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Abstract: Obesity is a health condition that represents a risk factor for numerous diseases and
complications. However, obesity might also have—to some extent—some “benefits” in certain
situations. This includes potential bone protection in patients suffering from chronic kidney disease.
In an attempt to explain such a paradox, we highlight secreted protein acidic and rich in cysteine
(SPARC) as a hypothetical mediator of this protection. Indeed, SPARC properties provide a logical
rationale to describe such bone protection via its overexpression combined with its calcium-binding
and collagen-binding properties. We believe that exploring such hypotheses could open new doors
to elucidate unknown pathways towards developing a new generation of molecular therapies.

Keywords: secreted protein acidic and rich in cysteine (SPARC/osteonectin); obesity paradox; chronic
kidney disease; bone density protection

One of the biggest challenges limiting our understanding of the diseases, and there-
fore, the development of therapeutic options is the unknown mechanisms and the poor
understanding of the related underlying pathways. In addition, the existence of biological
and medical paradoxes further complexifies such a challenge. Biological pathways, bio-
chemical reactions, and medical observations follow patterns and features that represent
the bases established through empirical observations or epidemiological conclusions on
which biomedical theories are built. This allows us to predict a pathological outcome, a
drug effect, or a disease prognosis. However, there are concepts that defy these biomedical
patterns and features. Such observations are referred to as paradoxes. An example worth
exploring is obesity paradoxes in chronic kidney disease (CKD), also named reverse epi-
demiology [1], that usually indicate the benefits of obesity on survival [2,3], indicating an
all-cause mortality (including cardiovascular disease) reduction in CKD patients suffering
from obesity compared to those with normal body weight/fat mass.

Obesity represents a serious health problem with heavy consequences at both societal
and economic levels. Obesity development, which has been compared to cancer [4], is
correlated with increased risk for a variety of diseases and health problems such as cardio-
vascular diseases [5], type 2 diabetes [6], cancer [7], metabolic disorders [8], nonalcoholic
fatty liver disease [9], obstructive sleep apnea [10], coronavirus disease-2019 (COVID-
19) [11], and CKD [12,13]. Paradoxically, numerous studies have also indicated protective
or beneficial impacts that obesity would have in the context of various pathologies, health
problems, and even ageing [14–19]. Within this short piece of writing, we specifically
aim to shed light on the paradox described in the context of obesity and bone protection
in CKD.

Bone disorders can be the consequence of either physiological changes, including
ageing [20,21], or pathological statuses/diseases such as CKD [22–27]. As a consequence of
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bone diseases, bone mineral density can be affected, leading to an increased risk of bone
fracture [28]. Obesity is frequently associated with higher bone mineral density [29] and is,
historically, believed to protect against osteoporosis [30]. On the other hand, obesity has
also been associated with higher fracture risk [31,32].

Herein, we provide the rationale behind suggesting secreted proteins that are acidic
and rich in cysteine (SPARC/osteonectin/BM40) as part of the mechanistic links between
obesity and possible bone protection in diseases that are supposed to negatively impact
bone homeostasis, such as CKD. Among the non-collagenous proteins, SPARC is the most
expressed in mineralized tissues [33]. It is also expressed in various tissues and plays roles
in diverse biological functions and processes [34].

SPARC expression increases in various situations, such as obesity [35], where it is
produced by the adipose tissue [36,37], and in newly diagnosed type 2 diabetes mellitus
patients, there is a correlation between both the body mass index (BMI) and fat percentage
and SPARC plasma levels [38]. In addition, with obesity tending to increase muscle
mass [39], the SPARC increase in obese subject sera could also be a result of increased
muscle mass since SPARC is a myokine as well [40,41]. Therefore, we hypothesize that
obesity-induced SPARC overexpression in both tissues and serum could explain—at least
in part—such bone protection in the context of CKD and other diseases as compared to
non-obese patients suffering from the same conditions.

