizes participants prior to consent.65 In the single-

consent version of the Zelen design, participants randomized to the

experimental treatment are informed of their assignment and given

the option to decline treatment. Those randomized to the control

group are not so informed. In the double-consent Zelen design, indi-

viduals randomized to the treatment group as well as individuals ran-

domized to control groups are informed of their assignment and given

the option to decline their assigned group in favor of their preferred

group.66 Finally, in the preference option randomized design, partici-

pants complete the informed consent process prior to randomization

(contra the Zelen design and consistent with widely accepted prac-

tice); however, during the informed consent process, participants are

told that, following randomization, they will be given the opportunity

to join a group other than the one they were randomized to if they

“clearly express their preference” for doing so. Otherwise, they will

remain in the group to which they were randomly assigned.67

Given ethical concerns with the Zelen design, and the additional

complexity associated with other hybrid designs (e.g., Rucker68), it is

valid to ask whether evidence exists that patient preferences affect

treatment effects both generally and in nutrition and obesity research

specifically. A 2005 systematic review and meta-analysis of RCTs

incorporating participant preferences identified 27 comprehensive

cohort designs and 5 doubly randomized designs published between

1966 and 2004.63 This review concluded that recruitment was

affected by participant preferences and that more highly educated

individuals were more likely to refuse randomization. However, there

was little evidence that patient preferences had large effects on out-

comes and no evidence that preferences affected attrition, concluding

that this review “… gives less support to the hypothesis that prefer-

ences significantly compromise internal validity.”63 Another system-

atic review and meta-analysis of eight fully randomized patient

preference trials similarly concluded that participant preferences did

not have an effect on attrition but found larger effects of preferences

on outcomes, such that estimates of the treatment effect were larger

among participants randomized to their preferred treatment com-

pared with participants indifferent to group assignment or those

assigned to a group other than their preferred treatment.69

In dietary weight-loss interventions, William et al.70 developed a

doubly randomized preference trial protocol to assess the role of

dietary preferences in weight-loss trials and later reported that

allowing individuals to choose their diet did not cause greater weight

loss or dietary adherence.71 In an earlier study of participant dietary

preferences, the PREFER study, researchers found that mean per-

centage weight loss was greater among individuals randomly

assigned to a diet than in those assigned to their preferred diet.72 A

2019 systematic review and meta-analysis of nine studies investigat-

ing the role of participant choice in weight-loss strategies, including

the two discussed above, found no evidence that individuals

assigned to a preference diet lost more weight or dropped out in

higher numbers than those randomly assigned a diet. Thus, while

allowing participants to choose their treatment might intuitively be

thought to affect effects; to date, there is little evidence that sub-

stantial treatment heterogeneity is introduced by mismatched pref-

erences in dietary weight-loss trials.
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4.5 | Assessing whether expectancies affect
effects

As discussed above, although traditional RCTs are the mainstay for

estimating the causal effect of treatments, they usually do not reflect

how administration of the treatment would occur “under the condi-

tions of its intended use.”73 This is because in actual use, individuals

receiving a treatment, taking a drug, eating yogurt, skipping breakfast,

exercising, and so on are not blinded and are thus subject to expec-

tancy effects. An individual's knowledge of enrollment in the treat-

ment or control condition can lead to treatment-related outcome

expectations and may impact the treatment in several ways. This can

be due to conscious action; for example, an individual enrolled in a

weight-loss study may make additional lifestyle modifications to lose

weight if he or she strongly feels that the treatment will be beneficial.

These expectancies also may happen more subtly, such as in a study

by Elliman et al.74 that found that providing subjects with caffeine

improved performance on a vigilance test only if the subjects were

told that they had been given caffeine. In either case, expectancies

should be of interest to researchers because when these

expectancies interact with the treatment, they can produce biased

estimates of the treatment effect under the actual conditions of use

when those estimates are from conventional blinded RCTs.

