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ABSTRACT
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose 
tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and 
myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, 
inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micro
nutrients with anti-inflammatory activities that have unclear mechanisms. The present study 
aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway 
of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, 
target prediction, and molecular docking simulation calculations to support our hypotheses. Our 
results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and 
E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins 
A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the 
pharmacological potential of using an anti-inflammatory and multitarget treatment based on 
vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear 
factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an 
insulin-resistant context.
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Introduction

The obesogenic environment is a predisposing factor 
for the development of obesity, such as sedentary life
style, urbanization, rural-to-urban migration, hyperca
loric food consumption, and physical inactivity. The 
final step of the interaction of these factors generates 
pathophysiological mechanism, such as insulin resis
tance (IR), which is commonly the starting point for 
the development of more complex diseases, such as 
type 2 diabetes mellitus, cardiovascular diseases, meta
bolic syndrome, and breast or colorectal cancer [1]. 
Chronic consumption of a hypercaloric diet can lead 
to inflammation and lipid oxidation with excessive 
accumulation of lipids in adipocytes, myocytes, and 
hepatocytes [2].

IR starts in adipose tissue with the phosphorylation 
of insulin receptors caused by the lipo-inflammation 
process, which is characterized by an increase in the 
size of adipocytes (excessive lipid accumulation) and 
metabolic dysfunction (proinflammatory cytokine 
secretion). Inflammatory pathways in adipocytes and 

macrophages begin with mitogen-activated protein 
kinase (MAPK), Junk kinase (JNK) and inhibitor of 
nuclear factor κ-B kinase (IKK) phosphorylation, fol
lowed by nuclear factor kappa B (NF-κB) activation 
and translocation into the nucleus [3]. Then, proin
flammatory cytokines such as tumour necrosis factor- 
α (TNF-α), interleukin-6 (IL-6), and interleukin-1β 
(IL-1β) are produced by adipocytes and stimulate 
changes in the M2 to M1 phenotype of macrophages. 
Macrophages M1 are characterized by the secretion 
of proinflammatory cytokines [4,5].

Several alternative treatments have been proposed to 
increase insulin sensitivity and decrease inflammation 
and oxidative stress levels in obesity models. For exam
ple, natural products are promising sources for the 
development of novel preventive and curative treat
ments [6–8]. Moreover, vitamins have demonstrated 
the potential to reduce inflammation and oxidative 
stress. For example, vitamins A, B1, C, and E have 
antioxidant activity, and vitamin E can re-establish 
enzyme glutathione function [9,10]. Vitamins B1 [11], 
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B2 [12], B3 [13], B5 [14], B6, B7, B12 [15], C [16], D3 
[17], and E [18] have been shown to have anti- 
inflammatory activity. Figure 1 shows the structure of 
exemplary vitamins with anti-insulin resistance activity 
that have been associated with antioxidant or anti- 
inflammatory activities, mediated by a decrease in 
proinflammatory cytokines. However, the precise 
mechanism of action (MOA) is unclear.

Vitamin B2 shows reduction of TNF-α and other 
proinflammatory cytokines associated of NF-κB inhibi
tion [12], in the same way, vitamin C administered with 
vitamin B5 decreased C-reactive protein serum levels 
[14]. Vitamin C also decreases TNF-α serum levels due 
to its inhibitory activity on TNF-α mRNA transcription 
[16], and vitamin E suppresses proinflammatory signal
ling such as NF-κB and transcription factor STAT3/6 
(STAT3/6) [19]. Finally, vitamin D and its receptor 
(VDR) regulate inflammation by upregulating of 
MAPK and inhibiting the NF-κB signalling pathway 
[20]. Therefore, more studies are needed to elucidate 
the specific MOA of vitamins in the inflammatory 
pathway. Thus, these molecules represent promising 
candidates for the treatment or prevention of IR, espe
cially if it is administered a multivitamin (i.e., based on 
a polypharmacy approach or multitarget therapy).

