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Abstract

IMPORTANCE Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may
increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical
mixtures or explored underlying protein and metabolic signatures.

OBJECTIVE To investigate associations of prenatal exposure to EDC mixtures with MetS risk score
in children and identify associated proteins and metabolites.

DESIGN, SETTING, AND PARTICIPANTS This population-based, birth cohort study used data
collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort
based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included
mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk
factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023.

EXPOSURES Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2
polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate
metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine
and blood samples collected during pregnancy.

MAIN OUTCOMES AND MEASURES At 6 to 11 years of age, a composite MetS risk score was
constructed using z scores of waist circumference, systolic and diastolic blood pressures,
triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary
metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted
methods. Associations were assessed using bayesian weighted quantile sum regressions applied to
mixtures for each chemical group.

RESULTS The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their
children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%];
mean [SD] MetS risk score, −0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for
metals (β = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (β = 0.22;
95% CrI, 0.15 to 0.29), PBDEs (β = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (β = 0.19; 95% CrI, 0.14 to
0.24). High-molecular weight phthalate mixtures (β = −0.07; 95% CrI, −0.10 to −0.04) and
low-molecular weight phthalate mixtures (β = −0.13; 95% CrI, −0.18 to −0.08) were associated with
a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory
proteins, amino acids, and altered glycerophospholipids, which in turn were associated with
increased MetS score.

(continued)

Key Points
Question Is prenatal exposure to

mixtures of endocrine-disrupting

chemicals (EDC) associated with

metabolic dysfunction in children?

Findings In this cohort study of 1134

mother-child pairs from 6 European

countries, prenatal exposures to EDC

mixtures, including metals,

organochlorine pesticides,

polybrominated diphenyl ethers, and

perfluoroalkyl substances, were

associated with increased metabolic

syndrome risk score and altered

proinflammatory proteins, amino acids,

and glycerophospholipid levels in

childhood.

Meaning These results suggest that

exposure to widespread EDC mixtures

in pregnancy may be associated with

adverse metabolic health in children and

contribute to the ongoing surge of

metabolic syndrome across the

life course.

+ Invited Commentary

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2024;7(5):e2412040. doi:10.1001/jamanetworkopen.2024.12040 (Reprinted) May 23, 2024 1/17

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12022&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12040
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12040&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12040


Abstract (continued)

CONCLUSIONS AND RELEVANCE This cohort study suggests that prenatal exposure to EDC
mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of
EDCs and the increase in MetS, these findings hold substantial public health implications.

JAMA Network Open. 2024;7(5):e2412040. doi:10.1001/jamanetworkopen.2024.12040

Introduction

Metabolic Syndrome (MetS) represents a cluster of multiple factors associated with increased risk for
cardiovascular diseases and type 2 diabetes (T2D), including abdominal obesity, hypertension, insulin
resistance and dyslipidemia, affecting 1 in 4 adults worldwide.1 Pediatric MetS prevalence ranges
from 2% to 10%,2 with individual risk factors on the rise.3-5 Childhood MetS has shown great utility
in predicting adult MetS, T2D, and cardiovascular disease,6-8 even better than individual MetS
components.9

Exposure to endocrine-disrupting chemicals (EDCs) during fetal development, a critical period
of increased susceptibility and programming, may increase the risk of MetS later in life.10 EDCs are a
class of environmental pollutants with the ability to cross the blood-placenta barrier and interfere
with human metabolism and hormonal balance.10 These include pesticides, metals, plasticizers such
as phthalates and phenols, and other widely used chemicals, including perfluoroalkyl substances
(PFAS).10

While previous research has examined associations of prenatal EDC exposure with separate
components of MetS in children,11,12 comprehensive studies on overall cardiometabolic risk remain
limited.13-18 Additionally, only a few studies have assessed the mixture effects of selected classes of
EDCs,16-18 despite widespread exposure to chemical mixtures. Finally, although some associations of
prenatal EDC exposure with protein and metabolic signatures in childhood have been described,19,20

the internal phenotypes associated with EDC mixtures and underlying MetS pathogenesis are poorly
understood.

