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Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective 
management.	Targeting	gut	peptides	in	the	development	of	anti-	obesity	pharmaceuti-
cals	has	already	demonstrated	significant	efficacy.	Ghrelin,	peptide	YY	(PYY),	cholecys-
tokinin	(CCK),	and	amylin	are	crucial	in	appetite	regulation	offering	promising	targets	for	
pharmacological	interventions	in	obesity	treatment	using	both	peptide-	based	and	small	
molecule-	based	pharmaceuticals.	Ghrelin,	a	sole	orexigenic	gut	peptide,	has	a	potential	
for	anti-	obesity	therapies	through	various	approaches,	including	endogenous	ghrelin	
neutralization,	ghrelin	receptor	antagonists,	ghrelin	O-	acyltransferase,	and	functional	
inhibitors.	Anorexigenic	gut	peptides,	peptide	YY,	cholecystokinin,	and	amylin,	have	
exhibited	appetite-	reducing	effects	 in	animal	models	and	humans.	Overcoming	sub-
stantial obstacles is imperative for translating these findings into clinically effective 
pharmaceuticals.	 Peptide	 YY	 and	 cholecystokinin	 analogues,	 characterized	 by	 pro-
longed	half-	life	and	resistance	to	proteolytic	enzymes,	present	viable	options.	Positive	
allosteric modulators emerge as a novel approach for modulating the cholecystokinin 
pathway.	Amylin	is	currently	the	most	promising,	with	both	amylin	analogues	and	dual	
amylin	and	calcitonin	receptor	agonists	(DACRAs)	progressing	to	advanced	stages	of	
clinical trials. Despite persistent challenges, innovative pharmaceutical strategies pro-
vide	a	glimpse	into	the	future	of	anti-	obesity	therapies.
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1  |  INTRODUCTION

Obesity, a multifactorial health condition characterized by an ab-
normal or excessive accumulation of body fat, poses a consider-
able health risk.1 There is a relentless increasing trend of obesity,2 
with obesity prevalence expected to exceed 20% by 2025 in many 
European countries.3 This obesity epidemic is contributing to multi-
ple noncommunicable diseases, including diabetes, cardiovascular, 
respiratory, gastrointestinal, and musculoskeletal issues, psychiatric 
conditions, as well as various types of cancer.4 In 2019 alone, it con-
tributed	to	an	estimated	5.0 million	obesity-	related	deaths	globally.5 
Besides detrimental health effects, it is negatively affecting soci-
ety's economic landscape.6-	8

The challenge of obesity is rooted in a complex interplay of 
both	modifiable	and	non-	modifiable	factors,	including	genetic	pre-
disposition, sedentary lifestyles, excessive calorie consumption, 
inadequate sleep, pharmaceuticals, medical conditions, socio-
economic disparities, ethnic backgrounds, psychosocial stress-
ors,	 endocrine-	disrupting	 chemicals,	 and	 the	 composition	of	 the	
gastrointestinal microbiome, among others.9,10	 Human	 appetite	
regulation is governed by the complicated coordination between 
the	central	nervous	system	(CNS)	and	peripheral	hormones.	Any	
imbalances in this system can result in increased food intake, ex-
ceeding the body's energy expenditure, and ultimately lead to 
weight gain.11

Nomenclature	of	Targets	and	Ligands:	Key	protein	 targets	and	
ligands in this article are hyperlinked to corresponding entries in 
http:// www. guide topha rmaco logy. org, the common portal for 
data	 from	 the	 IUPHAR/BPS	Guide	 to	PHARMACOLOGY	 (Harding	
et	al.,	2018),	and	are	permanently	archived	in	the	Concise	Guide	to	
PHARMACOLOGY	2019/20	(Alexander	et	al.,	2019)12,13

1.1  | Appetite regulation mechanisms

Obesity is a result of a prolonged energy intake and expenditure 
imbalance.14	While	our	evolutionary	advantage	once	 lay	 in	storing	
a modest amount of fat to endure periods of famine, the control 
mechanisms limiting fat accumulation appear distorted due to our 
societal and developmental progress, largely eliminating the threat 
of predation.15

Several factors, including environmental cues, physiological 
signals,	 psychological	 nuances,	 and	 socio-	cultural	 influences,	 col-
lectively	form	a	web	of	inputs	that	our	CNS	processes	in	regulating	
feeding behavior and, consequently, body weight.16,17

Food	 regulation	 depends	 on	 the	 interplay	 between	 the	 CNS,	
gastrointestinal	 system,	and	endocrine	system.	Within	 this	complex	
network, gut peptides represent messengers that harmonize the in-
puts important for food intake, primarily via centers located in the 
hypothalamus and brainstem.18 Their functions are mediated mainly 
by modulating the production of neuropeptides, proteins synthesized 
by	neurons	exhibiting	synaptic,	paracrine,	and	(neuro)endocrine	func-
tions, such as agouti-	related	peptide	 (AgRP),	neuropeptide	Y	 (NPY),	

cocaine-		and	amphetamine-	related	transcript	(CART),	and	proopiome-
lanocortin	(POMC).19,20 Of note, several other neuropeptides with im-
portant roles in maintaining energy homeostasis have been identified, 
offering	promising	avenues	for	the	development	of	novel	anti-	obesity	
drugs. This potential is exemplified by setmelanotide, a melanocortin-	4	
receptor	 (MC4R)	agonist	approved	for	syndromic	obesity.	However,	
further research is needed to fully exploit the therapeutic potential of 
neuropeptide modulation in combating obesity.20,21

Gut peptides have been discussed as a potential pharmacological 
target	since	the	1960s	when	the	“gut–brain	axis”	was	beginning	to	
unravel.22 The importance of gut peptides in regulating weight can 
be illustrated by changes after bariatric surgery. Even though other 
significant factors include reduced absorption surface, differences 
in bile acids, and gut microbiota, changes in levels of gut peptides 
seem crucial for weight regulation.23 It was shown that newer meth-
ods of gastric operations can avoid nutrient malabsorption but still 
result in significant weight loss due to the changes in the gut peptide 
secretions.24

