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Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective 
management. Targeting gut peptides in the development of anti-obesity pharmaceuti-
cals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecys-
tokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for 
pharmacological interventions in obesity treatment using both peptide-based and small 
molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential 
for anti-obesity therapies through various approaches, including endogenous ghrelin 
neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional 
inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have 
exhibited appetite-reducing effects in animal models and humans. Overcoming sub-
stantial obstacles is imperative for translating these findings into clinically effective 
pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by pro-
longed half-life and resistance to proteolytic enzymes, present viable options. Positive 
allosteric modulators emerge as a novel approach for modulating the cholecystokinin 
pathway. Amylin is currently the most promising, with both amylin analogues and dual 
amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of 
clinical trials. Despite persistent challenges, innovative pharmaceutical strategies pro-
vide a glimpse into the future of anti-obesity therapies.
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1  |  INTRODUCTION

Obesity, a multifactorial health condition characterized by an ab-
normal or excessive accumulation of body fat, poses a consider-
able health risk.1 There is a relentless increasing trend of obesity,2 
with obesity prevalence expected to exceed 20% by 2025 in many 
European countries.3 This obesity epidemic is contributing to multi-
ple noncommunicable diseases, including diabetes, cardiovascular, 
respiratory, gastrointestinal, and musculoskeletal issues, psychiatric 
conditions, as well as various types of cancer.4 In 2019 alone, it con-
tributed to an estimated 5.0 million obesity-related deaths globally.5 
Besides detrimental health effects, it is negatively affecting soci-
ety's economic landscape.6-8

The challenge of obesity is rooted in a complex interplay of 
both modifiable and non-modifiable factors, including genetic pre-
disposition, sedentary lifestyles, excessive calorie consumption, 
inadequate sleep, pharmaceuticals, medical conditions, socio-
economic disparities, ethnic backgrounds, psychosocial stress-
ors, endocrine-disrupting chemicals, and the composition of the 
gastrointestinal microbiome, among others.9,10 Human appetite 
regulation is governed by the complicated coordination between 
the central nervous system (CNS) and peripheral hormones. Any 
imbalances in this system can result in increased food intake, ex-
ceeding the body's energy expenditure, and ultimately lead to 
weight gain.11

Nomenclature of Targets and Ligands: Key protein targets and 
ligands in this article are hyperlinked to corresponding entries in 
http://​www.​guide​topha​rmaco​logy.​org, the common portal for 
data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding 
et al., 2018), and are permanently archived in the Concise Guide to 
PHARMACOLOGY 2019/20 (Alexander et al., 2019)12,13

1.1  | Appetite regulation mechanisms

Obesity is a result of a prolonged energy intake and expenditure 
imbalance.14 While our evolutionary advantage once lay in storing 
a modest amount of fat to endure periods of famine, the control 
mechanisms limiting fat accumulation appear distorted due to our 
societal and developmental progress, largely eliminating the threat 
of predation.15

Several factors, including environmental cues, physiological 
signals, psychological nuances, and socio-cultural influences, col-
lectively form a web of inputs that our CNS processes in regulating 
feeding behavior and, consequently, body weight.16,17

Food regulation depends on the interplay between the CNS, 
gastrointestinal system, and endocrine system. Within this complex 
network, gut peptides represent messengers that harmonize the in-
puts important for food intake, primarily via centers located in the 
hypothalamus and brainstem.18 Their functions are mediated mainly 
by modulating the production of neuropeptides, proteins synthesized 
by neurons exhibiting synaptic, paracrine, and (neuro)endocrine func-
tions, such as agouti-related peptide (AgRP), neuropeptide Y (NPY), 

cocaine- and amphetamine-related transcript (CART), and proopiome-
lanocortin (POMC).19,20 Of note, several other neuropeptides with im-
portant roles in maintaining energy homeostasis have been identified, 
offering promising avenues for the development of novel anti-obesity 
drugs. This potential is exemplified by setmelanotide, a melanocortin-4 
receptor (MC4R) agonist approved for syndromic obesity. However, 
further research is needed to fully exploit the therapeutic potential of 
neuropeptide modulation in combating obesity.20,21

Gut peptides have been discussed as a potential pharmacological 
target since the 1960s when the “gut–brain axis” was beginning to 
unravel.22 The importance of gut peptides in regulating weight can 
be illustrated by changes after bariatric surgery. Even though other 
significant factors include reduced absorption surface, differences 
in bile acids, and gut microbiota, changes in levels of gut peptides 
seem crucial for weight regulation.23 It was shown that newer meth-
ods of gastric operations can avoid nutrient malabsorption but still 
result in significant weight loss due to the changes in the gut peptide 
secretions.24

1.2  |  Current obesity pharmacotherapy

Several drugs have been approved by the Food and Drug Administration 
(FDA) and the European Medicines Agency (EMA) as anti-obesity 
pharmaceuticals. The timeline of drug approval, their mechanisms of 
action, and indications are outlined in Table 1. Additionally, metrelep-
tin, a leptin analogue, and the previously mentioned setmelanotide, an 
MC4R agonist, are approved for syndromic obesity.25