In silico studies help to identify promising com
pounds and molecular targets that represent future 
solutions for different types of diseases [21–23]. 
Target prediction using machine learning models, 
molecular docking calculations, and network pharma
cology are examples of the current methodologies used 

to discover and develop novel drugs [24]. Overall, the 
rational use of these and other computational techni
ques saves time, assesses cost-effective drugs, and 
reduces data gaps [25–27]. Thus, computational meth
ods are powerful for establishing a solid hypothesis for 
the MOA of the proposed vitamins (A, B1, B2, B3, B5, 
B6, B7, B12, C, D3, and E) in the inflammatory path
way, which is an important component of IR. Similarly, 
vitamin D3 was evaluated for its inhibitory activity on 
mitogen-activated protein kinase kinase 1 (MAPK1) 
and MAP2K1 by GO and KEGG enrichment analyses. 
Suggesting that vitamin D3 plays a key role in the 
prevention of colorectal cancer (CRC) through core 
targets, the phosphatidylinositol 3-kinase- protein 
kinase B (PI3K-AKT), hypoxia-inducible factor 1 
(HIF-1), and forkhead box protein (FoxO) pathways 
[28]. In addition, vitamin D3 plays an important role 
in the inhibition of the NF-κB pathway; therefore, it has 
been proposed as a treatment for rheumatoid arthri
tis [29].

The main goal of this work was to describe the 
putative mechanisms of 11 vitamins with anti- 
inflammatory activity, inhibiting pathways such as 
nuclear factor kappa B (NF-κB), inhibitor of nuclear 
factor κ-B kinase (IKK), and mitogen-activated protein 
kinase (MAPK), involved in the prevention or treat
ment of IR. Using bibliographic data analysis and in 
silico methods such as target prediction and molecular 
docking calculations. In silico methods used in this 
study were validated using both positive and negative 
controls.

Figure 1. Representative vitamins associated with anti-insulin resistance activity.
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Results

Using a knowledge-based drug design approach, we 
explored in silico the putative affinity of vitamins A, 
B1, B2, B3, B5, B6, B7, B12, C, D3, and E with targets 
involved in the anti-inflammatory potential of the 
nuclear factor kappa B (NF-κB) pathway. Figure 2 illus
trates the general protocol used. In vitro and in vivo 
data supported the computational predictions.

Target prediction

Target prediction is a commonly used technique in 
drug discovery [30]. The most common target predic
tion servers allow the identification of potential targets 
of small molecules based on their structural and/or 
interactome similarity with each target inhibitor con
tained in the target prediction servers databases. In this 
study, we used target prediction servers based on simi
larities and interactome similarities to identify potential 
targets for each studied vitamin.

Table 1 and Table S1 in the Supporting Information 
summarize the interactions of vitamins A, B1, B2, B3, 
B5, B6, B7, B12, C, D3, and E with NF-κB, MAPK, and 
IKK using seven target predictor servers (Swiss Target 
prediction [31], Super-PRED [32], TargetNet, 
TargetHunter [33], STITCH [34] and PPB [35]). We 
selected the prediction with a higher than 70% confi
dentiality and selected for a deep study of the targets 
predicted in almost two different servers. The bench
mark was selected according to the report by Gallo 
[36], which remarks on the structural diversity of inhi
bitors of different kinds of targets. Interestingly, 
approximately 10% of the consensus predictions have 

been documented in previous studies (Table 1), which 
indicates the utility of these servers.

Molecular docking

Molecular docking has been used for drug discovery 
and optimization [50]. Docking helps to identify puta
tive binding sites, potential inhibitors, and/or identify
ing new molecular targets, including targets related to 
IR like inflammatory pathway (NF-κB, MAPK, and 
IKK) that lead to the proinflammatory cytokine’s trans
lation, and oxidative stress pathway, involved in the 
phosphorylation of ISR [51,52]. In this case, we used 
a blind docking approximation to identify the putative 
binding site (and hypothetical affinity) of each vitamin 
against targets related to the NF-KB pathway (Figures 
3, 4 , and 5). We used positive controls for NF-κB (i.e., 
oxidized hTRX), MAPK (i.e., SRC-SM1-71-R), and IKK 
(i.e., Cmpd1/2), and established the molecular docking 
conditions to reproduce their crystallographic reports 
with an RMSD value lower than 2 Angtroms (that is, 
the traditional protocol to validate blind docking pro
tocols). The results of that study established a robust 
pharmacological hypothesis of protein-vitamin interac
tions associated with their polypharmacological activity 
or selectivity against targets related to IR, as illustrated 
in Figure 3. The polypharmacological activity and selec
tivity against targets related to IR are illustrated in 
Figure 3.