1.2  |  Current obesity pharmacotherapy

Several	drugs	have	been	approved	by	the	Food	and	Drug	Administration	
(FDA)	 and	 the	 European	 Medicines	 Agency	 (EMA)	 as	 anti-	obesity	
pharmaceuticals. The timeline of drug approval, their mechanisms of 
action, and indications are outlined in Table 1.	Additionally,	metrelep-
tin, a leptin analogue, and the previously mentioned setmelanotide, an 
MC4R	agonist,	are	approved	for	syndromic	obesity.25

In	 the	 context	 of	 gut	 peptides,	 current	 anti-	obesity	medica-
tions primarily involve drugs that target the incretin hormones 
glucagon-	like	peptide-	1	(GLP-	1)	and	gastric inhibitory polypeptide 
(GIP).25,26

GLP-	1,	 formed	 through	 posttranslational	 modifications	 of	 the	
proglucagon molecule,27 is expressed in pancreatic α-		 and	 intesti-
nal	L-	cells,	as	well	as	in	the	brainstem.28 The primary source of cir-
culating	 GLP-	1	 are	 gut	 epithelial	 cells,29	 whereas	 within	 the	 CNS,	
it is predominantly found in the nucleus tractus solitarius, an area 
crucial for energy homeostasis.30 Its secretion is stimulated by the 
presence of nutrients in the digestive system.29	Upon	binding	to	its	
receptor, GLP-	1R,	a	G	protein-	coupled	receptor,	important	metabolic	
functions, including stimulating insulin secretion, inhibiting gluca-
gon synthesis, reducing food intake, delaying gastric emptying, and 
promoting pancreatic β-	cell	proliferation	are	initiated.27 Its effect on
food	intake	 involves	a	combination	of	anorexic	effects	 in	the	CNS,	
and gastrointestinal effects, such as delayed gastric emptying.30 
However,	 the	 therapeutic	 utility	 of	 the	 natural	 GLP-	1	 molecule	 is	
limited	by	 its	short	half-	life	due	 to	 rapid	degradation	by	dipeptidyl 
peptidase-	4	 (DPP-	4)	 and	 possibly	neutral endopeptidase	 (NEP),	 as	
well as rapid renal clearance.27 Various strategies are employed to 
extend	the	half-	life	of	GLP-	1	for	pharmaceutical	use.	GLP-	1	agonists	
already used in obesity treatment, semaglutide and liraglutide, are 
engineered	with	fatty-	acid	acylation	to	prevent	degradation	by	oligo-
mer	 forming,	with	 semaglutide	 additionally	 undergoing	N-	terminal	

http://www.guidetopharmacology.org
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1335
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1504
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9272
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=285&familyId=38&familyType=GPCR
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=285&familyId=38&familyType=GPCR
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7333
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7333
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5194
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3542
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=249
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1611
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9724
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1133
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modification	to	further	inhibit	DPP-	4	proteolysis.27 Both molecules 
show a significant effect in achieving weight loss, simultaneously im-
proving glycemic control, and reducing cardiovascular risk.31-	35

GIP	is	primarily	synthesized	in	duodenal	and	jejunal	K-	cells	through	
posttranslational modification of its precursor molecule, proGIP, with 
fat ingestion serving as a key stimulus for its secretion.27,36 Similar to 
GLP-	1,	GIP	undergoes	degradation	by	DPP-	4	and	rapid	renal	clearance,	
precluding its use as a pharmaceutical agent.37,38	Acting	via	 the	GIP 
receptor	 (GIPR),	GIP	mediates	various	 functions	which	 include	stim-
ulation of insulin and glucagon secretion, and regulation of lipid and 
energy metabolism.27 Initially considered an obesogenic hormone due 
to its role in promoting fat deposition and elevated secretion in obese 
individuals, GIPR antagonism was initially explored.39,40	 However,	
long-	term	GIP	agonism	has	been	shown	not	to	promote	food	 intake	
or adiposity; instead, it leads to a negative energy balance, especially 
when	 combined	with	GLP-	1	 agonists,	 resulting	 in	 significant	weight	
loss, possibly through GIPR desensitization.40-	42 Tirzepatide, a GIPR/
GLP-	1R	agonist,	has	demonstrated	efficacy	in	reducing	body	weight	in	
both murine models and humans.27,43,44,45,46

This review will shift its focus toward exploring alternative gut 
peptides with the potential to influence appetite and food intake of-
fering effective avenues for treating obesity.

2  | GHRELIN

2.1  | Ghrelin physiology

Ghrelin, a ligand for the growth hormone secretagogue receptor 
(GHSR	or	GHSR1a),	was	identified	in	1999	while	its	impact	on	me-
tabolism and obesity was established in 2000.60,61 By 2001, studies 
on human subjects had demonstrated ghrelin's role in stimulating 
appetite and increasing food intake, and lower levels of ghrelin were 
found in obese individuals.62,63

Comprising	28	amino	acids,	ghrelin	undergoes	post-	translational	
modification through acylation, specifically at its third serine resi-
due.	Acylation,	catalyzed	by	the	enzyme	ghrelin	O-	acyltransferase	
(GOAT),	is	crucial	for	the	hormone's	binding	to	its	receptors	and	sub-
sequent downstream signaling.64,65	Unexpectedly,	des-	acyl	ghrelin, 
the	non-	acylated	form	of	ghrelin	with	distinct	physiological	actions,	
is found in larger quantities.66,67

The primary source of ghrelin production is the gastric fundus, 
where	it	is	secreted	by	PD-	1	cells	with	additional	expression	found	in	
the small intestine, pancreas, testes, and kidney.66,68,69