We utilized a multicenter cohort of 1134 mothers and their children aged 6 to 11 years to conduct
the most comprehensive study to date of the association of prenatal EDC mixtures from 9 chemical
classes with child MetS risk score. Furthermore, we aimed to identify associated protein and
metabolic signatures to unravel underlying mechanisms and altered metabolic pathways.

Methods

Study Population
This cohort study used data from the Human Early Life Exposome (HELIX) project and followed the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline. The HELIX Project is a collaboration between 6 ongoing European longitudinal
population-based cohort studies21: Born in Bradford (BiB [UK]),22 Étude des Déterminants Pré et
Postnatals du Développement et de la Santé de l’Enfant (EDEN [France]),23 Infancia y Medio
Ambiente (INMA [Spain]),24 Kaunas Cohort (KANC [Lithuania]),25 Norwegian Mother, Father, and
Child Cohort Study (MoBa [Norway]),26 and Mother and Child Cohort in Crete (RHEA [Greece]).27

Approval for the HELIX project was obtained from local ethics committees in each country, and all
participating families provided written informed consent. Pregnant women across cohorts were
recruited between April 1, 2003, and January 30, 2009. From December 1, 2013, until February 26,
2016, a subcohort of 1301 mother-child pairs was followed-up when the children were aged 6 to 11
years using standardized protocols for clinical examination, interview, and biological sample
collection.28 Details about the protocol and subcohort inclusion criteria are described elsewhere.28
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This study included mother-child pairs with measured prenatal EDC exposures and complete data on
childhood MetS risk factors, proteins, and metabolites (eFigure 1 in Supplement 1).

EDCs Exposure Assessment
EDC levels were measured in maternal serum, plasma, whole blood, and urine samples collected
during pregnancy or cord blood at birth (eTable 1 in Supplement 1).29 A total of 45 compounds from
9 chemical classes were analyzed: 9 metals; 3 organochlorine (OC) pesticides; 5 polychlorinated
biphenyls (PCBs); 2 polybrominated diphenyl ethers (PBDEs); 5 PFASs; 7 high-molecular-weight
phthalate metabolites (HMWPs), including 4 diethylhexyl phthalate (DEHP) metabolites, 2
di-isononylphthalate (DiNP) metabolites, and 1 metabolite of butyl benzyl phthalate; 3
low-molecular-weight phthalate metabolites (LMWPs); 4 parabens; 3 phenols; and 4
organophosphate (OP) pesticide metabolites. Persistent organic pollutants (OC pesticides, PCBs,
PBDEs, and PFAS) and metals were determined in maternal blood except for total mercury which was
measured in cord blood in the INMA cohort. Lipophilic compounds (OC pesticides, PCBs, and PBDEs)
were corrected for plasma or serum lipid content and expressed in nanograms per gram of lipids.
Nonpersistent EDCs (phthalates, parabens, phenols, and OP pesticides) were measured in a spot
maternal urine sample, corrected for urine creatinine levels to account for urine dilution and
expressed in micrograms per gram of creatinine. Details on laboratories and analytical methods are
in eTable 2 in Supplement 1. Quality control, interlaboratory comparison, and limit of detection for
each laboratory are available elsewhere.29 Values below the limit of detection (0%-30%) were singly
imputed using a quantile regression approach for the imputation of left-censored missing data with
the R statistical software version 4.3.2 rexposome package (R Project for Statistical Computing).30

This fill-in estimation method offers the advantage of inserting values between 0 and the limit of
detection while preserving the shape of a normal distribution.

MetS Risk Score
We calculated a continuous MetS risk score using the score previously validated for children by the
European Multicenter Identification and Prevention of Dietary and Lifestyle-Induced Health Effects
in Children and Infants study.31 Further details are in the eMethods in Supplement 1. We applied the
following formula to build the MetS risk score:

z-waist circumference + (–z high-density lipoprotein cholesterol + z-triglycerides)/2 + z-insulin + (z-
systolic blood pressure + z-diastolic blood pressure)/2,

where z refers to the standardized risiduals. A higher score indicates a higher risk of developing MetS.