In this study, we employed molecular docking cal
culations to provide insights into the putative affinity of 
vitamins (A, B1, B2, B3, B5, B6, B7, B12, C, D3, and 
E for), MAPK and IKK at the structural level.

Figure 2. General workflow used in this work.
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The most representative binding positions of vitamins 
B1, B3, B5, B6, B7, C, and D3 against MAPK are illu
strated in Figure 4, which shows the putative binding 
cavities and key molecular contacts. For example, as 
mentioned previously, vitamins C and D3 can inhibit 
MAPK [53,54]. Interestingly, the molecular docking 
results suggest that vitamins B3 and B6 could interact 

in a similar binding site to vitamin C with similar affinity 
(Figure 4), highlighting the importance of key interac
tions with LEU 50 and MET 121, which form part of the 
protein kinase domain. Vitamin B1 shows a binding site 
similar to that of vitamin D3, highlighting the impor
tance of THR 341, which forms part of the p38 mitogen- 
activated protein kinase (p38MAPK)-binding site [55]. 
However, most of the vitamin B1 and D3 structures do 
not directly interact with MAPK (solvent ligand expo
sure), suggesting that their MOA could be generated by 
promoting allosteric changes in MAPK. In the case of 
vitamins B5 and B7, their putative binding mechanism 
could be completely different from that of vitamins C or 
D3, but in both cases, the positively charged amino acids 
(e.g., ARG, GLU, or ASP) could explain their affinities.

Figure 5 illustrates the predicted binding of the vita
mins to NF-κB. As previously mentioned, vitamins B2, 
B5, and B6 can inhibit NF-κB [15]. The key interactions 
observed between B2 and B5 against NF-κB highlight the 
importance of positively charged amino acids (e.g., ARG 
26, LYS 102, GLU 153, and ARG 194) in their putative 
binding site, which forms part of the RHD domain 
involved in the molecular recognition of IKK [56,57]. 
Similar key interactions with B2 and B5 were predicted 
for vitamins B1, B3, and C. In contrast, blind molecular 
docking results suggested that vitamins B7 and B6 interact 
with different binding sites of the RHD domain in NF-κB.

Discussion

IR is an uncontrolled pandemic, principally associated 
with lifestyle. For example, unhealthy alimentary habits 
promote IR, which are associated with the development 
of type 2 diabetes mellitus, metabolic syndrome, and 
cardiovascular diseases. IR is generated initially by 
inflammation caused by lipid accumulation in the adi
pose tissue, liver, and muscle, inducing phosphoryla
tion of insulin receptors, followed by insulin resistance. 
Previous studies have shown that vitamins can prevent 
IR due to their anti-inflammatory activity and 
decreased levels of TNF-α, IL-6, IL-1, and IL-1β in 
the serum [10,12,14,16,19,20]. In the present work, we 
used an in silico workflow (Figure 2) to formulate 
mechanistic hypotheses at the molecular level regarding 
the putative anti-inflammatory activity of vitamins 
against targets related to IR (e.g., NF-κB, MAPK, 
and IKK).

MAPK is the first step in the inflammatory pathway 
ending in NF-κB activation; this process has been 
implicated in chronic diseases, such as metabolic dis
eases [58–60]. Therefore, we considered three important 
points: NF-κB, MAPK, and IKK. A previous study 
in vitro of vitamin C in HeLa cells showed its inhibitory 

Table 1. Vitamins target prediction using different servers.