In the context of gut peptides, current anti-obesity medica-
tions primarily involve drugs that target the incretin hormones 
glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide 
(GIP).25,26

GLP-1, formed through posttranslational modifications of the 
proglucagon molecule,27 is expressed in pancreatic α-  and intesti-
nal L-cells, as well as in the brainstem.28 The primary source of cir-
culating GLP-1 are gut epithelial cells,29 whereas within the CNS, 
it is predominantly found in the nucleus tractus solitarius, an area 
crucial for energy homeostasis.30 Its secretion is stimulated by the 
presence of nutrients in the digestive system.29 Upon binding to its 
receptor, GLP-1R, a G protein-coupled receptor, important metabolic 
functions, including stimulating insulin secretion, inhibiting gluca-
gon synthesis, reducing food intake, delaying gastric emptying, and 
promoting pancreatic β-cell proliferation are initiated.27 Its effect on
food intake involves a combination of anorexic effects in the CNS, 
and gastrointestinal effects, such as delayed gastric emptying.30 
However, the therapeutic utility of the natural GLP-1 molecule is 
limited by its short half-life due to rapid degradation by dipeptidyl 
peptidase-4 (DPP-4) and possibly neutral endopeptidase (NEP), as 
well as rapid renal clearance.27 Various strategies are employed to 
extend the half-life of GLP-1 for pharmaceutical use. GLP-1 agonists 
already used in obesity treatment, semaglutide and liraglutide, are 
engineered with fatty-acid acylation to prevent degradation by oligo-
mer forming, with semaglutide additionally undergoing N-terminal 

http://www.guidetopharmacology.org
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1335
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1504
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9272
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=285&familyId=38&familyType=GPCR
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=285&familyId=38&familyType=GPCR
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7333
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7333
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5194
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3542
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=249
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1611
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9724
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1133
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modification to further inhibit DPP-4 proteolysis.27 Both molecules 
show a significant effect in achieving weight loss, simultaneously im-
proving glycemic control, and reducing cardiovascular risk.31-35

GIP is primarily synthesized in duodenal and jejunal K-cells through 
posttranslational modification of its precursor molecule, proGIP, with 
fat ingestion serving as a key stimulus for its secretion.27,36 Similar to 
GLP-1, GIP undergoes degradation by DPP-4 and rapid renal clearance, 
precluding its use as a pharmaceutical agent.37,38 Acting via the GIP 
receptor (GIPR), GIP mediates various functions which include stim-
ulation of insulin and glucagon secretion, and regulation of lipid and 
energy metabolism.27 Initially considered an obesogenic hormone due 
to its role in promoting fat deposition and elevated secretion in obese 
individuals, GIPR antagonism was initially explored.39,40 However, 
long-term GIP agonism has been shown not to promote food intake 
or adiposity; instead, it leads to a negative energy balance, especially 
when combined with GLP-1 agonists, resulting in significant weight 
loss, possibly through GIPR desensitization.40-42 Tirzepatide, a GIPR/
GLP-1R agonist, has demonstrated efficacy in reducing body weight in 
both murine models and humans.27,43,44,45,46

This review will shift its focus toward exploring alternative gut 
peptides with the potential to influence appetite and food intake of-
fering effective avenues for treating obesity.

2  | GHRELIN

2.1  | Ghrelin physiology

Ghrelin, a ligand for the growth hormone secretagogue receptor 
(GHSR or GHSR1a), was identified in 1999 while its impact on me-
tabolism and obesity was established in 2000.60,61 By 2001, studies 
on human subjects had demonstrated ghrelin's role in stimulating 
appetite and increasing food intake, and lower levels of ghrelin were 
found in obese individuals.62,63

Comprising 28 amino acids, ghrelin undergoes post-translational 
modification through acylation, specifically at its third serine resi-
due. Acylation, catalyzed by the enzyme ghrelin O-acyltransferase 
(GOAT), is crucial for the hormone's binding to its receptors and sub-
sequent downstream signaling.64,65 Unexpectedly, des-acyl ghrelin, 
the non-acylated form of ghrelin with distinct physiological actions, 
is found in larger quantities.66,67

The primary source of ghrelin production is the gastric fundus, 
where it is secreted by PD-1 cells with additional expression found in 
the small intestine, pancreas, testes, and kidney.66,68,69