This hypothesis is based on the calcium-binding and collagen-binding properties of
SPARC [42,43] that would strengthen bone structure. In fact, SPARC (also known as os-
teonectin) has been described as a bone-specific biomolecule that links collagen to minerals
(mineralized collagen) [43]. Knowing the roles of both calcium [44] and collagen [45] in
bone structure and strength, SPARC would enhance such cohesion and improve bone
density. The role of SPARC in strengthening bones would be based on the affinity of this
glycoprotein to bind both collagen [46] and calcium [47]. This will increase the building up
of the various biological components of the bones, especially knowing the importance of
SPARC within both the mineralized tissue [33] and the extracellular matrix [48–50] that is
responsible for cellular adhesion and tissue connections.

Furthermore, SPARC-deficient mice both develop osteopenia and have decreased bone
formation and osteoblast number [51–53], confirming the important role SPARC has in
bone formation [33]. This hypothesis is also in accordance with the fact that SPARC has also
been characterized as an exercise-induced gene [54,55], since the exercise-induced benefits
on bone [56,57] could also be (at least in part) mediated with SPARC.

However, to explain why the other properties of SPARC (such as the metabolic ef-
fects [58], cancer inhibitor [40,59,60], regenerative factor [61], and anti-inflammatory [62])
are not increased with SPARC overexpression, we have previously suggested that for such
properties, a resistance develops as it would require putative receptors and intracellular
pathway activation. On the other hand, the effect SPARC would have on bone would be
further maintained and not be affected by such resistance because SPARC interactions
would rather be chemical through its calcium-binding and collagen-binding properties.
The fact that SPARC has a calcium-binding site and collagen-binding properties would
allow it to strengthen extracellular matrix calcification and, therefore, increase bone miner-
alization and also the vascular calcification that is very prevalent in CKD patients [63]. This
points out the possible negative effects of SPARC on the development of vascular calcifica-
tion that also result from the same properties (calcium-binding site and collagen-binding)
that lead to bone protection. How SPARC may be differently involved in the process
of vascular calcification between the obese and non-obese populations in CKD remains
worth exploring.

The hypothesis we have previously provided [58] about the importance of SPARC
overexpression is that it would be a balancing mechanism. Indeed, following obesity
development and the dysregulation of energy homeostasis, SPARC overexpression would
be a mechanism aiming to restore metabolic balance and reverse obesity. This would be
mediated with the properties that SPARC has in terms of metabolic enhancement within
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the various key metabolic tissues (mainly adipose tissue and muscles). However, such
“corrective” metabolic pathways would be inefficient as “SPARC resistance” would develop
with obesity establishment in a way similar to insulin resistance [64] seen during diabetes.
This indicates the evolutionary significance of providing a metabolic adaptive advantage
aiming to protect energy homeostasis. Such significance is supported by the fact that
SPARC, which is an evolutionarily conserved glycoprotein [46], is also highly conserved
between vertebrates and invertebrates [47].

What further supports the hypothesis that SPARC is related to bone protection is the
fact that vascular calcification can develop in CKD patients regardless of their obese or non-
obese status, but the vascular calcification is more pronounced in obese patients with lower
kidney function [65]. This points to obesity-induced SPARC overexpression as a potential
explanation. Such a phenotype of vascular calcification reflects strong mineralization
through calcification that would be mediated with SPARC mainly via its calcium-binding
properties. Indeed, in vitro and ex vivo studies show that SPARC is expressed during
vascular calcification [66], which fits with our presented hypothesis. It is worth mentioning
that the obesity paradox has also been observed in osteoporosis [31], liver cirrhosis, heart
failure, elderly individuals, chronic obstructive lung disease, and metastatic cancer [67].
This phenomenon might also be explained in part by the properties of SPARC towards
improving general homeostasis, which highlight the importance of further exploring this
multifunctional protein.