Child Metabolites and Proteins
We used targeted methods to assess metabolite and protein levels in child urine and blood samples
collected at the same follow-up visit. Metabolites were assessed at the Imperial College of London
(London, UK). A total of 44 urinary metabolites were characterized with 1H nuclear magnetic
resonance spectroscopy. Serum metabolites were quantified with the liquid chromatography–mass
spectrometry metabolomic assay AbsoluteIDQ p180 kit (Biocrates), allowing for the analysis of 177
metabolites, including amino acids, biogenic amines, acylcarnitines, glycerophospholipids,
sphingolipids, and sum of hexoses. A total of 35 plasma proteins were determined with 3 Luminex
multiplex assays: Cytokines 30-plex, Apoliprotein 5-plex, and Adipokine 15-plex (University Pompeu
Fabra Centre for Genomic Regulation Proteomics Unit, Barcelona, Spain). Details about the
assessment of children’s metabolites and proteins are available in eAppendix 1 in Supplement 1 and
elsewhere.20

Statistical Analysis
Maternal EDCs and child protein and metabolites were log2-transformed to correct skewed
distributions. Missing data for all exposures and covariates (0%-54%; eTable 3 in Supplement 1) were
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imputed using multiple imputations by chained equations, generating 20 imputed data sets, which
were combined using Rubin rules in all the subsequent analyses.32 Further imputation details are
available elsewhere.33

Adjusted generalized additive models confirmed no departures from linearity between
individual EDCs and MetS risk score (eFigure 2 and eFigure 3 in Supplement 1). We used bayesian
weighted quantile sum (BWQS) regressions to assess associations of mixtures of EDCs belonging to
each chemical class with MetS score. BWQS estimates a single weighted index summarizing overall
exposure to the mixture considering the relative contribution of each exposure within the group
mixture using weights.34 BWQS characteristics are available in eAppendix 2 in Supplement 1. BWQS
regressions were stratified by sex due to potential sex-specific effects of some EDCs.35-37 We note
that sex interactions were not tested due to the absence of interaction testing functions in the BWQS
package. Sensitivity analyses to ensure results robustness included (1) single-exposure analyses using
linear regressions, correcting for multiple testing with false discovery rate (FDR) and assessment of
between-cohort heterogeneity using the I2 statistic of association38; (2) mixture analyses for
lipophilic compounds, stratifying mothers by gestational weight gain according to the Institute of
Medicine guidelines39; (3) phthalate mixture analysis, incorporating molar sums of DEHP and DiNP
metabolites; (4) metal and persistent mixture analysis, including sum of PCBs, and nonpersistent
mixture analysis, incorporating molar sums of DEHP, DiNP, and parabens; and (5) testing main
significant mixture associations with a binarized MetS risk outcome, using the 80th percentile as
the cutoff.

To identify proteins and metabolites associated with both chemical mixtures and MetS, we first
fitted generalized linear regression models between each molecular feature and the MetS risk score,
correcting for multiple testing using FDR. Subsequently, we performed BWQS regressions between
EDC classes and each associated molecular feature with an FDR P value < .05. BWQS model
corrections for multiple testing were computed using P values derived from bayesian probability of
direction, following Makowski et al.40 All analyses were conducted in R version 4.3.2.

All statistical models were adjusted for the confounders selected based on previous knowledge
and a directed acyclic graph (eFigure 4 in Supplement 1), including subcohort, parental country of
birth (both parents native, none or 1 parent native), maternal age, self-reported prepregnancy body
mass index (BMI; calculated as weight in kilograms divided by height in meters squared), maternal
educational level, parity, maternal smoking in pregnancy, and fish intake in pregnancy. Statistical
analysis occurred from October 2022 to July 2023.