2.1.1  |  Ghrelin's role in stimulating appetite

Ghrelin's nickname, the “hunger hormone,” reflects its crucial role 
in stimulating appetite. Upon release, ghrelin traverses the blood-
stream to reach the hypothalamus, a brain region crucial for ap-
petite control. There, it stimulates NPY and AgRP neurons in the 
arcuate nucleus.70,71 NPY/AgRP neurons release NPY, AgRP, and 

gamma-aminobutyric acid (GABA) which have inhibitory effects on 
POMC. This inhibitory action prevents the release of α-melanocyte-
stimulating hormone (α-MSH) from POMC, hindering its binding to 
the MC4R and disrupting the generation of anorexigenic signal.72,73 
Additionally, AgRP is an inverse agonist of α-MSH, blocking its ac-
tion on the MC4R.73 The process is illustrated in Figure 1. Acyl ghre-
lin also antagonizes opposing signals from anorexigenic molecules 
such as CART, leptin, corticotrophin-releasing hormone (CRH), and 
others.67 Additionally, ghrelin engages brain regions associated with 
reward, intensifying the desire for calorically dense and palatable 
foods.74,75 Des-acyl ghrelin, contrastingly, exerts opposing effects – 
decreases food intake, fat mass, and gastric emptying.76

Dual influence on the hypothalamus and reward centers creates 
a potent drive for increased food intake, contributing to the per-
sistence of obesity-related challenges.

2.1.2  |  Regulation of ghrelin levels and factors 
influencing its release

Ghrelin secretion increases during fasting, peaks before meals, and 
declines postprandially.83-85 There are many factors impacting the 

F IGURE  1 Hormonal regulation of the hypothalamic 
melanocortin system. The function of MC4R is influenced by 
orexigenic AgRP/NPY neurons, which inhibit it, and anorexigenic 
POMC neurons, which stimulate it. Gut peptides, such as ghrelin, 
PYY, and GLP-1, as well as other factors, for example, leptin, 
modulate AgRP/NPY and POMC activity impacting food intake. 
AgRP/NPY are stimulated by ghrelin and inhibited by PYY, GLP-1 
(indirectly), and leptin. POMC are stimulated by GLP-1 and leptin, 
while ghrelin indirectly inhibits it.77-79 There are conflicting reports 
on PYY's direct effect on POMC,80,81 while the precise effects of 
amylin are still under investigation.82 AgRP, agouti-related peptide; 
GABA, gamma-aminobutyric acid; GLP-1, glucagon-like peptide-1; 
MC4R, melanocortin-4 receptor; NPY, neuropeptide Y; POMC, 
proopiomelanocortin; PYY, peptide YY; α-MSH, α-melanocyte-
stimulating hormone.
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secretion of ghrelin. It is stimulated by fasting, beta-adrenergic and 
muscarinic stimulation, and by hormones such as cholecystokinin, 
glucagon, or estrogen. Inhibition is mediated by alpha-adrenergic 
effects, glycemia, insulin, long-chain fatty acids, leptin, and somato-
statin.66 The order in which macronutrients are ingested also affects 
ghrelin levels, as well as external influences such as sleep patterns86,87 
and stress.88,89 Reduced concentrations of acyl ghrelin and des-acyl 
ghrelin typically indicate substantial energy reserves. However, obese 
individuals exhibit lower baseline levels of acyl ghrelin, experiencing 
postprandial declines similar to those observed in lean individuals but 
of shorter duration, possibly due to the inhibitory effect of increased 
insulin levels.63,90 Moreover, the potential roles of growth hormone 
and leptin as regulators of ghrelin levels were suggested; however, 
the studies did not conclusively establish their involvement.91

2.2  |  Potential pharmacological interventions 
targeting ghrelin for appetite control

Modulating the ghrelin pathway through different drug functions 
(agonist, inverse agonist, antagonist) as well as the target itself 
can have different impacts. The potential therapeutic applications 
of drugs affecting the ghrelin pathway extend beyond obesity to 
a variety of disorders including anorexia, gastrointestinal issues, 
inflammation, substance abuse, cardiovascular, pulmonary, and 
renal diseases, as well as neurological disorders such as epilepsy, 
Alzheimer's disease, multiple sclerosis, and Parkinson's disease.92-95 
While GHSR agonists, such as ibutamoren96 or anamorelin,97 are 
already on the market, due to inconsistent data on safety and ef-
fectiveness, there are yet no anti-obesity drugs targeting the ghrelin 
signaling cascade.98-100 Besides therapeutics, macimorelin, a GHSR 
agonist developed by Aeterna Zentaris, is utilized for diagnosing 
growth hormone deficiency.92,101

2.2.1  |  Neutralization of circulating ghrelin

Among the first in the field were drugs designed to neutralize the 
circulating ghrelin. Initial attempts focused on passive immuniza-
tion through transferring anti-ghrelin antibodies, leading to the 
inhibition of feeding in animal models.102 Subsequently, the inves-
tigation of ghrelin vaccines, designed to elicit an immune response 
to ghrelin, proved effective in rodents and pigs, resulting in reduced 
food intake, diminished hypothalamic orexigenic signals, and in-
creased energy expenditure.103-106 In humans, a Phase I/IIa trial with 
CYT009-GhrQb, developed by Cytos Biotechnology, was conducted 
in 2006, involving 87 obese patients, but the trial was discontinued 
as no additional weight loss was observed compared to the control 
group.106,107 Another approach to inactivating endogenous ghrelin 
involved the use of RNA Spiegelmers (SPM), single-stranded mirror 
image oligonucleotides that bind to ghrelin, rendering it inactive.108 
A representative of this mechanism is NOX-B11-3 which demon-
strates activity in rodents with elevated ghrelin levels during food 

restriction (dieting). However, it failed to influence basal food intake 
in non-food-deprived rats.109,110