One method for estimating expectancy-by-treatment interaction

effects involves the use of the “balanced-placebo design,”75 in which

a 2 �2 design matrix is created wherein subjects are randomized on

two factors: to receive treatment or control and to be told that they

were given treatment or control, independent of what they were

actually given. Although this study design can distinguish expectancy

effects from treatment effects and can identify any possible interac-

tions, it carries ethical concerns because it involves participant decep-

tion. This may be acceptable in short-term studies of healthy subjects

who have consented to deception, but there would be ethical con-

cerns for such deception of patients seeking treatment for an illness.76

Additionally, it may not be feasible for certain nutrition or obesity

interventions, in which subjects are given a specific food or enrolled

in an intensive intervention that cannot be blinded.

An alternative to the balanced-placebo design that does not

involve participant deception is the randomization-to-randomization

(R2R) study design.77 This design works to modify subject expectan-

cies by the following process:

1. Subjects are randomly assigned a probability p of receiving treat-

ment between 0 and 1 (not including 0 or 1).

2. The subject is told their probability.

3. The subject is assigned to receive treatment or placebo based on

their given probability p, while maintaining blinding.

4. The trial is conducted as usual, and in the data analysis, the

assigned probability and a treatment-by-probability interaction

term are included in the appropriate analytic model.

The choice of distribution to generate values for p in Step 1 should be

made in such a way that it provides desired coverage over the range

of probabilities between 0 and 1. For Step 3, the law of large numbers

dictates that one should obtain approximately the proportions of sub-

jects in each treatment group as the probability indicates (e.g., 3 of

10 subjects given a probability of p = 0.3 in the treatment arm) with a

large sample size. However, one can safeguard against imbalances

with small samples by making assigned probabilities discrete and finite

in the randomization to both the probability (e.g., 10% of the sample

to p = 0.1, 10% to p = 0.2, 10% to p = 0.3, and so on) and the treat-

ment (e.g., of the 10% assigned to p = 0.3, 30% receive treatment,

and the other 70% placebo).

For the analysis of the R2R study design, expectancies can be

incorporated in the following linear model:

Y¼ β0þβ1Tþβ2pþβ3T �pþ ε

Using this model, one can calculate not only the unique contribu-

tions of treatment and expectancy effects and their interaction but

also the treatment effect under “actual conditions of use” as the

quantity β1þβ3. This represents the difference between an individual

receiving the placebo (T=0) and another receiving the treatment

(T=1) when both would fully expect to receive treatment (p=1). The

balanced-placebo design can also be viewed and analyzed in such a

framework, wherein the subjects are assigned to only p=0 and p=1

and that assignment is independent of the actual treatment received.

TRH comes in when we consider the interaction effect. A statistically

significant β3 ¼0 implies that the effect of treatment is heteroge-

neous over levels of subject expectancy.

When considering these two designs, it is important to also con-

sider their limitations. The balanced-placebo design allows for direct

estimation of the treatment effect under actual conditions of use,

whereas the R2R design requires the analyst to extrapolate to p = 1

from the assigned probabilities, which requires specifying the shape

of the effects of expectancies (linear or otherwise) and a sufficient

sample size near p = 1 to make a reasonable estimate. Although the

R2R design is more challenging in the execution and analysis than

the balanced-placebo design, it does not carry the ethical concerns of

subject deception that may disqualify the balanced-placebo design

from use in many contexts.

5 | SPECIFIC APPLICATION OF TRH:
ASSESSING TRH AS A FUNCTION OF
GENETIC PREDICTORS

When selecting potential prerandomization covariates, one can con-

sider both genetic and environmental factors. Genetic factors can

affect disease predisposition, disease progression, and response to

treatment. There are at least two mechanisms by which genetic fac-

tors can affect TRH. First, genes can affect drug or nutrient absorp-

tion, metabolism, and excretion, thus affecting the effectiveness of

treatment and adverse reactions. For example, several variants within

genes coding for enzymes of the cytochrome P450 family have been

reported to affect drug metabolization and thus TRH78,79 and drug–
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drug interactions.80 Hypersensitivity reactions to drugs have also