Vitamin Consensus target prediction

Reference that supports their 
putative inhibitory activity 

against each predicted target

A Tyrosyl-DNA 
phosphodiesterase 12, 6

-

MAP Kinase2,6 -
Retinoid acid receptor 
(alpha, beta, and gamma)2, 3, 

4, 5, 6

[37]

B1 Transketolase1, 4, 5, 6 [38]
Nuclear factor NF-kappa-B 
p105 subunit2

[39]

B2 Nuclear factor NF-kappa-B 
p105 subunit2

[39]

MAP kinase2 -
Histone-lysine 
-N-methyltransferase, 
H3-lysine-9 specific 34, 6

-

B3 NAD-dependent deacetylase 
sirtuin 1, 2 and 31, 3, 4, 5, 6

[40]

Poly [ADP-ribose] polymerase 
14, 6

[41]

Nicotinate 
phosphoribosyltransferase5, 6

-

NAD-dependent deacetylase 
sirtuin 1, 2 and 31, 3, 4, 5, 6

[42]

B5 Nuclear factor NF-kappa-B 
p105 subunit2

-

B6 - -
B7 Insulin-degrading enzyme1, 6 -

MAP kinase6 -
Prelamin-A/C 4, 6 -
Histone-lysine 
-N-methyltransferase, 
H3-lysine-9 specific 34, 6

[43]

Lysine-specific demethylase 
4A4, 6

-

B12 Nuclear factor NF-kappa-B 
p105 subunit2

[44]

C Glycogen synthase kinase-3 
beta1, 6

-

Arachidonate 15- 
lipoxygenase3, 6

-

Alpha-amylase4, 6 [45]
D3 Dual specificity phosphatase1, 

6
[46]

Vitamin D receptor1, 2, 4, 6 [47]
Glycine receptor subunit 
alpha-1 1, 2, 6

-

Androgen receptor 1, 4, [48]
Tyrosyl-DNA 
phosphodiesterase 1 2, 6

-

Histone-lysine 
-N-methyltransferase, 
H3-lysine-9 specific 3 4, 6

-

E Glutathione S-transferase Pi2, 5 [49]

Notes1Swiss Target prediction: Probability higher than 70%. 
2Super-PRED: Probability higher than 90%. 
3TargetNet: Prediction generate with MACCS, ECFP4, and ECFP6 finger

prints/Probability higher than 90%. 
4TargetHunter: Probability higher than 0.7. 
5STICH: Predicted functional score higher than 0.90. 
6PPB: Calculated with APFp algorithm. 
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effects on IKK [61]. A similar effect has been reported 
for vitamin D [62]. IKK is also inhibited by vita
min E [19].

Interestingly, previous studies have reported the 
inhibitory activity of vitamins C and D against 
MAPK, and their indirect inhibition of NF-κB conse
quently stops the transcription of proinflammatory 
cytokines [16,20]. In addition, vitamins B2, B5, and 
B6 inhibit the p105 subunit (of NF-κB), thereby 
decreasing the levels of proinflammatory cytokines 

[12,14,63]. These findings were consistent with our 
blind molecular docking results (Figures 3, 4 , and 5). 
However, our results highlight the potential inhibitory 
activity of additional vitamins (e.g., B1, B3, B5, B6, and 
B7) against MAPK or (e.g., B1, B3, B7, and C) NF-κB.

IKK, another target of insulin resistance, is asso
ciated with vitamin inhibition. For example, vitamins 
E [19], C [61], and D3 [62] inhibit inflammation and 
decrease the intracellular proinflammatory state. 
However, our results did not reproduce these reported 

Figure 3. Putative ligand efficiency of vitamins against selected targets related to IR.
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interactions. In contrast, our findings highlight the 
putative interaction between vitamin A and B12 and 
IKK, and the molecular models that represent these 
molecular interactions are available in Table S1 in the 
supplementary material section.

In summary, several studies show that vitamins 
administered individually (e.g. B2 [12], B3 [13], B5 
[14], B6, B7, B12 [15], C [64], D [65], E [66]) or co- 

administrated using multivitamins formulations [67– 
69] can decrease IR, guided by is the regulation of 
oxidative stress pathways [70].

Additionally, vitamins show have demonstrated an 
anti-inflammatory effect by decreasing serum levels of 
TNF-α, IL-6, IL-1, and IL-1β [10,12,14,16,19,20]. 
Nevertheless, vitamins C [15], D [65] have been asso
ciated with the non-genomic pathway MAPK, vitamins 

Figure 4. Putative binding sites and molecular interaction predicted by blind molecular docking of vitamins against MAPK.
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C [61], D3 [62] and E [36] can inhibit IKK and B2, B5, 
and B6 inhibit the p105 subunit of NF-κB [12,14,63]. In 
line manner, our main results suggest the potential inhi
bitory activity of vitamins B1, B3, B5, B6, and B7 against 
MAPK or B1, B3, B7, and C the potential inhibitory of 

NF-κB. In contrast, our results did not reproduce inhi
bitory activity of IKK with previous reports.