Results

Our study comprised 1134 mother–child pairs (mean [SD] maternal age, 30.7 [4.9] years; 517 female
children [45.6%] and 617 male children [54.4%]) (Table). Of all mothers, 574 (50.6%) were highly
educated and 506 (44.6%) were nulliparous. The mean (SD) age of children was 7.8 (1.5) years at
outcome assessment. The mean (SD) MetS score was −0.1 (2.3), with 341 children (30.1%) classified
as high-risk. Maternal prepregnancy BMI was associated with higher child MetS score, and there was
some variation in MetS score by cohort (eTable 4 in Supplement 1). Prenatal EDC concentrations are
detailed in eTable 5 in Supplement 1. Pearson correlations indicated positive moderate to high
correlation within each EDC class, with a few negative correlations within the metals class (eFigure 5
in Supplement 1).

Mixture analyses showed increased MetS risk score per 1-quartile increase in prenatal EDC
mixture for metals (β = 0.44; 95% credible interval [CrI], 0.30 to 0.59), OC pesticides (β = 0.22; 95%
CrI, 0.15 to 0.29), PBDEs (β = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (β = 0.19; 95% CrI, 0.14 to 0.24);
while HMWPs and LMWPs were associated with decreased MetS risk score (β for HMWPs = −0.07;
95% CrI, −0.10 to −0.04; β for LMWPs = −0.13; 95% CrI, −0.18 to −0.08) (Figure 1A and eTable 6 in
Supplement 1). No association was observed for mixtures of PCBs, phenols, parabens, and OP
pesticide metabolites (Figure 1A and eTable 6 in Supplement 1). The main contributor to the metal
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mixture association was mercury (weight, 0.33). Hexachlorobenzene (HCB; weight, 0.51) and
perfluorononanoic acid (PFNA; weight, 0.48) were the primary contributors in the OC pesticides and
PFAS mixture associations. Within the LMWP mixture, mono-n-butyl phthalate (MnBP) showed the
highest contribution (weight: 0.48), while chemicals within PBDEs and HMWPs had similar weights
within each group (Figure 1B and eTable 7 in Supplement 1).

Table. Characteristics of the Human Early Life Exposome Subcohort Study Population

Characteristic Participants, No. (%) (N = 1134)
Parental characteristics

Subcohort

BiB (UK) 193 (17.0)

EDEN (France) 144 (12.7)

INMA (Spain) 206 (18.2)

KANC (Lithuania) 196 (17.3)

MoBa (Norway) 205 (18.1)

RHEA (Greece) 190 (16.8)

Family native from the country of the cohort

At least 1 native parent 1010 (89.1)

No native parent 124 (10.9)

Maternal age at birth, mean (SD), y 30.7 (4.9)

Maternal prepregnancy body mass index, mean (SD)a 25.1 (5.0)

Gestational weight gain status (Institute of Medicine criteria)

Low or adequate 503 (44.4)

Excessive 631 (55.6)

Maternal educational level

Low 167 (14.7)

Medium 393 (34.7)

High 574 (50.6)

Parity

Nulliparous 506 (44.6)

Primiparous 421 (37.1)

Multiparous 207 (18.3)

Maternal smoking in pregnancy

No 966 (85.2)

Yes 168 (14.8)

Maternal fish intake in pregnancy

<2 times/wk 468 (41.3)

2-4 times/wk 342 (30.2)

>4 times/wk 324 (28.6)

Child characteristics

Sex

Female 517 (45.6)

Male 617 (54.4)

Age at assessment, mean (SD), y 7.8 (1.5)

Waist circumference, mean (SD), cm 58.5 (7.6)

Systolic blood pressure, mean (SD), mm Hg 99.1 (11.1)

Diastolic blood pressure, mean (SD), mm Hg 58.3 (9.6)

High-density lipoprotein cholesterol, mean (SD), mg/dL 59.4 (12.4)

Triglycerides, median (IQR), mg/dL 75.3 (59.3-101.0)

Insulin, median (IQR), μIU/mL 317.6 (217.7-552.5)

Metabolic syndrome score, mean (SD) −0.1 (2.3)

Metabolic syndrome risk group (80th percentile: 1.7 cutoff score)

Low-risk 793 (69.9)

High-risk 341 (30.1)

Abbreviations: BiB, Born in Bradford; EDEN, Étude des
Déterminants Pré et Postnatals du Développement et
de la Santé de l’Enfant; INMA, Infancia y Medio
Ambiente; KANC, Kaunas cohort; MoBa, Norwegian
Mother, Father, and Child Cohort Study; RHEA, RHEA
Mother Child Cohort.