been shown to have a genetic basis and to be associated with genetic

variants in the human leukocyte antigen system.81

Complex diseases including cancer, type 2 diabetes, and obesity

are the result of multiple genetic variations that are difficult to eluci-

date from symptoms and clinical phenotypes. Genomic data can help

to identify these subtypes, such as in groups of patients with varia-

tions in a specific pathway that may require targeted treatments

(to which patients will respond differently). Therefore, a second way

by which genetic information can inform likely TRH is by defining sub-

types and their underlying genetic etiology, which can be used to

design and prescribe targeted treatments. For example, gene expres-

sion data have been used to classify breast cancer tumors into sub-

types82,83 and to apply targeted therapies to each of the subtypes

(i.e., personalized medicine).82,84

The preceding examples illustrate how genetic information may

be informative about TRH. However, identifying the genetic factors

affecting response has been (and remains) challenging. As interest in

genetic-based health recommendations and personalized medicine

grows, it is no surprise that the number of genome-wide association

studies published continued to rise. These studies have associated

thousands of genetic variants with many different complex traits,

including obesity, cancer risk, and type 2 diabetes.85 However, only a

small fraction (less than 10%) of genetic association studies have

investigated the role of genetic factors in TRH.86 Many of these dis-

coveries have originated from candidate gene studies, often informed

by genome-wide association studies, that have targeted large-effect

genes physiologically involved in drug metabolism and immune

response. Regarding other complex mechanisms, such as physiology

of weight gain or loss, there is much work to be done.

Low power may be the single most important factor that has lim-

ited the ability to identify genetic variants associated with TRH. For

complex traits and diseases, individual variants often explain a small

fraction (e.g., less than 0.1%) of genetic risk; therefore, a large sample

size (e.g., hundreds of thousands) is required to achieve moderate

power. When investigating outcomes following a clinical trial, the

challenge may be even greater because of the many possible treat-

ments for chronic diseases and wide heterogeneity in patient out-

comes. Therefore, a very large initial sample size is required to

achieve high power, much larger than most clinical trials, which are

often not powered to detect genetic effects. To confront limited

power, several consortia have been formed. The Pharmacogenomics

Research Network (PGRN, https://www.pgrn.org/) was formed to

catalyze and lead research and translation on the genetic basis of TRH

and in pharmaceutical trials. There are similar consortia being formed

within the field of nutrition and obesity, such as the Accumulating

Data to Predict Obesity Treatment (ADOPT) Project87 and the Trans-

NIH Genetics Consortium.88,89

Efforts such as the PGRN, ADOPT, and the Trans-NIH Genetics

Consortium will help to further advance the study of the genetic basis

of TRH; however, with the current sample sizes, power remains lim-

ited. This implies that most small-effect variants (which collectively

explain a sizable fraction of interindividual differences in TRH) may

remain undetected, because the false-positive rate may be high.

Complex-trait genetic studies suggest that incorporating variants that

individually may not reach genome-wide association significance into

polygenic risk scores90 and whole-genome regressions91 may improve

prediction accuracy. Polygenic prediction methods can help to

advance the detection of TRH; however, accurate prediction will

require much larger sample sizes than those currently available.

Absence of randomization and sampling bias are other important

challenges for genetic studies of TRH. Many of the modern multi-omic

data sets are observational studies, either population prospective

cohorts or data repositories of samples and data from patients. How-

ever, treatment assignment in these studies was often guided by

genomic information (e.g., gene expression data may have been used

to prescribe therapies to cancer patients). This can cause biases on

inferences of differential TRH. Well-designed clinical trials can provide

unbiased estimations of TRH; however, these trials can be expensive,

lengthy, and require many participants to obtain adequate power.

Therefore, an effective strategy may require a combination of the use

of data from observational studies and RCTs.