2.1.1  |  Ghrelin's	role	in	stimulating	appetite

Ghrelin's	nickname,	 the	“hunger	hormone,”	 reflects	 its	crucial	 role	
in	stimulating	appetite.	Upon	release,	ghrelin	traverses	the	blood-
stream to reach the hypothalamus, a brain region crucial for ap-
petite	 control.	 There,	 it	 stimulates	NPY	and	AgRP	neurons	 in	 the	
arcuate nucleus.70,71	 NPY/AgRP	 neurons	 release	 NPY,	 AgRP,	 and	

gamma-	aminobutyric	acid	(GABA)	which	have	inhibitory	effects	on	
POMC.	This	inhibitory	action	prevents	the	release	of	α-	melanocyte-	
stimulating hormone	(α-	MSH)	from	POMC,	hindering	its	binding	to	
the	MC4R	and	disrupting	the	generation	of	anorexigenic	signal.72,73 
Additionally,	AgRP	is	an	inverse	agonist	of	α-	MSH,	blocking	its	ac-
tion	on	the	MC4R.73 The process is illustrated in Figure 1.	Acyl	ghre-
lin also antagonizes opposing signals from anorexigenic molecules 
such	as	CART,	leptin,	corticotrophin-	releasing	hormone	(CRH),	and	
others.67	Additionally,	ghrelin	engages	brain	regions	associated	with	
reward, intensifying the desire for calorically dense and palatable 
foods.74,75	Des-	acyl	ghrelin,	contrastingly,	exerts	opposing	effects	–	
decreases food intake, fat mass, and gastric emptying.76

Dual influence on the hypothalamus and reward centers creates 
a potent drive for increased food intake, contributing to the per-
sistence	of	obesity-	related	challenges.

2.1.2  |  Regulation	of	ghrelin	levels	and	factors	
influencing its release

Ghrelin secretion increases during fasting, peaks before meals, and 
declines postprandially.83-	85 There are many factors impacting the 

F IGURE  1 Hormonal	regulation	of	the	hypothalamic	
melanocortin	system.	The	function	of	MC4R	is	influenced	by	
orexigenic	AgRP/NPY	neurons,	which	inhibit	it,	and	anorexigenic	
POMC	neurons,	which	stimulate	it.	Gut	peptides,	such	as	ghrelin,	
PYY,	and	GLP-	1,	as	well	as	other	factors,	for	example,	leptin,	
modulate	AgRP/NPY	and	POMC	activity	impacting	food	intake.	
AgRP/NPY	are	stimulated	by	ghrelin	and	inhibited	by	PYY,	GLP-	1	
(indirectly),	and	leptin.	POMC	are	stimulated	by	GLP-	1	and	leptin,	
while ghrelin indirectly inhibits it.77-	79 There are conflicting reports 
on	PYY's	direct	effect	on	POMC,80,81 while the precise effects of 
amylin are still under investigation.82	AgRP,	agouti-	related	peptide;	
GABA,	gamma-	aminobutyric	acid;	GLP-	1,	glucagon-	like	peptide-	1;	
MC4R,	melanocortin-	4	receptor;	NPY,	neuropeptide	Y;	POMC,	
proopiomelanocortin;	PYY,	peptide	YY;	α-	MSH,	α-	melanocyte-	
stimulating hormone.
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secretion	of	ghrelin.	It	 is	stimulated	by	fasting,	beta-	adrenergic	and	
muscarinic stimulation, and by hormones such as cholecystokinin, 
glucagon,	 or	 estrogen.	 Inhibition	 is	 mediated	 by	 alpha-	adrenergic	
effects,	glycemia,	insulin,	long-	chain	fatty	acids,	leptin,	and	somato-
statin.66 The order in which macronutrients are ingested also affects 
ghrelin levels, as well as external influences such as sleep patterns86,87 
and stress.88,89	Reduced	concentrations	of	acyl	ghrelin	and	des-	acyl	
ghrelin	typically	indicate	substantial	energy	reserves.	However,	obese	
individuals exhibit lower baseline levels of acyl ghrelin, experiencing 
postprandial declines similar to those observed in lean individuals but 
of shorter duration, possibly due to the inhibitory effect of increased 
insulin levels.63,90	Moreover,	the	potential	roles	of	growth	hormone	
and leptin as regulators of ghrelin levels were suggested; however, 
the studies did not conclusively establish their involvement.91

2.2  |  Potential pharmacological interventions 
targeting ghrelin for appetite control

Modulating	 the	 ghrelin	 pathway	 through	 different	 drug	 functions	
(agonist,	 inverse	 agonist,	 antagonist)	 as	 well	 as	 the	 target	 itself	
can have different impacts. The potential therapeutic applications 
of drugs affecting the ghrelin pathway extend beyond obesity to 
a variety of disorders including anorexia, gastrointestinal issues, 
inflammation, substance abuse, cardiovascular, pulmonary, and 
renal diseases, as well as neurological disorders such as epilepsy, 
Alzheimer's	disease,	multiple	sclerosis,	and	Parkinson's	disease.92-	95 
While	 GHSR	 agonists,	 such	 as	 ibutamoren96 or anamorelin,97 are 
already on the market, due to inconsistent data on safety and ef-
fectiveness,	there	are	yet	no	anti-	obesity	drugs	targeting	the	ghrelin	
signaling cascade.98-	100 Besides therapeutics, macimorelin,	a	GHSR	
agonist	 developed	 by	 Aeterna	 Zentaris,	 is	 utilized	 for	 diagnosing	
growth hormone deficiency.92,101

2.2.1  |  Neutralization	of	circulating	ghrelin

Among	the	first	 in	the	field	were	drugs	designed	to	neutralize	the	
circulating ghrelin. Initial attempts focused on passive immuniza-
tion	 through	 transferring	 anti-	ghrelin	 antibodies,	 leading	 to	 the	
inhibition of feeding in animal models.102 Subsequently, the inves-
tigation of ghrelin vaccines, designed to elicit an immune response 
to ghrelin, proved effective in rodents and pigs, resulting in reduced 
food intake, diminished hypothalamic orexigenic signals, and in-
creased energy expenditure.103-	106 In humans, a Phase I/IIa trial with 
CYT009-	GhrQb,	developed	by	Cytos	Biotechnology,	was	conducted	
in	2006,	involving	87	obese	patients,	but	the	trial	was	discontinued	
as no additional weight loss was observed compared to the control 
group.106,107	Another	approach	 to	 inactivating	endogenous	ghrelin	
involved	the	use	of	RNA	Spiegelmers	(SPM),	single-	stranded	mirror	
image oligonucleotides that bind to ghrelin, rendering it inactive.108 
A	 representative	 of	 this	 mechanism	 is	 NOX-	B11-	3	 which	 demon-
strates activity in rodents with elevated ghrelin levels during food 

restriction	(dieting).	However,	it	failed	to	influence	basal	food	intake	
in	non-	food-	deprived	rats.109,110