SI conversion factors: To convert high-density
lipoprotein cholesterol to millimoles per liter, multiply
by 0.0259; insulin to picomoles per liter, multiply by
6.945; triglycerides to millimoles per liter, multiply
by 0.0113.
a Body mass index was calculated as weight in

kilograms divided by height in meters squared.
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When stratified by sex, nonoverlapping 95% CrIs were observed for PCB, PFAS, and HMWP
mixtures between both groups (Figure 2). The PCB mixture was associated with higher MetS score
in female children (β = 0.11; 95% CrI, 0.03 to 0.19) and lower MetS score in male children (β = −0.17;
95% CrI, −0.21 to −0.12) (Figure 2 and eTable 6 in Supplement 1). Associations of PFAS and HWMPs
with MetS score were observed only in female children.

A total of 14 plasma proteins, 110 serum metabolites and 10 urine metabolites were cross-
sectionally associated with child MetS risk score (eTables 8-10 in Supplement 1). Figure 3 depicts
associations of these metabolites and proteins with the prenatal chemical mixtures (for visualization
purpose, only those with a percent change >5% are shown) and child MetS risk score. The number
of molecular markers related to both MetS score and the mixture ranged from 43 for the LMWP
mixture to 109 for the PFAS mixture (eTables 11-13 in Supplement 1). All prenatal mixtures were
associated with elevated serum levels of C-reactive protein (CRP) and at least 2 of the following
proteins, which were all associated with higher MetS score: interleukin (IL)-1β, IL-6, IL-1RA, and leptin
(Figure 3, eTable 8, and eTable 11 in Supplement 1). Metals and persistent chemicals were associated
with increased serum levels of α-aminoadipic acid (α-AAA), leucine, isoleucine, and valine, which also
were associated with an increased MetS score. The same set of mixtures was associated with altered
diacyl chain phosphatidylcholine levels, primarily associated with higher MetS score. Metals and
PFAS were associated with decreased acylcarnitines, which were associated with lower MetS score
(Figure 3, eTable 9, and eTable 12 in Supplement 1). Metals and persistent chemicals (except for
PBDEs) were associated with higher urine concentrations of 4-deoxyerythronic acid and
3-hydroxisobutyrate, which were also associated with higher MetS score. Conversely, all mixtures,
except for LMWPs, were associated with lower child urine hippurate, which was associated with
lower MetS score (Figure 3, eTable 10, and eTable 13 in Supplement 1).

Sensitivity Analyses
Single-exposure analyses showed an association of prenatal MnBP levels with decreased child MetS
risk score (β = −0.17; 95% CrI, −0.34 to −0.01), but no other associations were observed (eTable 14 in
Supplement 1). Between-cohort heterogeneity was not observed (I2 values close to 0%). The
association of OC pesticide mixtures with child MetS risk was notable only in children whose mothers
had low or adequate weight gain during pregnancy (β = 0.32; 95% CrI, 0.23 to 0.40), whereas no
clear differences were observed by weight gain categories for other classes of lipophilic chemicals
(eTable 15 in Supplement 1). Associations of whole phthalate mixture, nonpersistent chemical
mixture, and child MetS risk were comparable to those found with the LMWPs mixture (eTable 16 in
Supplement 1). Notably, the metals and persistent chemical mixture exhibited larger associations
than separate chemical groups (β = 0.63; 95% CrI, 0.47 to 0.78) (eTable 17 in Supplement 1).