In addition, the authors remarked on the limitations 
of this study. For example, targets with a probability of 
70% (in target predictor servers) could be inhibited by 

Figure 5. Putative binding sites and molecular interaction predicted by blind molecular docking of vitamins against NF-κB.
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vitamins, but this was not considered in this study. In 
addition, we performed molecular docking with the 
structures of the vitamins in their pure state and not 
with their respective metabolites, as we expected to find 
them in in vivo models. Additionally, there is insuffi
cient experimental data to confirm the putative binding 
site predicted in this study. For this reason, the authors 
remark on the importance of generating new crystal
lography, in vitro, and in vivo studies to complement 
this gap in information, allowing the generation of new 
perspectives and hypotheses. For example, the follow
ing section provides an integrative overview of in silico, 
in vitro, and in vivo achievements that explain the 
complex context of IR in more detail, which could 
lead to the rationalization of a novel polypharmacology 
therapy to combat it.

Overview and perspectives

Inflammation is a key endpoint of IR, and vitamins 
playing a significant role in IR protection [8]. For 
example, several vitamins (e.g., B1, B2, B3, B5, C, D3, 
and E) have the potential to restore the inflammatory 
environment in metabolic diseases [64–66] and mediate 
the regulation of targets related to inflammatory path
ways (e.g., MAPK, IKK, JNK, and NF-κB; Figure 6).

Several researchers have reported that the adminis
tration of a multivitamin complex can prevent IR 
[67,68,71–73]. Multivitamin treatment significantly 
decreased the serum levels of TNF-α, IL-6, IL-1, and 
IL-1β in murine models. However, anti-inflammatory 

related targets (such as NF-κB, MAPK, and IKK) have 
not been quantified, generating an information gap in 
the complete understanding of the anti-inflammatory 
mechanisms [20]. This information limitation justifies 
our work, which improves our knowledge about the 
anti-inflammatory effects of vitamins.

Polypharmacology offers new perspectives that can 
resolve different issues related to single-target drug 
design [26,74]. Simultaneously, polypharmacology pre
sents the possibility of generating novel and refined 
approaches to address complex diseases such as meta
bolic diseases (e.g., IR) [75,76]. In this context, the 
generation and optimization of polypharmacological 
formulations represent a new challenge in drug design. 
Which is imperative for the study of their interaction 
with secondary targets. Furthermore, the experimental 
validation (using in vitro models) of multiple target 
interactions does not guarantee their clinical relevance; 
in these cases, the clinical impact must be confirmed 
using in vivo models.

This study provides an overview of vitamins with 
potential applications in IR treatment and prevention. 
Vitamins were selected based on previously reported 
knowledge. Furthermore, this study was limited by the 
selected targets (Figures 2, 3 , and 4). However, this is 
a key point in the design of new chemical entities 
against IR and a discussion point regarding its nutra
ceutical role.

Moreover, this bibliographic and in silico study 
(using validated methods) uncovers the possibility of 
identifying vitamins that act at different molecular 

Figure 6. Summary of vitamins and targets validated on in vivo or in vitro models and putative inhibitory activities (predicted with 
in silico tools in this work).
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levels (i.e., changing the signalling, gene expression, 
epigenetic modifications or physiological effects) on 
IR, and opens new hypotheses that must be corrobo
rated by in vitro or in vivo models. In fact, the parallel 
modulation of different endpoints could contribute to 
reducing the necessary doses to generate therapeutic 
effects that simultaneously contribute to reducing the 
associated side effects in in vivo models and the exces
sive economic costs derived from it. In addition, it can 
be used as an alternative to animal models. Finally, 
understanding the polyactivities of vitamins could 
improve preventive medicine [77–79].

Conclusions

The role of vitamins in the regulation of the NF-κB 
signalling pathway during IR, and this regulation was 
associated with MAPK, IKK, and NF-κB, without 
neglecting free radicals, such as important mechanisms 
involved in insulin receptor oxidation and indirect 
activation of the NF-κB pathway.