2.2.2  |  Ghrelin	receptor	antagonists

GHSR	 antagonists	 have	 demonstrated	 promising	 outcomes	 in	
enhancing glucose tolerance, suppressing appetite, and foster-
ing weight loss in preclinical models.110	Several	non-	peptide	small	
molecules,	including	JMV2959,	AZ-	GHS-	38,	JMV	3002,	and	others	
were under investigation for obesity in the preclinical development 
phases.92,111	Current	 investigations	are	focused	on	peptide-	based	
molecules	such	as	liver-	expressed	antimicrobial	peptide	2	(LEAP2),	
initially described by their antimicrobial properties, but recently 
recognized	as	an	inverse	GHSR	agonist	and	a	reversible	ghrelin	an-
tagonist.112	Given	 that	LEAP2	opposes	ghrelin,	 there	 is	optimism	
that	increasing	the	LEAP-	2/ghrelin	ratio	could	be	an	effective	ap-
proach to combat obesity.113	While	studies	have	shown	that	LEAP2	
lowered postprandial plasma glucose and reduced food intake in 20 
healthy men without changing the ghrelin levels, further research, 
as	well	as	drug	optimization	due	to	short	half-	life	are	necessary.99,114

2.2.3  |  Ghrelin	O-	acyltransferase	(GOAT)	inhibitors

An	alternative	strategy	for	addressing	obesity	involves	manipulating	
the	ghrelin	pathway	by	targeting	GOAT,	thereby	reducing	the	levels	
of acyl ghrelin, the active form that binds to the ghrelin receptor. 
Theoretically,	 the	continual	production	of	des-	acyl	ghrelin,	which	
cannot	activate	the	GHSR,	is	anticipated,	while	the	production	of	
acyl ghrelin would cease. Consequently, a reduction in appetite, the 
promotion of negative energy balance, and an enhancement of in-
sulin sensitivity and release should be expected.66 Various classes 
of	 GOAT	 inhibitors,	 such	 as	 peptide	 and	 peptidomimetic,	 terpe-
noid	and	steroid-	based,	and	small	molecule	inhibitors,	have	already	
been developed. Expectedly, these inhibitors should exhibit mini-
mal	side	effects,	given	that	ghrelin	is	the	sole	substrate	for	GOAT	
in humans.115	Several	human	trials	targeting	GOAT	have	been	re-
cently performed or are still ongoing for various indications.116-	118 
The latest research, featuring Boehringer Ingelheim's BI 1356225, 
demonstrated	a	 remarkable	 reduction	 (>80%)	 in	 the	 ratio	of	acyl	
ghrelin	to	des-	acyl	ghrelin.119	However,	there	was	no	observed	im-
pact on body weight, hunger/satiety, control of eating, or overall 
energy	intake	during	the	studied	4-	week	period.	It	was	suggested	
that	an	increase	in	des-	acyl	ghrelin	rather	than	a	decrease	in	acyl	
ghrelin could lead to weight loss.119	This	suggests	that	GOAT	might	
not be a significant therapeutic target for obesity treatment.

2.2.4  |  Functional	inhibitors

As	 previously	 mentioned,	 des-	acyl	 ghrelin	 serves	 as	 a	 functional	
inhibitor of acyl ghrelin.100	Notably,	 the	 des-	acyl	 ghrelin	 analogue	
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livoletide	 (AZP-	531),	 developed	 by	 Millendo	 Therapeutics,	 dem-
onstrated successful treatment of hyperphagia in patients with 
Prader–Willi	 syndrome,	 resulting	 in	a	significant	 reduction	 in	body	
weight.100	However,	 the	 subsequent	phase	2b/3	ZEPHYR	 trial	 did	
not yield a statistically significant improvement in hyperphagia and 
food-	related	 behaviors,	 leading	 to	 the	 discontinuation	 of	 further	
development.120,121

2.3  |  Challenges in targeting ghrelin for 
obesity therapy

Developing drugs targeting ghrelin for obesity treatment presents 
a formidable challenge due to the intricate regulation of this hor-
mone,122	the	contrasting	functions	of	acyl	ghrelin	and	des-	acyl	ghre-
lin in appetite and fat storage,123 the redundancy in appetite control 
systems,124 and significant individual variability, particularly evident 
in obese versus lean individuals90	among	other	factors.	Additionally,	
safety concerns stem from the multiple physiological effects of 
ghrelin125 and the absence of standardized tests to measure the 
concentration of acylated ghrelin126 adds a layer of complexity to 
the development process.

3  |  PEPTIDE YY

3.1  |  Structure and production of peptide YY

Peptide	YY	(PYY),	also	known	as	peptide	tyrosine	tyrosine,	is	a	36-	
amino	acid	hormone	within	the	NPY	family.127,128 Predominantly se-
creted	by	enteroendocrine	cells,	particularly	L-	cells	in	the	distal	gut,	
PYY	is	also	produced	in	smaller	quantities	within	the	CNS	and	by	α-	,	
PP-	,	and	δ-	cells	in	the	pancreas.129	PYY	manifests	two	main	isoforms	
– PYY(1-	36),	 and	 the	 biologically	 active	 PYY(3-	36)	 that	 regulates
appetite	 and	 satiety.	 The	 conversion	of	PYY(1-	36)	 to	PYY(3-	36)	 is
facilitated	 by	DPP-	4	 through	 the	 removal	 of	 the	N-	terminal	 Try1-	
Pro2 dipeptide.130,131	PYY	therefore	shares	a	synthesis	location	with
GLP-	1	and	undergoes	degradation	by	the	same	enzyme.129	Modest
or	 negligible	 weight	 loss	 observed	 with	 DPP-	4	 inhibitors,	 despite
heightened incretin levels, may, at least in part, be attributable to
reduced	levels	of	anorectic	PYY(3-	36).132,133