Figure 2. Associations of Prenatal Chemical Mixtures With Metabolic Syndrome (MetS) Score Stratified by Sex
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Figure 3. Scatterplot of Selected Proteins and Metabolites Associated With at Least 1 Prenatal Chemical Mixture and Child Metabolic Syndrome (MetS) Risk Score
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Associations remained consistent when using the dichotomous MetS risk outcome (eTable 18 in
Supplement 1).

Discussion

In this multicenter cohort study of European mothers and their children, maternal exposure to
mixtures of metals, OC pesticides, PBDEs, and PFAS during pregnancy was associated with an
increased MetS risk score in childhood, while phthalate mixtures were associated with a lower MetS
score. Our results suggest sex-specific associations for certain chemicals and identify molecular
signatures in childhood associated with both prenatal EDC exposure and child MetS risk. Notably,
associations of metals and persistent chemicals with MetS closely resemble those previously
observed with nonalcoholic fatty liver disease risk,41 which contributes to increasing evidence
supporting the relationship between both disorders.

To our knowledge, this study represents the first comprehensive evaluation of associations of
prenatal exposure to mixtures of a wide range of EDC classes with MetS risk, and protein and
metabolite profiles in childhood. Our use of state of the art mixture methods revealed associations
not evident in single exposure models, highlighting the importance of evaluating health risks
associated with EDC mixtures. The use of an aggregate MetS score offered a more comprehensive
approach compared with isolated risk factors, capturing the overall metabolic effect better. By
identifying child molecular phenotypes associated with EDC mixtures and underlying MetS, this
study may support future early identification of EDC-exposed pediatric populations at risk for MetS
development. Furthermore, the sample size of more than 1000 mother-child pairs enabled
stratification and comparison of associations between male and female children. Previously, only 1
study18 assessed the association of a prenatal metal mixture with child MetS risk, observing a null
association. However, this mixture did not include mercury,18 a high priority pollutant that has been
suggested to elicit oxidative stress and inflammation.42,43 We found that mercury was the metal with
the highest contribution to increasing child MetS. Our results corroborate the adverse metabolic
health associated with prenatal mercury exposure previously found in the HELIX project15 and other
epidemiological studies.43

The obesogenic effects of in utero exposure to persistent chemicals, including OC pesticides,
PBDEs, and PFAS have been extensively reported.11 However, only a few studies13,14,16 have examined
their association with MetS risk in childhood. We observed HCB to be the main contributor of the OC
pesticides mixture association and PFNA to be the main contributors of the PFASs mixture
association. These findings align with earlier studies using the Spanish INMA cohort,13,14 which found
that prenatal HCB and PFNA was associated with higher MetS risk in adolescence and childhood. Of
interest, PFNA was also the main contributor to prenatal PFAS mixture associations related to higher
liver enzymes and liver injury in children in HELIX.41,44

Phthalates, as nonpersistent EDCs quickly metabolized and excreted in urine, have been shown
in experimental studies45,46 to disrupt fetal programming of cardiovascular function and
adipogenesis, predisposing to offspring MetS pathogenesis.12 Surprisingly, we found that prenatal
exposure to phthalates was associated with a decreased child MetS risk score. Similarly, a study17

with over 2000 Chinese mother-child pairs reported inconsistent associations of phthalate mixture
exposure with MetS risk in childhood, depending on the exposure timing in pregnancy. We found no
associations with MetS score for the phenols, parabens, and OP pesticide metabolite mixtures, even
though single exposure studies have documented associations with components of MetS, especially
for bisphenol A.10,11,47 The reason for such inconsistencies may be potential measurement error given
the exposure assessment in a single urine sample.48

Our results suggest sex-specific metabolic disruption, with females being more susceptible to
PFAS and PCBs exposure. This could be due to their interference with sex steroid hormone
pathways,49-51 which in the case of PFAS, has been observed in human fetuses.52
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Our analysis of molecular markers unveiled proteins and metabolites associated with both
prenatal EDC exposure and MetS development. Most mixtures were associated with upregulated
cytokines, CRP, and leptin, all of them being proinflammatory proteins produced and released by the
adipose tissue relevant to MetS pathogenesis.53,54 CRP has also shown to be associated with
increased risk of MetS, T2D, and cardiovascular disease in healthy adults.55 Our findings, using an
exposure-mixture approach in a sensitive time-window as pregnancy, corroborate prior in vitro, in
vivo, and epidemiological studies56-62 that showed similar associations with individual metals,
persistent chemicals, and phthalate exposure, including earlier HELIX studies15,63 assessing prenatal
mercury and PFAS exposure.