6 | DISCUSSION

We are all special and unique, just like everybody else.* Yet, on the

other hand, as Daniel Gilbert writes in his book, Stumbling on Happi-

ness, we often overestimate the magnitude of our unique responses

to situations. Gilbert writes92:

Our mythical belief in the variability and uniqueness of

individuals is the main reason why we refuse to use

others as surrogates. After all, surrogation is only use-

ful when we can count on a surrogate to react to an

event roughly as we would, and if we believe that peo-

ple's emotional reactions are more varied than they

actually are, then surrogation will seem less useful to

us than it actually is. The irony, of course, is that surro-

gation is a cheap and effective way to predict one's

future emotions, but because we don't realize how

similar we all are, we reject this reliable method and

rely instead on our imaginations, as flawed and fallible

as they may be.

It seems that often a better predictor of how we respond to a situa-

tion is how others respond to that situation, rather than how we will

imagine ourselves to do so based upon our current feelings and our

current environment.

Does this apparent overestimation of our uniqueness carry over

to physiologic, anatomic, behavioral, and health effects of nutritional,

dietary, exercise, and other interventions? We do not know with

*Who actually first offered this quip is unclear: https://quoteinvestigator.com/2014/11/10/

you-unique/.
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certainty. In the sections above, we have offered methods to address

these questions. Here, we broadly consider what we do and do not

know about TRH to provide ideas for future research.

6.1 | To what extent is TRH in evidence?

That is, can we really be certain that treatment heterogeneity exists?

In our opinion, for practical purposes, the answer seems to be yes.

The work of Kaiser and Gadbury1 in humans, work by Rikke et al. in

mice,93 the specific findings in the literature of observed moderators

of treatment response,94 and our everyday phenomenological experi-

ence all offer strong evidence that there is some TRH. This seems

unequivocally true beyond any reasonable doubt.

6.2 | How large and common is the TRH?

Here, our knowledge is more meager, although interest is growing in

devising approaches to estimate TRH variances in many scientific

applications.95,96 Yet, we do not have many carefully well-done ana-

lyses, across many situations, with rock-solid methods of estimation,

in large samples, with good designs, and with good measurements to

answer this unequivocally. Even in the rodent literature, some of the

studies have been criticized for small sample sizes and other limits to

experimental rigor, making their demonstrations of TRH seem dubious

to some.97 Thus, statements that it is “well known” that TRH variance

is large relative to total variance in outcomes seem more an article of

faith than a demonstrated fact. This point has been made in the spe-

cific context of the response to exercise training. A common state-

ment in that context is that there is great variability in response. Yet,

other statistically minded authors have used a model they believed

allowed them to provide reasonable estimates of the variance in TRH

in that domain and concluded that “evidence is limited for the notion

that there are clinically important individual differences in exercise-

mediated weight change.”7 The field may benefit from systematic

sampling of the evidence space to better estimate the actual magni-

tude of TRH across many domains, treatments, types of people, and

types of outcomes.

6.3 | Is the TRH that exists likely to be disordinal
or ordinal?

By ordinal TRH, we mean situations in which the treatment that is bet-

ter for some people is better for almost all people, but the degree to

which it is better varies. In contrast, with disordinal TRH, we refer

to circumstances in which the treatment that is better for some per-

sons is actually poorer for others. Disordinal TRH is obviously more

impactful than ordinal TRH because it fundamentally affects the

choice of treatment. In contrast, with ordinal TRH, the degree of ben-

efit will be better for some persons than for others, but the best treat-

ment is still the same for everyone.

6.4 | To what extent is estimation of TRH in
general, and specific contributors to it in particular, a
feasible undertaking?

As is the paradox with every question about power analysis, the

answer is always unknown. If one knew the exact magnitude of what

one was looking for, one would have already found it and would not

need to go looking. Yet, we can contemplate estimates. As more evi-

dence emerges for the magnitude of TRH for different outcomes in

different circumstances, we will begin to develop a sense of the mag-

nitude of effects; the study designs that will best detect those effects;

and the sample sizes, time periods, and expenses involved in conduct-

ing meaningful and powerful studies. In some simple cases, like evalu-

ating whether effects differ by gender, or other common, easily

observable, and roughly symmetrically distributed variables, detection

should be relatively easy. In other cases, perhaps with complex geno-

mic functions, this may not be the case.