3.2  |  Peptide YY's physiology

The	 release	 of	 both	 PYY	 isoforms	 is	 tied	 to	 nutrient	 intake,	 with	
proteins and calorie content being the most potent stimulators of 
secretion	 peaking	 approximately	 90 minutes	 after	 a	 meal.134-	136 
Individuals	with	obesity	exhibit	 lower	fasting	PYY(3-	36)	 levels	and	
a reduced peak response, requiring double caloric intake to achieve 
levels equivalent to lean individuals.137

Upon	 release	 into	 the	 bloodstream,	 PYY(3-	36)	 exerts	 its	 ef-
fects	 by	 binding	 to	 the	 G-	protein-	coupled	 Y	 receptors,129,138 

exerting anorexigenic effects through the Y2	 receptor in arcu-
ate nucleus, and possibly the activation of inhibitory neurons in 
cortex, subcortical regions, and the brainstem139,140 for which 
PYY(3-	36)	shows	high	affinity.140	In	the	arcuate	nucleus,	PYY(3-	36)	
silences	NPY/AgRP	neurons,	indirectly	activating	POMC	neurons,	
as shown in Figure 1.26 These complex interactions suppress orex-
igenic signals, resulting in diminished feelings of hunger and an 
enhanced sense of fullness, a phenomenon demonstrated through 
direct	 administration	of	PYY(3-	36)	 in	 rodents,	 primates,	 and	hu-
mans.130,135,141	Peripheral	administration	of	PYY(1-	36)	 in	rodents	
shows a less pronounced anorectic effect.141	By	binding	to	Y	re-
ceptors,	PYY	also	exerts	 influence	on	gastric	motility	and	secre-
tion, contributing to the deceleration of the digestive process and 
prolonging the sensation of satiety.129,142	 Furthermore,	 through	
the	Y1/2	receptor,	PYY	assumes	a	role	in	safeguarding	pancreatic	
beta	 cells	 by	 preventing	 apoptosis,	 thereby	 preserving	 beta-	cell	
mass—an essential feature in preventing or slowing the progres-
sion of diabetes.143,144

3.3  |  Exploring pharmacological strategies to 
enhance PYY's appetite- suppressing effects

3.3.1  |  PYY(3-	36)	administration

Expectedly,	initial	studies	exploring	the	potential	of	PYY	as	an	anti-	
obesity	 drug	 focused	 on	 peripheral	 administration	 of	 PYY(3-	36),	
which effectively reduces weight gain by inhibiting food intake in 
rodents.135 The same was observed in humans, including obese indi-
viduals,	suggesting	a	potential	link	between	PYY	deficiency	and	the	
development of obesity.145	 Intravenous	 infusion	 of	 PYY(3-	36)	 dis-
covered	a	dose-	dependent	reduction	in	energy	intake	that	persisted	
for	24 hours	but	was	associated	with	gastrointestinal	side	effects.146 
Subsequently, subcutaneous administration was found ineffective 
even	 though	an	 increase	 in	PYY	plasma	 levels	was	detected,	 pos-
sibly due to degradation or biological inactivation.146,147 Intranasal 
application	of	PYY(3-	36)	was	evaluated	in	a	study	involving	12	obese	
subjects	over	12 weeks,	with	two	different	dosage	regimens	tested:	
200 μg	three	times	daily	and	600 μg three times daily.148	Although	a
relevant	increase	in	plasma	PYY	was	noted	for	both	dosing	schedules,	
the lower dose failed to yield significant weight loss, while the higher 
dose was poorly tolerated due to nausea and vomiting. In summary, 
the	clinical	utility	of	PYY(3-	36)	administration	faces	obstacles	due	to	
its	short	biological	half-	life	and	gastrointestinal	side	effects	such	as	
nausea, vomiting, and abdominal discomfort.129 Therefore, the main 
hope	for	targeting	the	PYY	system	is	the	development	of	PYY(3-	36)	
analogues.26,149

3.3.2  |  PYY(3-	36)	analogues

PYY	 analogues	 can	 be	 made	 by	 several	 approaches	 resulting	 in	
proteolytic stability and improved selectivity.150-	152	 Selective	 Y2	
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receptor	 PYY	 analogues	 have	 already	 shown	 significant	 potential	
in	 reducing	 body	weight	 in	 diet-	induced	 obese	 (DIO)	 rodents,	 es-
pecially when combined with semaglutide.153,154	A	long-	acting	con-
jugate	comprising	a	cyclized	PYY(3-	36)	analogue	and	a	functionally	
silent	monoclonal	antibody,	strategically	added	to	enhance	half-	life	
and decrease subcutaneous absorption rates, has demonstrated the 
ability to reduce food intake without heightening the risk of emesis 
in rhesus macaques.155

A	 synthetic	 Novo	 Nordisk's	 PYY	 analogue,	 PYY1875/
NNC0165-	1875	(NN9775-	4708),	was	examined	in	combination	with	
semaglutide for obesity treatment but was recently discontinued 
following the completion of Phase II trials.156,157	Several	other	PYY	
analogues are in the earlier studies of development.131

3.4  |  Challenges in targeting peptide YY for 
obesity therapy

PYY's	limited	half-	life,	susceptibility	to	enzymatic	degradation,	and	
propensity to induce gastrointestinal side effects hinder its direct 
administration.	A	possibility	is	the	development	of	stable	PYY(3-	36)	
analogues,	which	aim	to	enhance	proteolytic	stability,	prolong	half-	
life, and reduce side effects, therefore overcoming the limitations 
associated with the hormone's natural form. Similar to other gut 
peptides, the physiological differences between animal models and 
humans present a significant challenge, complicating the replication 
of preclinical results with equivalent efficacy in human trials.