2.2.2  |  Ghrelin receptor antagonists

GHSR antagonists have demonstrated promising outcomes in 
enhancing glucose tolerance, suppressing appetite, and foster-
ing weight loss in preclinical models.110 Several non-peptide small 
molecules, including JMV2959, AZ-GHS-38, JMV 3002, and others 
were under investigation for obesity in the preclinical development 
phases.92,111 Current investigations are focused on peptide-based 
molecules such as liver-expressed antimicrobial peptide 2 (LEAP2), 
initially described by their antimicrobial properties, but recently 
recognized as an inverse GHSR agonist and a reversible ghrelin an-
tagonist.112 Given that LEAP2 opposes ghrelin, there is optimism 
that increasing the LEAP-2/ghrelin ratio could be an effective ap-
proach to combat obesity.113 While studies have shown that LEAP2 
lowered postprandial plasma glucose and reduced food intake in 20 
healthy men without changing the ghrelin levels, further research, 
as well as drug optimization due to short half-life are necessary.99,114

2.2.3  |  Ghrelin O-acyltransferase (GOAT) inhibitors

An alternative strategy for addressing obesity involves manipulating 
the ghrelin pathway by targeting GOAT, thereby reducing the levels 
of acyl ghrelin, the active form that binds to the ghrelin receptor. 
Theoretically, the continual production of des-acyl ghrelin, which 
cannot activate the GHSR, is anticipated, while the production of 
acyl ghrelin would cease. Consequently, a reduction in appetite, the 
promotion of negative energy balance, and an enhancement of in-
sulin sensitivity and release should be expected.66 Various classes 
of GOAT inhibitors, such as peptide and peptidomimetic, terpe-
noid and steroid-based, and small molecule inhibitors, have already 
been developed. Expectedly, these inhibitors should exhibit mini-
mal side effects, given that ghrelin is the sole substrate for GOAT 
in humans.115 Several human trials targeting GOAT have been re-
cently performed or are still ongoing for various indications.116-118 
The latest research, featuring Boehringer Ingelheim's BI 1356225, 
demonstrated a remarkable reduction (>80%) in the ratio of acyl 
ghrelin to des-acyl ghrelin.119 However, there was no observed im-
pact on body weight, hunger/satiety, control of eating, or overall 
energy intake during the studied 4-week period. It was suggested 
that an increase in des-acyl ghrelin rather than a decrease in acyl 
ghrelin could lead to weight loss.119 This suggests that GOAT might 
not be a significant therapeutic target for obesity treatment.

2.2.4  |  Functional inhibitors

As previously mentioned, des-acyl ghrelin serves as a functional 
inhibitor of acyl ghrelin.100 Notably, the des-acyl ghrelin analogue 
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livoletide (AZP-531), developed by Millendo Therapeutics, dem-
onstrated successful treatment of hyperphagia in patients with 
Prader–Willi syndrome, resulting in a significant reduction in body 
weight.100 However, the subsequent phase 2b/3 ZEPHYR trial did 
not yield a statistically significant improvement in hyperphagia and 
food-related behaviors, leading to the discontinuation of further 
development.120,121

2.3  |  Challenges in targeting ghrelin for 
obesity therapy

Developing drugs targeting ghrelin for obesity treatment presents 
a formidable challenge due to the intricate regulation of this hor-
mone,122 the contrasting functions of acyl ghrelin and des-acyl ghre-
lin in appetite and fat storage,123 the redundancy in appetite control 
systems,124 and significant individual variability, particularly evident 
in obese versus lean individuals90 among other factors. Additionally, 
safety concerns stem from the multiple physiological effects of 
ghrelin125 and the absence of standardized tests to measure the 
concentration of acylated ghrelin126 adds a layer of complexity to 
the development process.

3  |  PEPTIDE YY

3.1  |  Structure and production of peptide YY

Peptide YY (PYY), also known as peptide tyrosine tyrosine, is a 36-
amino acid hormone within the NPY family.127,128 Predominantly se-
creted by enteroendocrine cells, particularly L-cells in the distal gut, 
PYY is also produced in smaller quantities within the CNS and by α-, 
PP-, and δ-cells in the pancreas.129 PYY manifests two main isoforms 
– PYY(1-36), and the biologically active PYY(3-36) that regulates
appetite and satiety. The conversion of PYY(1-36) to PYY(3-36) is
facilitated by DPP-4 through the removal of the N-terminal Try1-
Pro2 dipeptide.130,131 PYY therefore shares a synthesis location with
GLP-1 and undergoes degradation by the same enzyme.129 Modest
or negligible weight loss observed with DPP-4 inhibitors, despite
heightened incretin levels, may, at least in part, be attributable to
reduced levels of anorectic PYY(3-36).132,133