Our main results indicated that vitamins C and D3 
interact with the protein kinase domain and p38 MAPK- 
binding site of MAPK. Additionally, the results suggest 
that vitamins B2, B5, and B6 interact with the rel homol
ogy domain (RHD) domain of NF-κB, which explains 
their inhibitory activity against MAPK and NF-κB. 
Finally, the molecular docking results suggested that vita
mins A and B12 protect against IKK. The present work 
clearly opens new perspectives to study targets such as 
NF-κB, MAPK, and IKK involved in the inflammatory 
context of IR and in the development of multivitamin 
treatments. A follow-up study could discuss the regula
tion of the NF-κB signalling pathway, MAPK, and IKK in 
the prevention or treatment of IR, which must be inves
tigated in vitro and in vivo based on drug discovery.

Methodology

The methodology includes diverse in silico tools to 
improve our understanding of the putative polypharma
cological activity of different vitamins (A, B1, B2, B3, B5, 
B6, B7, B12, C, D3, and E) against possible targets. The 
first part of the methodology describes the use of predic
tive servers based on molecular similarity and biological 
interactome similarity methods to predict the targets of 
the different vitamins evaluated in this study. The second 
part of the methodology describes the molecular docking 
protocol to describe the putative binding interactions 
between vitamins and the main targets (NF-κB, MAPK, 
and IKK) predicted in the first methodological section.

Target prediction

Each vitamin was represented using the canonical 
SMILES obtained from the ChEMBL database, version 
33 [80]. Each SMILE code was used to predict putative 
interactions of each vitamin with different targets. We 
used seven target-predictor servers (Swiss Target pre
diction [31], Super-PRED [32], TargetNet, 
TargetHunter [33], STITCH [34] and PPB [35]) based 
on structure similarity and biological interactome simi
larity respect to reporter inhibitors. Targets related to 
IR with in vitro and in vivo validation, which addition
ally have been predicted by (at least) two different 
servers, were studied using molecular docking (vide 
infra).

Molecular docking

Protein and ligand preparation
The crystallographic structures of MAPK, NF-κB, and 
IKK (PDB IDs: 3FHR, 4Q3J, and 4E3C, respectively) 
were retrieved from the Protein Data Bank (available 
online: https://www.rcsb.org/ (accessed on 
12 March 2023) [81]. The ligands were built and 
energy-minimized in the Molecular Operating 
Environment (MOE) software v. 2023 using the 
MMFF94× force field [82]. Protomers that were more 
stable at physiological pH were identified.

Molecular Operating Environment
The MOE software was used to generate the docking 
conformation of the protein-ligand complexes. For 
MAPK, the grid was centred in the inhibitor cavity, 
with a size of 27 Å3. For NF-κB and IKK, a grid was 
constructed around the complete proteins, that is blind 
docking [27]. Using the ‘Triangle Matcher’ method, the 
binding compounds were subjected to 50 search steps 
(poses) and the default values for the other parameters. 
Clusters with RMSD < 2 Å were visually explored and 
considered representative and potential interactions 
against the studied targets [83]. During docking simu
lations, the receptor was considered rigid, and the 
ligands were flexible. Conformations with the lowest 
binding energy were selected for additional and exhaus
tive visualization. For each target, the molecular dock
ing protocol was validated, and the binding pose of 
crystallographically reported inhibitors was reproduced 
using this protocol. For example, for NF-κB, MAPK, 
and IKK, we used oxidized hTRX, SRC-SM1-71-R, and 
Cmpd1/2 as positive controls. Crystallographic poses 
were reproduced with an RMSD value lower than 2 
angstroms [84–86].
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Ligand efficiency calculation

Ligand efficiency (LE) is used to improve the inter
pretation of docking scores because it affects the size 
of the ligand, which can have a marked influence on 
the binding sites [87]. The LE was calculated from the 
docking score of each control and ligand (i.e., vita
mins) using Equation 1:

(1) Ligand Efficiency = Docking Score/Heavy Atom 
Count

The Heavy Atom Count for each ligand was calcu
lated using DataWarrior software V. 5.5.0 [88].
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