By analogy, during the 1990s, statistical geneticists and genetic

epidemiologists developed and refined the bulwark for detecting

genes linked to (as opposed to directly associated with or causative

of) complex phenotypes. The theory was well established, and it was

clear that, in principle, we could detect such genes and had designs

and analytic methods to do so. Yet, a barely kept secret was that, for

practical purposes, almost all designs were so low in power that it was

unclear whether, in humans, linkage analysis would ever be a useful

tool for complex traits. Once genome-wide association studies

became feasible, linkage analysis for complex traits in humans was

almost completely abandoned. Genome-wide association studies, rely-

ing on far more powerful statistical underpinnings, began to find

genes that could predict complex traits, in some cases likely identify-

ing causal associations. However, such studies typically found associa-

tions that were so small that their practical utility in the clinical setting

is dubious in most cases.

The findings of genome-wide association studies often point to

interesting pathways and insights about traits98 but seem not all that

helpful in practical prediction or allocation of individuals to different

treatments, at least in the obesity field.99 Some people have proffered

and claimed that they do have genomic or other related predictors of

differential treatment response in the obesity domain,100,101 but there

does not seem to be large-scale, rigorous, replicated findings of clini-

cally meaningful effects.102 This invites the question of whether

effects are likely to be not only scientifically demonstrable and repli-

cable, but practically valid, that is, having practical utility. Importantly,

when one considers practical utility, one must always ask, as Les

McCann and the All-Stars did, “Compared to What?”
One comparison is compared with doing nothing. As stated

above, if the TRH variance is small and/or strictly ordinal, a valid com-

parison is nothing with respect to differential treatment, or compared

with giving everyone the same treatment. Alternatively, even if the

TRH is larger and more meaningful, there may be simple ways of capi-

talizing on it from a clinically practical point of view that do not involve

any deep understanding a priori. For example, one can use family his-

tory in place of more complex, genomic predictors or moderators of
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response. In turn, one can predict using physiologic moderators of

response (e.g., basal insulin levels), to determine who will respond best

to which treatment.103 Doing so may be simpler than more complex

genomic or other -omic approaches. Perhaps even simpler and more

predictive still are elements of clinical trial-and-error. For example, it is

common for people to recommend that an obesity pharmaceutical be

given and if the patient does not lose a certain minimal degree of

weight in an early time interval for the treatment be discontinued and

something else tried instead. This seems to be a reasonable, practical

approach to finding what works for the individual,104 although it is not

without the epistemological limitation of being unable to separate

response from outcome. Thus, important future work will involve

determining not only extensive TRH and the factors that underlie it,

but its practical utility compared with more simple heuristics, and find-

ing the right approach or combination of approaches for the specific

setting and goals.

6.5 | What level of oversimplification is most
useful?

Popper famously wrote “Science may be described as the art of sys-

tematic oversimplification—the art of discerning what we may with

advantage omit.”105 We already use personalized medicine. We pre-

scribe anti-hypertensive drugs to people with hypertension but not to

people without hypertension. Yet, everyone would recognize this

example as a rather crude level of personalization. Drilling down a

level to say “Anybody with this polymorphism gets a different treat-

ment or different dose of treatment than anybody without that poly-

morphism” is a far richer and more advanced form of personalized

medicine or treatment provision. It seems likely that we will get to

that point and in some cases already have.106 But can we go further

still to look at a single individual's unique combination of nuclear

genomic nucleotides, microbiome, and metabolites and derive the pre-

scription that is just right for them? While the answer, in theory, might

be yes, in practice, this may be challenging. Each person is truly a

unique combination of such bits of information, so how can one ever

truly validate the results or estimate parts of a multivariate response

when, in any data set, there is only one data point in that space?

These are questions for the future, and we look forward to working

together with others to address them and to watching the field

unfold.
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