3.2  |  Peptide YY's physiology

The release of both PYY isoforms is tied to nutrient intake, with 
proteins and calorie content being the most potent stimulators of 
secretion peaking approximately 90 minutes after a meal.134-136 
Individuals with obesity exhibit lower fasting PYY(3-36) levels and 
a reduced peak response, requiring double caloric intake to achieve 
levels equivalent to lean individuals.137

Upon release into the bloodstream, PYY(3-36) exerts its ef-
fects by binding to the G-protein-coupled Y receptors,129,138 

exerting anorexigenic effects through the Y2 receptor in arcu-
ate nucleus, and possibly the activation of inhibitory neurons in 
cortex, subcortical regions, and the brainstem139,140 for which 
PYY(3-36) shows high affinity.140 In the arcuate nucleus, PYY(3-36) 
silences NPY/AgRP neurons, indirectly activating POMC neurons, 
as shown in Figure 1.26 These complex interactions suppress orex-
igenic signals, resulting in diminished feelings of hunger and an 
enhanced sense of fullness, a phenomenon demonstrated through 
direct administration of PYY(3-36) in rodents, primates, and hu-
mans.130,135,141 Peripheral administration of PYY(1-36) in rodents 
shows a less pronounced anorectic effect.141 By binding to Y re-
ceptors, PYY also exerts influence on gastric motility and secre-
tion, contributing to the deceleration of the digestive process and 
prolonging the sensation of satiety.129,142 Furthermore, through 
the Y1/2 receptor, PYY assumes a role in safeguarding pancreatic 
beta cells by preventing apoptosis, thereby preserving beta-cell 
mass—an essential feature in preventing or slowing the progres-
sion of diabetes.143,144

3.3  |  Exploring pharmacological strategies to 
enhance PYY's appetite-suppressing effects

3.3.1  |  PYY(3-36) administration

Expectedly, initial studies exploring the potential of PYY as an anti-
obesity drug focused on peripheral administration of PYY(3-36), 
which effectively reduces weight gain by inhibiting food intake in 
rodents.135 The same was observed in humans, including obese indi-
viduals, suggesting a potential link between PYY deficiency and the 
development of obesity.145 Intravenous infusion of PYY(3-36) dis-
covered a dose-dependent reduction in energy intake that persisted 
for 24 hours but was associated with gastrointestinal side effects.146 
Subsequently, subcutaneous administration was found ineffective 
even though an increase in PYY plasma levels was detected, pos-
sibly due to degradation or biological inactivation.146,147 Intranasal 
application of PYY(3-36) was evaluated in a study involving 12 obese 
subjects over 12 weeks, with two different dosage regimens tested: 
200 μg three times daily and 600 μg three times daily.148 Although a
relevant increase in plasma PYY was noted for both dosing schedules, 
the lower dose failed to yield significant weight loss, while the higher 
dose was poorly tolerated due to nausea and vomiting. In summary, 
the clinical utility of PYY(3-36) administration faces obstacles due to 
its short biological half-life and gastrointestinal side effects such as 
nausea, vomiting, and abdominal discomfort.129 Therefore, the main 
hope for targeting the PYY system is the development of PYY(3-36) 
analogues.26,149

3.3.2  |  PYY(3-36) analogues

PYY analogues can be made by several approaches resulting in 
proteolytic stability and improved selectivity.150-152 Selective Y2 
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receptor PYY analogues have already shown significant potential 
in reducing body weight in diet-induced obese (DIO) rodents, es-
pecially when combined with semaglutide.153,154 A long-acting con-
jugate comprising a cyclized PYY(3-36) analogue and a functionally 
silent monoclonal antibody, strategically added to enhance half-life 
and decrease subcutaneous absorption rates, has demonstrated the 
ability to reduce food intake without heightening the risk of emesis 
in rhesus macaques.155

A synthetic Novo Nordisk's PYY analogue, PYY1875/
NNC0165-1875 (NN9775-4708), was examined in combination with 
semaglutide for obesity treatment but was recently discontinued 
following the completion of Phase II trials.156,157 Several other PYY 
analogues are in the earlier studies of development.131

3.4  |  Challenges in targeting peptide YY for 
obesity therapy

PYY's limited half-life, susceptibility to enzymatic degradation, and 
propensity to induce gastrointestinal side effects hinder its direct 
administration. A possibility is the development of stable PYY(3-36) 
analogues, which aim to enhance proteolytic stability, prolong half-
life, and reduce side effects, therefore overcoming the limitations 
associated with the hormone's natural form. Similar to other gut 
peptides, the physiological differences between animal models and 
humans present a significant challenge, complicating the replication 
of preclinical results with equivalent efficacy in human trials.