4  |  CHOLECYSTOKININ

4.1  |  Structure and production of cholecystokinin

Cholecystokinin	 (CCK)	 is	 a	 peptide	 hormone	with	 diverse	 roles	 in	
digestion and appetite regulation.158 Synthesized as a larger precur-
sor	molecule,	pre-	pro-	CCK	transforms	into	proCCK	by	removing	the	
signal sequence.159	Further	modifications,	including	endoproteolytic	
activity,	are	crucial	in	the	creation	of	distinct	active	forms	of	CCK.160 
Multiple	molecular	forms	of	CCK	exist,	categorized	by	the	number	
of	 amino-	acid	 residues	 in	 the	 final	 peptide,	 ranging	 from	4	 to	 83.	
The predominant molecular form is CCK-	58, with CCK-	8 and CCK-	
33 being less prevalent, alongside several other identified variants. 
Gastrin,	due	to	structural	similarity,	exhibits	weak	CCK-	like	activity,	
and vice versa.161

CCK	is	primarily	synthesized	in	the	I-	cells	of	the	duodenum	and	
jejunum. These cells are primarily stimulated by the lipid and protein 
content	of	a	meal.	However,	due	to	the	presence	of	distinct	surface	
receptors in various parts of the small intestine, different nutrients 
may	also	trigger	 the	release	of	CCK.162-	165	 In	addition,	CCK	 is	also	
synthesized in various other tissues, including the adrenal glands, 
thyroid gland, pituitary gland, central and peripheral nervous sys-
tems, urogenital tract, cardiovascular system, and immune system, 
indicating a wide array of physiological functions.163

4.2  |  Cholecystokinin's physiology

CCK's	digestive	functions	are	integral	to	nutrient	absorption.	Via	the	
CCK1	receptor,	also	 termed	CCK-	A	 (alimentary)	 receptor,	 it	 stimu-
lates the gallbladder to release bile, promoting the digestion and 
absorption	 of	 lipids.	Moreover,	 via	 the	 same	 receptor,	 it	 prompts	
the pancreas to secrete digestive enzymes, delays gastric emptying, 
as well as gastric acid secretion.163	 The	CCK1	 receptor	 is	 also	ex-
pressed in the vagal afferents, brainstem, and hypothalamus which is 
thought crucial for appetite suppression.77	Stimulation	of	the	CCK1	
receptor activates vagal afferent neurons, triggering an upregulation 
in	the	synthesis	of	CART,	an	anorexigenic	neuropeptide	promoting	
appetite	suppression	in	the	CNS.166

CCK2	receptors,	also	referred	to	as	CCK-	B	 (brain)	receptors	or	
gastrin	receptors,	represent	the	main	CCK	receptor	in	the	brain.167 
Consequently, these receptors are associated with neurotrans-
mission,	 anxiety	 regulation,	 dopamine	 activity,	GABA	 release,	 and	
nociception modulation.163,168,169 The same receptor is present in 
the pancreatic islet cells.163	CCK	influences	insulin	secretion	signifi-
cantly,	as	elevated	CCK	levels	have	been	shown	to	stimulate	insulin	
release,	while	the	absence	of	CCK	results	in	a	reduction	in	pancreatic	
islet size and beta cell mass.170

In	1973,	CCK	emerged	as	the	pioneering	gut	peptide	demonstrat-
ing the ability to inhibit food intake, a groundbreaking finding observed 
through	 intraperitoneal	CCK	administration	 in	 rats.171	This	appetite-	
suppressing effect has since been observed in various animal models 
and human studies.168	As	CCK's	satiety-	inducing	effects	are	mediated	
through	visceral	afferent	nerves,	transmitting	signals	to	the	CNS,	elim-
inating	the	need	to	traverse	the	blood–brain	barrier,	and	simplifying	
drug development.162	Stimulation	of	the	CCK1	receptor	is	crucial	for	
an	anti-	obesity	effect,	while	it	is	simultaneously	essential	to	avoid	ac-
tivation	of	the	CCK2	receptor,	as	its	agonists	may	induce	anxiety	and	
panic.172	 Importantly,	CCK1	stimulation	without	simultaneous	CCK2	
stimulation is feasible due to different ligand recognition properties.162

4.3  |  Investigating potential pharmacological 
interventions targeting cholecystokinin for 
appetite regulation

4.3.1  |  Cholecystokinin	analogues	and	small	CCK1	
receptor agonists

Due to its influence on appetite regulation, structurally modified and 
enzyme-	resistant	versions	of	CCK,168,173,174,175 as well as small mole-
cule	CCK1	receptor	agonists176-	178 have been developed and demon-
strated efficacy as appetite suppressors in animal models. In human 
trials,	 the	 CCK1	 receptor	 agonist	 and	 CCK2	 receptor	 antagonist,	
1,5-	benzodiazepine	(GI181771X	by	GSK),	underwent	a	phase	II	trial	
involving 701 patients but exhibited no significant effect on body 
weight.	 Of	 note,	 two	 cases	 of	 gallstone-	related	 pancreatitis	 were	
reported.179 Considering the limited efficacy comparable to acute 
dieting, substantial side effects, and the potential for tumorigenesis 
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associated	with	CCK1	receptor	agonists,	recent	literature	proposes	
an exploration into the development of safer and more effective 
alternatives.162

4.3.2  |  Positive	allosteric	modulators

Biased	 agonists	 or	 positive	 allosteric	 modulators	 (PAM)	 emerge	
as potential candidates, some of them already being investi-
gated.162,180,181	 PAMs	 lack	 inherent	 CCK	 receptor	 agonistic	 prop-
erties;	 instead,	 they	 function	 as	 amplifiers	 of	 endogenous	 CCK	
signaling, offering temporal control and a concise duration of action 
during physiologically relevant periods.181

We	have	not	 identified	 any	ongoing	human	 trials	 investigating	
the	impact	of	CCK	as	a	potential	treatment	for	obesity.