At the metabolite level, we observed elevated levels of serum branched chained amino acids,
α-AAA, urinary 4-deoxyerythronic acid, 3-hydroxisobutyrate, and dysregulation in diacyl chain
phosphatidylcholines associated with prenatal metals and persistent chemicals mixtures and
increased MetS score. Branched chained amino acids, well-known regulators of glucose and lipid
metabolism,64 and α-AAA have been shown to be associated with MetS risk components in healthy
adults before disease onset.65-68 Consistently, 4-deoxyerythronic levels were associated with a
higher BMI in childhood in the HELIX study.69 3-Hydroxyisobutyrate, whose fermentation by gut
bacteria may lead to the production of short-chain fatty acids regulating overall metabolic activity,70

has also been associated with to obesity, insulin resistance, and T2D.71 Perturbations in lipid
metabolites associated with OC pesticides and PFAS exposure were noted in previous studies with
children,72,73 and with prenatal exposure in children.44 Diacyl chain phosphatidylcholines are crucial
for the liver’s release of triglyceride-rich, very low density lipoprotein particles and high-density
lipoprotein,74 consistent with our findings and with metabolomics studies in patients with T2D75 and
obesity.76 Acylcarnitines transport fatty acids to mitochondria for oxidation,77 and elevated levels
may be associated with T2D and MetS risk.78,79 Odd-chain acylcarnitines, whose main source is
circulating fatty acids from diet,80 were associated with decreased MetS risk score in childhood. We
speculate that these results may be partly due to differences in diet and fasting status.80 Chemical
mixtures were associated with lower urine hippurate levels. Hippurate, originating from dietary
polyphenols metabolism,81 has been associated with increased gut microbiome diversity and
reduced MetS risk,82 aligning with our findings.

Limitations
Our study has several limitations. First, potential measurement error in assessing highly variable
nonpersistent chemicals83 with attenuation bias reached as high as 80%.84 Second, lipids and insulin
were analyzed from blood taken after only 3 hours of fasting, which may have reduced the precision
of the MetS risk score. Third, although we used a longitudinal study design, proteins and
metabolomic biomarkers in children were assessed at the same time point as the MetS score, limiting
the ability to disentangle any mediating effect of the observed features of the EDC-MetS
associations. Fourth, no multiordered chemical-chemical interactions were considered in this study,
hindering the possibility of detecting potential toxicological interactions among EDCs.85 Fifth,
because our focus was on EDCs exposure during fetal programming, childhood exposures were not
considered, rendering it challenging to discern effects across exposure windows. For some of our
EDC classes, further caution is warranted because exposure data were missing (ie, the chemicals
were not analyzed) for a relatively large proportion of subjects; for example, PBDEs were missing in
51% to 54% of participants. To address this, we used multiple imputations to minimize bias that
would result from deleting participants with missing data, thereby avoiding loss of power.86,87 We
opted not to conduct complete-case analyses due to the limited sample size (less than 400
participants), which would not allow for a meaningful comparison with our imputed data sets. Future
studies incorporating repeated urine samples during pregnancy,88 and novel statistical tools
combining mixtures with mediation and interaction analysis are needed for a deeper understanding
of EDC metabolic effects.
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Conclusions

This large, population-based cohort study suggests that prenatal exposure to EDCs mixtures,
particularly metals, OC pesticides, PBDEs, and PFASs, may be associated with adverse metabolic
health in childhood. These findings advance our limited understanding of metabolic effects of EDC
mixtures in early life and can inform more efficient early-life prevention and intervention strategies to
address rising trends in MetS across the life course.
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