4  |  CHOLECYSTOKININ

4.1  |  Structure and production of cholecystokinin

Cholecystokinin (CCK) is a peptide hormone with diverse roles in 
digestion and appetite regulation.158 Synthesized as a larger precur-
sor molecule, pre-pro-CCK transforms into proCCK by removing the 
signal sequence.159 Further modifications, including endoproteolytic 
activity, are crucial in the creation of distinct active forms of CCK.160 
Multiple molecular forms of CCK exist, categorized by the number 
of amino-acid residues in the final peptide, ranging from 4 to 83. 
The predominant molecular form is CCK-58, with CCK-8 and CCK-
33 being less prevalent, alongside several other identified variants. 
Gastrin, due to structural similarity, exhibits weak CCK-like activity, 
and vice versa.161

CCK is primarily synthesized in the I-cells of the duodenum and 
jejunum. These cells are primarily stimulated by the lipid and protein 
content of a meal. However, due to the presence of distinct surface 
receptors in various parts of the small intestine, different nutrients 
may also trigger the release of CCK.162-165 In addition, CCK is also 
synthesized in various other tissues, including the adrenal glands, 
thyroid gland, pituitary gland, central and peripheral nervous sys-
tems, urogenital tract, cardiovascular system, and immune system, 
indicating a wide array of physiological functions.163

4.2  |  Cholecystokinin's physiology

CCK's digestive functions are integral to nutrient absorption. Via the 
CCK1 receptor, also termed CCK-A (alimentary) receptor, it stimu-
lates the gallbladder to release bile, promoting the digestion and 
absorption of lipids. Moreover, via the same receptor, it prompts 
the pancreas to secrete digestive enzymes, delays gastric emptying, 
as well as gastric acid secretion.163 The CCK1 receptor is also ex-
pressed in the vagal afferents, brainstem, and hypothalamus which is 
thought crucial for appetite suppression.77 Stimulation of the CCK1 
receptor activates vagal afferent neurons, triggering an upregulation 
in the synthesis of CART, an anorexigenic neuropeptide promoting 
appetite suppression in the CNS.166

CCK2 receptors, also referred to as CCK-B (brain) receptors or 
gastrin receptors, represent the main CCK receptor in the brain.167 
Consequently, these receptors are associated with neurotrans-
mission, anxiety regulation, dopamine activity, GABA release, and 
nociception modulation.163,168,169 The same receptor is present in 
the pancreatic islet cells.163 CCK influences insulin secretion signifi-
cantly, as elevated CCK levels have been shown to stimulate insulin 
release, while the absence of CCK results in a reduction in pancreatic 
islet size and beta cell mass.170

In 1973, CCK emerged as the pioneering gut peptide demonstrat-
ing the ability to inhibit food intake, a groundbreaking finding observed 
through intraperitoneal CCK administration in rats.171 This appetite-
suppressing effect has since been observed in various animal models 
and human studies.168 As CCK's satiety-inducing effects are mediated 
through visceral afferent nerves, transmitting signals to the CNS, elim-
inating the need to traverse the blood–brain barrier, and simplifying 
drug development.162 Stimulation of the CCK1 receptor is crucial for 
an anti-obesity effect, while it is simultaneously essential to avoid ac-
tivation of the CCK2 receptor, as its agonists may induce anxiety and 
panic.172 Importantly, CCK1 stimulation without simultaneous CCK2 
stimulation is feasible due to different ligand recognition properties.162

4.3  |  Investigating potential pharmacological 
interventions targeting cholecystokinin for 
appetite regulation

4.3.1  |  Cholecystokinin analogues and small CCK1 
receptor agonists

Due to its influence on appetite regulation, structurally modified and 
enzyme-resistant versions of CCK,168,173,174,175 as well as small mole-
cule CCK1 receptor agonists176-178 have been developed and demon-
strated efficacy as appetite suppressors in animal models. In human 
trials, the CCK1 receptor agonist and CCK2 receptor antagonist, 
1,5-benzodiazepine (GI181771X by GSK), underwent a phase II trial 
involving 701 patients but exhibited no significant effect on body 
weight. Of note, two cases of gallstone-related pancreatitis were 
reported.179 Considering the limited efficacy comparable to acute 
dieting, substantial side effects, and the potential for tumorigenesis 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3552
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=864
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=860
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=860
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=76
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=77


8 of 16  | RUBINIĆ et al.

associated with CCK1 receptor agonists, recent literature proposes 
an exploration into the development of safer and more effective 
alternatives.162

4.3.2  |  Positive allosteric modulators

Biased agonists or positive allosteric modulators (PAM) emerge 
as potential candidates, some of them already being investi-
gated.162,180,181 PAMs lack inherent CCK receptor agonistic prop-
erties; instead, they function as amplifiers of endogenous CCK 
signaling, offering temporal control and a concise duration of action 
during physiologically relevant periods.181

We have not identified any ongoing human trials investigating 
the impact of CCK as a potential treatment for obesity.