4.4  |  Challenges in targeting CCK pathway for 
anti- obesity therapy

CCK	 presents	 a	 complex	 scenario	 for	 therapeutic	 development,	
given its existence in multiple molecular forms, synthesis across 
various tissues, and involvement in diverse physiological functions, 
from	the	gastrointestinal	tract	to	the	CNS.	These	complicated	char-
acteristics pose a formidable challenge in designing effective thera-
peutics.	 Safety	 concerns	 further	 compound	 the	 issue,	 with	 CCK1	
receptor agonists potentially inducing gastrointestinal side effects 
and	being	linked	to	carcinogenic	effects.	Additionally,	CCK2	recep-
tor agonists are associated with anxiety, raising concerns, especially 
when contemplating chronic use. Once again, the translation of 
successful outcomes from animal models to human trials remains a 
significant hurdle, impeding progress. Still, the emergence of poten-
tially	safer	alternatives,	such	as	PAMs,	may	provide	a	way	of	utilizing	
CCK's	effects.

5  | AMYLIN

5.1  | Amylin's structure, production, and 
physiology

Amylin,	 or	 islet	 amyloid	 polypeptide,	 is	 a	 37-	amino	 acid	 peptide	
that	 is	 co-	secreted	 with	 insulin	 in	 response	 to	 ingested	 nutri-
ents.182 It is primarily synthesized in pancreatic β-	cells	 and,	 to	 a
lesser	extent,	 in	other	tissues,	originating	from	an	89-	amino	acid	
prohormone. This prohormone undergoes several modifications 
to form the active hormone.183	Following	secretion,	it	has	various	
roles, including slowing gastric emptying, suppressing glucagon 
secretion, and initiating an anorectic signal, all essential for main-
taining glucose homeostasis.184

Amylin	receptors	are	composed	of	the	calcitonin receptor	(CTR),	
a	G	 protein-	coupled	 receptor,	 and	 one	 of	 three	 receptor	 activity-	
modifying	 proteins	 (RAMP1-	3)	 that	 amplify	 the	 binding	 of	 amylin	

to CTR. Together, they form three distinct types of amylin recep-
tors	(AMY1-	3).	Different	AMY	receptors	have	different	affinity	for	
amylin,	as	well	as	other	agonists	such	as	calcitonin,	calcitonin	gene-	
related	peptide	(CGRP),	and	adrenomedullin.183,185,186,187,188

Amylin's	 impact	 on	 satiety	 is	 regulated	 by	 receptors	 in	 the	
CNS.	Peripheral	amylin,	binding	to	receptors	in	the	area	postrema	
(AP),	transmits	signals	through	the	nucleus	tractus	solitarius	(NTS)	
and	lateral	parabrachial	nucleus	(LPBN)	to	forebrain	regions,	such	
as the central amygdala, thereby influencing eating behavior and 
metabolic pathways, possibly by modulating the hedonic aspects 
of eating.184,186,189	The	impact	on	POMC	and	NPY	neurons	in	the	
arcuate nucleus is not yet completely clear.82	 Amylin's	 effect	 in	
reducing the intake of food is rapid and dose dependent.190 It is 
not clear if inhibiting gastric emptying is a result of central, vagal, 
or local factors, yet it additionally promotes satiety and delays the 
entry of nutrients into the intestine, dampening the glucose peak. 
Moreover,	 amylin	 inhibits	 glucagon	 secretion	 further	 impacting	
the pathophysiology of diabetes.186,190,191 It is established that 
amylin does not directly affect α-	cells,	and	a	possible	explanation	
includes its impact on the hindbrain and subsequent effects on 
the vagus nerve, yet the mechanism of amylin's glucagenostatic 
effect is not yet clear.183	Amylin	exhibits	a	synergistic	effect	when	
combined	with	 leptin,	 PYY,	CCK,	GLP-	1,	 and	 other	 anorexigenic	
molecules.183

5.2  |  Exploring pharmacological strategies to utilize 
amylin for appetite control and glucose regulation

Various animal models have demonstrated that the administration 
of amylin leads to the suppression of feeding and induces weight 
loss.192-	194	The	main	limitation	of	human	amylin	is	its	short	half-	life,	a	
result of renal clearance and proteolysis,195 as well as its propensity 
to aggregate into fibrils that have no therapeutic value and are even 
harmful.196

5.2.1  |  Amylin	analogues

By altering the amylin molecule, amylin analogues with extended 
half-	lives	and	non-	aggregating	properties	present	a	potentially	viable	
obesity treatment. The first and yet only approved amylin analogue 
is pramlintide, created by modifying three amino acids, with po-
tency similar to human amylin, but significantly reduced aggregation 
potential.183,190,197	 Utilized	 alongside	 insulin	 it	 improves	 glycemic	
control by reducing appetite and glucagon secretion while slowing 
gastric emptying and potentially providing protection to endothelial 
cells.190,198	The	main	limitations	involve	a	brief	half-	life,	necessitat-
ing administration with each meal, and potential gastrointestinal side 
effects, most commonly nausea, yet anorexia and vomiting are also 
reported.199	Moreover,	 the	 perceived	 risk	 of	 severe	 hypoglycemia	
could	be	a	factor	hindering	approval	in	countries	beyond	the	United	
States.200,201	While	 it	exhibits	promise	 in	weight	 reduction,	newer	

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=687
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=43
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7482


| 9 of 16RUBINIĆ et al.

drugs	 with	 extended	 half-	lives,	 resulting	 in	 improved	 adherence,	
could be more appropriate.185,202

Various amylin modifications have been explored to extend the 
duration	of	amylin	 to	make	 it	 suitable	 for	 chronic	use.	An	 illustra-
tive example is davalintide, an amylin receptor agonist created by 
merging amylin with salmon calcitonin, exhibiting increased potency 
and	a	prolonged	half-	life.	 In	 animal	models,	 it	 has	demonstrated	a	
reduction	in	food	intake	lasting	up	to	23 hours	and	a	more	significant	
weight	loss.	However,	the	development	of	the	drug	was	discontin-
ued due to its inability to showcase superiority over pramlintide.203