Figure 1 summarizes the key concepts related to the hypothesis we present herein.
We believe these ideas will trigger further exploration of SPARC in the context of obesity,
bone diseases, and CKD for a better understanding of the different paradoxical phenotypes,
allowing for the development of potential novel therapeutic approaches. This requires
a multidisciplinary approach involving the exploration of bone marrow adipogenesis,
the type of obesity (visceral abdominal fat versus subcutaneous fat), and the low-grade
systemic inflammation that characterizes obesity. The variabilities in SPARC implications
in inflammation in/and the context of obesity [68–70] remain an important piece to explore
and add to this paradoxical puzzle.
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Figure 1. Hypothetical mechanisms of how the obesity-induced increased secreted protein acidic and
rich in cysteine (SPARC) expression protects bones from chronic kidney disease-related density loss
as well as SPARC contribution to vascular calcification.

The paradox and the variations in data suggesting bone protection and others indicat-
ing bone fragility with obesity could be explained by the type of obesity. Indeed, beyond
both the body weight and the BMI, the obesity phenotype and the adiposity distribution
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are extremely important determinants of the pathological outcomes and the obesity conse-
quences on the homeostasis of different tissues, including bones and kidneys. For instance,
intrarenal fat accumulation (adiposity distribution) has been suggested to cause obesity-
related CKD [71], and subcutaneous fat might have different effects on bones compared to
visceral abdominal fat [30].

Furthermore, such obesity-dependent bone protection could also be site-dependent [30]
rather than systemic. Therefore, such interaction would mainly depend on both the obesity
phenotype and bone location. The importance of highlighting such an obesity paradox
derives from the fact that obesity represents the epidemic of our era, which is expected
to continue increasing [71]. Finally, such mechanistic links can represent starting points
towards developing therapies based on SPARC or on the molecular targeting of SPARC-
related pathways, as we have already suggested in diverse pathological contexts [72–74].
However, the gap is still large, as further experiments are required to investigate the hypoth-
esis of obesity and the bone mineral density protection paradox involving SPARC as the link
among other biomolecules. For instance, osteopontin could also be molecularly involved in
the link explaining the obesity paradox in CKD. Similarly to SPARC, osteopontin levels
increase with obesity [75] and decrease with exercise-induced fat loss [76]. It has important
roles in bone homeostasis and metabolism [77]. Osteopontin contributes to the differentia-
tion, proliferation, and adhesion of various bone-related cells [78], calcium and phosphate
metabolism regulation [79], and has roles in bone mineralization [79]. For vascular calcifica-
tion, however, whereas an acute increase in osteopontin ameliorates vascular calcification,
a chronic increase in osteopontin is related to negative cardiovascular outcomes [80]. In
addition, osteopontin structure is different from SPARC as it is highly phosphorylated and
rich in aspartic acid [81]. Thus, it suggests a mechanistic pathway different from those of
SPARC, as it, like SPARC, contributes to bone protection but has different potential effects
with regard to vascular calcification. Such differences in impacts might be explained by
an environment-dependent effect. Indeed, at the beginning of obesity development, the
initial increases in osteopontin would be an attempt to “reverse” or reduce the impact of
obesity on vascular calcification. However, once obesity is established (chronic increases
in osteopontin), a new biological environment is established (inflammation, metabolic
disorder, signalling molecules, etc.), shifting the impact of osteopontin towards worsening
the cardiovascular phenotype. Importantly, osteopontin’s possible implications in the
obesity paradox might not only be due to obesity, as CKD alone can increase circulating
levels of osteopontin and kidney expression as well [79]. This suggests that the protective
level cannot be reached via CKD-induced overexpression, and the overexpression due to
obesity combined with that of CKD provides a sufficient osteopontin levels to induce a
protective level, contributing to the obesity paradox in CKD.

Understanding such obesity paradoxes might reveal previously unknown molecular
pathways and allow the identification of potential therapeutic targets to improve CKD
outcomes for patients, especially those suffering from obesity. Finally, it is worth men-
tioning that obesity-related outcomes do not only depend on body weight or even fat
percentage but also on fat distribution [82,83], as—for instance—visceral adiposity and
ectopic adiposity [84] have a worse outcome than subcutaneous adiposity. Therefore, the
obesity paradox needs to be “adjusted” depending on the fat distribution.
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