4.4  |  Challenges in targeting CCK pathway for 
anti-obesity therapy

CCK presents a complex scenario for therapeutic development, 
given its existence in multiple molecular forms, synthesis across 
various tissues, and involvement in diverse physiological functions, 
from the gastrointestinal tract to the CNS. These complicated char-
acteristics pose a formidable challenge in designing effective thera-
peutics. Safety concerns further compound the issue, with CCK1 
receptor agonists potentially inducing gastrointestinal side effects 
and being linked to carcinogenic effects. Additionally, CCK2 recep-
tor agonists are associated with anxiety, raising concerns, especially 
when contemplating chronic use. Once again, the translation of 
successful outcomes from animal models to human trials remains a 
significant hurdle, impeding progress. Still, the emergence of poten-
tially safer alternatives, such as PAMs, may provide a way of utilizing 
CCK's effects.

5  | AMYLIN

5.1  | Amylin's structure, production, and 
physiology

Amylin, or islet amyloid polypeptide, is a 37-amino acid peptide 
that is co-secreted with insulin in response to ingested nutri-
ents.182 It is primarily synthesized in pancreatic β-cells and, to a
lesser extent, in other tissues, originating from an 89-amino acid 
prohormone. This prohormone undergoes several modifications 
to form the active hormone.183 Following secretion, it has various 
roles, including slowing gastric emptying, suppressing glucagon 
secretion, and initiating an anorectic signal, all essential for main-
taining glucose homeostasis.184

Amylin receptors are composed of the calcitonin receptor (CTR), 
a G protein-coupled receptor, and one of three receptor activity-
modifying proteins (RAMP1-3) that amplify the binding of amylin 

to CTR. Together, they form three distinct types of amylin recep-
tors (AMY1-3). Different AMY receptors have different affinity for 
amylin, as well as other agonists such as calcitonin, calcitonin gene-
related peptide (CGRP), and adrenomedullin.183,185,186,187,188

Amylin's impact on satiety is regulated by receptors in the 
CNS. Peripheral amylin, binding to receptors in the area postrema 
(AP), transmits signals through the nucleus tractus solitarius (NTS) 
and lateral parabrachial nucleus (LPBN) to forebrain regions, such 
as the central amygdala, thereby influencing eating behavior and 
metabolic pathways, possibly by modulating the hedonic aspects 
of eating.184,186,189 The impact on POMC and NPY neurons in the 
arcuate nucleus is not yet completely clear.82 Amylin's effect in 
reducing the intake of food is rapid and dose dependent.190 It is 
not clear if inhibiting gastric emptying is a result of central, vagal, 
or local factors, yet it additionally promotes satiety and delays the 
entry of nutrients into the intestine, dampening the glucose peak. 
Moreover, amylin inhibits glucagon secretion further impacting 
the pathophysiology of diabetes.186,190,191 It is established that 
amylin does not directly affect α-cells, and a possible explanation 
includes its impact on the hindbrain and subsequent effects on 
the vagus nerve, yet the mechanism of amylin's glucagenostatic 
effect is not yet clear.183 Amylin exhibits a synergistic effect when 
combined with leptin, PYY, CCK, GLP-1, and other anorexigenic 
molecules.183

5.2  |  Exploring pharmacological strategies to utilize 
amylin for appetite control and glucose regulation

Various animal models have demonstrated that the administration 
of amylin leads to the suppression of feeding and induces weight 
loss.192-194 The main limitation of human amylin is its short half-life, a 
result of renal clearance and proteolysis,195 as well as its propensity 
to aggregate into fibrils that have no therapeutic value and are even 
harmful.196

5.2.1  |  Amylin analogues

By altering the amylin molecule, amylin analogues with extended 
half-lives and non-aggregating properties present a potentially viable 
obesity treatment. The first and yet only approved amylin analogue 
is pramlintide, created by modifying three amino acids, with po-
tency similar to human amylin, but significantly reduced aggregation 
potential.183,190,197 Utilized alongside insulin it improves glycemic 
control by reducing appetite and glucagon secretion while slowing 
gastric emptying and potentially providing protection to endothelial 
cells.190,198 The main limitations involve a brief half-life, necessitat-
ing administration with each meal, and potential gastrointestinal side 
effects, most commonly nausea, yet anorexia and vomiting are also 
reported.199 Moreover, the perceived risk of severe hypoglycemia 
could be a factor hindering approval in countries beyond the United 
States.200,201 While it exhibits promise in weight reduction, newer 
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drugs with extended half-lives, resulting in improved adherence, 
could be more appropriate.185,202

Various amylin modifications have been explored to extend the 
duration of amylin to make it suitable for chronic use. An illustra-
tive example is davalintide, an amylin receptor agonist created by 
merging amylin with salmon calcitonin, exhibiting increased potency 
and a prolonged half-life. In animal models, it has demonstrated a 
reduction in food intake lasting up to 23 hours and a more significant 
weight loss. However, the development of the drug was discontin-
ued due to its inability to showcase superiority over pramlintide.203