Several	other	amylin	analogues,	 including	ZP4982	and	ZP5461	
developed by Zealand Pharma, as well as BI 473494, a collabora-
tive effort between Zealand Pharma and Boehringer Ingelheim have 
been	investigated.	ZP4982	and	ZP5461	demonstrated	effective	gly-
cemic	control	and	induced	weight	loss	in	preclinical	models,	ZP4982	
even being superior to liraglutide,185,204 yet it was recently discon-
tinued.205 BI 473494 progressed to Phase I, involving 16 healthy 
participants, with one participant developing a serious side effect, 
acute polyneuropathy.206	Further	drug	development	was	discontin-
ued, with Boehringer Ingelheim pursuing other obesity drugs, while 
the global rights to the amylin analogue program remained with 
Zealand Pharma.207-	209

Petrelintide	 (ZP8396),	another	amylin	analogue	developed	by	
Zealand	 Pharma,	 boasts	 a	 10-	day	 half-	life	 attributed	 to	 acetyla-
tion,	 rendering	 it	 suitable	 for	 convenient	 once-	weekly	 adminis-
tration.210 Demonstrating efficacy in reducing body weight and 
enhancing glucose homeostasis in animal models, petrelintide 
recently underwent assessment in a Phase I study involving 56 
subjects.	The	results	 indicated	a	dose-	dependent	weight	 loss	ef-
fect with mild adverse events.211 Phase 2 is anticipated to start in 
2024.210

5.2.2  |  Dual	amylin	and	calcitonin	receptor	agonists

A	 promising	 strategy	 in	 addressing	 obesity	 by	 targeting	 the	 am-
ylin pathway involves utilizing dual amylin and calcitonin receptor 
agonists	(DACRAs),	that	show	superior	metabolic	effects	compared	
to amylin analogues.212,213	 DACRAs	 effects	 were	 first	 noticed	 in	
salmon calcitonin	 (sCT)	 which	 elicits	 metabolic	 effects	 by	 engag-
ing	both	calcitonin	(CT)	and	amylin	receptors,	in	contrast	to	rat	CT,	
which lacks affinity for amylin receptors.190

The	initial	DACRAs,	known	as	KBPs	(for	KeyBiosciencePeptide),	
exhibited promising outcomes in animal models.214 Prolonged action 
analogues,	 denoted	 as	 KBP-	A,	 were	 derived	 through	 acetylation,	
facilitating	 convenient	 once-	weekly	 administration.214 Preclinical 
studies	 show	 the	 efficacy	 of	 several	 KBPs,	 such	 as	 KBP-	066,215 
KBP-	066A,216 KBP-	088,217	and	KBP-	336.218	No	clinical	trials	inves-
tigating	obesity	with	KBPs	were	 identified;	 however,	 clinical	 trials	
for	type	2	diabetes	are	currently	assessing	the	efficacy	of	KBP-	042	
and	KBP-	089.	In	a	Phase	I	study	involving	37	healthy	subjects,	KBP-	
042 exhibited a favorable safety profile at tested doses, albeit higher 
doses were associated with nausea and vomiting.219	However,	Phase	

II	trials	for	KBP-	042	in	type	2	diabetes	did	not	reveal	a	significant	
improvement	 in	HbA1C	 levels.219,220 Eli Lilly discontinued the de-
velopment	of	KBP-	042	in	2019,	opting	instead	for	KBP-	089	which	
showed better results.203	 Even	 though	KBP-	089	had	good	 results	
in rodent models, the Phase I study was terminated due to strategic 
reasons attributed to limited pharmacodynamic effect.221

The most promising drug currently under investigation for 
obesity	 targeting	 the	amylin	pathway	 is	cagrilintide	 (formerly	AM-	
833),	 developed	 by	 Novo	 Nordisk,	 demonstrating	 effectiveness	
in preclinical studies, particularly when combined with semaglu-
tide.222	A	Phase	 II	 trial	 revealed	 its	 significant	 impact	on	 reducing	
body weight while maintaining a favorable tolerability profile.223 
Another	 Phase	 2	 study	 demonstrated	 the	 considerable	 effects	 of	
the cagrilintide/semaglutide combination on both body weight and 
HbA1c	level,	despite	HbA1c	differences	comparable	to	semaglutide	
alone.224 Currently, multiple Phase III studies involving cagrilintide/
semaglutide are underway,225-	228	including	plans	for	a	head-	to-	head	
study	with	tirzepatide,	a	recently	approved	anti-	obesity	drug	by	Eli	
Lilly.229,230

5.3  |  Challenges in targeting the amylin pathway 
for anti- obesity treatment

Several challenges emerge when the amylin pathway is considered as 
a	target	for	anti-	obesity	treatment.	Human	amylin	poses	issues	due	
to	 its	 short	 half-	life,	 necessitating	 frequent	 administration,	which,	
in	 turn,	 affects	 patient	 adherence.	 Furthermore,	 its	 inclination	 to	
aggregate	 into	harmful	fibrils	 is	another	obstacle.	Adverse	effects,	
including gastrointestinal side effects, the risk of hypoglycemia with 
pramlintide, along with a serious side effect reported in a trial in-
volving an amylin analogue, are examples of additional hurdles that 
may	impede	regulatory	approval.	Moreover,	in	common	with	other	
gut peptides, there are many examples of successful animal models, 
but it seems difficult to translate the results to human clinical trials. 
However,	 emerging	 alternatives,	 such	 as	 DACRAs	 and	 synergistic	
combinations with medications targeting other gut peptide path-
ways, hold promise as potential solutions to the outlined limitations.

6  |  CONCLUSION

Obesity, a global health concern associated with numerous compli-
cations, demands innovative solutions to address its rising preva-
lence.	 Ghrelin,	 PYY,	 CCK,	 and	 amylin	 have	 promising	 prospects	
for novel pharmaceutical interventions in appetite regulation and 
obesity treatment. Ongoing research and innovative approaches, 
including	ghrelin	receptor	modulators,	stable	PYY	analogues,	posi-
tive	allosteric	modulators	for	CCK,	and	advanced	amylin	analogues	
or	DACRAs,	showcase	the	potential	for	more	effective	and	targeted	
anti-	obesity	medications.	 The	 evolving	 landscape	 of	 pharmaceuti-
cal development offers hope for overcoming existing challenges and 
improving outcomes in the fight against obesity.
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