Several other amylin analogues, including ZP4982 and ZP5461 
developed by Zealand Pharma, as well as BI 473494, a collabora-
tive effort between Zealand Pharma and Boehringer Ingelheim have 
been investigated. ZP4982 and ZP5461 demonstrated effective gly-
cemic control and induced weight loss in preclinical models, ZP4982 
even being superior to liraglutide,185,204 yet it was recently discon-
tinued.205 BI 473494 progressed to Phase I, involving 16 healthy 
participants, with one participant developing a serious side effect, 
acute polyneuropathy.206 Further drug development was discontin-
ued, with Boehringer Ingelheim pursuing other obesity drugs, while 
the global rights to the amylin analogue program remained with 
Zealand Pharma.207-209

Petrelintide (ZP8396), another amylin analogue developed by 
Zealand Pharma, boasts a 10-day half-life attributed to acetyla-
tion, rendering it suitable for convenient once-weekly adminis-
tration.210 Demonstrating efficacy in reducing body weight and 
enhancing glucose homeostasis in animal models, petrelintide 
recently underwent assessment in a Phase I study involving 56 
subjects. The results indicated a dose-dependent weight loss ef-
fect with mild adverse events.211 Phase 2 is anticipated to start in 
2024.210

5.2.2  |  Dual amylin and calcitonin receptor agonists

A promising strategy in addressing obesity by targeting the am-
ylin pathway involves utilizing dual amylin and calcitonin receptor 
agonists (DACRAs), that show superior metabolic effects compared 
to amylin analogues.212,213 DACRAs effects were first noticed in 
salmon calcitonin (sCT) which elicits metabolic effects by engag-
ing both calcitonin (CT) and amylin receptors, in contrast to rat CT, 
which lacks affinity for amylin receptors.190

The initial DACRAs, known as KBPs (for KeyBiosciencePeptide), 
exhibited promising outcomes in animal models.214 Prolonged action 
analogues, denoted as KBP-A, were derived through acetylation, 
facilitating convenient once-weekly administration.214 Preclinical 
studies show the efficacy of several KBPs, such as KBP-066,215 
KBP-066A,216 KBP-088,217 and KBP-336.218 No clinical trials inves-
tigating obesity with KBPs were identified; however, clinical trials 
for type 2 diabetes are currently assessing the efficacy of KBP-042 
and KBP-089. In a Phase I study involving 37 healthy subjects, KBP-
042 exhibited a favorable safety profile at tested doses, albeit higher 
doses were associated with nausea and vomiting.219 However, Phase 

II trials for KBP-042 in type 2 diabetes did not reveal a significant 
improvement in HbA1C levels.219,220 Eli Lilly discontinued the de-
velopment of KBP-042 in 2019, opting instead for KBP-089 which 
showed better results.203 Even though KBP-089 had good results 
in rodent models, the Phase I study was terminated due to strategic 
reasons attributed to limited pharmacodynamic effect.221

The most promising drug currently under investigation for 
obesity targeting the amylin pathway is cagrilintide (formerly AM-
833), developed by Novo Nordisk, demonstrating effectiveness 
in preclinical studies, particularly when combined with semaglu-
tide.222 A Phase II trial revealed its significant impact on reducing 
body weight while maintaining a favorable tolerability profile.223 
Another Phase 2 study demonstrated the considerable effects of 
the cagrilintide/semaglutide combination on both body weight and 
HbA1c level, despite HbA1c differences comparable to semaglutide 
alone.224 Currently, multiple Phase III studies involving cagrilintide/
semaglutide are underway,225-228 including plans for a head-to-head 
study with tirzepatide, a recently approved anti-obesity drug by Eli 
Lilly.229,230

5.3  |  Challenges in targeting the amylin pathway 
for anti-obesity treatment

Several challenges emerge when the amylin pathway is considered as 
a target for anti-obesity treatment. Human amylin poses issues due 
to its short half-life, necessitating frequent administration, which, 
in turn, affects patient adherence. Furthermore, its inclination to 
aggregate into harmful fibrils is another obstacle. Adverse effects, 
including gastrointestinal side effects, the risk of hypoglycemia with 
pramlintide, along with a serious side effect reported in a trial in-
volving an amylin analogue, are examples of additional hurdles that 
may impede regulatory approval. Moreover, in common with other 
gut peptides, there are many examples of successful animal models, 
but it seems difficult to translate the results to human clinical trials. 
However, emerging alternatives, such as DACRAs and synergistic 
combinations with medications targeting other gut peptide path-
ways, hold promise as potential solutions to the outlined limitations.

6  |  CONCLUSION

Obesity, a global health concern associated with numerous compli-
cations, demands innovative solutions to address its rising preva-
lence. Ghrelin, PYY, CCK, and amylin have promising prospects 
for novel pharmaceutical interventions in appetite regulation and 
obesity treatment. Ongoing research and innovative approaches, 
including ghrelin receptor modulators, stable PYY analogues, posi-
tive allosteric modulators for CCK, and advanced amylin analogues 
or DACRAs, showcase the potential for more effective and targeted 
anti-obesity medications. The evolving landscape of pharmaceuti-
cal development offers hope for overcoming existing challenges and 
improving outcomes in the fight against obesity.

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10684
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6973
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10660
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=10683
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