
REVIEW ARTICLE OPEN

Cellular and Molecular Biology

Implications of obesity and insulin resistance for the treatment
of oestrogen receptor-positive breast cancer
Sohail Rooman Javed1, Aglaia Skolariki1, Mohammed Zeeshan Zameer1 and Simon R. Lord 1✉

© The Author(s) 2024

Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of
obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive
(ER+ ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are
associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and
diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET
and the relationship to treatment toxicity.
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INTRODUCTION
The obesity epidemic is contributing to the rising incidence rates
of breast cancer, which remains the most common cancer for
women worldwide [1]. Furthermore, the relationship between
breast cancer and metabolic disorders, specifically obesity and
insulin resistance, increases the complexity of breast cancer
treatment, posing unique challenges in managing toxicities and
treatment resistance.
As described by the World Health Organisation (WHO), a body

mass index (BMI) of 30 kg/m2 or greater is considered obese
and is present in 13% of the world’s adult population, with
greater prevalence in the Western world [2]. Obese patients with
ER+ breast cancer are at a greater risk of cancer development,
recurrence, and mortality [3–6], even after accounting for
confounding variables such as concomitant diseases and
chemotherapy underdosing [7]. Obesity also increases the risk
of insulin resistance, characterised by cellular insensitivity to
insulin, and is associated with a cluster of conditions, including
hypertension, hyperglycaemia, central adiposity, and dyslipidae-
mia, known as metabolic syndrome [2]. These variables
collectively raise the risk of developing Type 2 diabetes mellitus
(T2DM), which in itself is associated with increased cancer
risk [8].
In addition, there is growing evidence that the metabolic

abnormalities associated with obesity and insulin resistance may
have a detrimental impact on the efficacy of ET [4, 9, 10]. In this
article, several hypotheses for this impaired efficacy have been
explored, including the impaired regulation of aromatase in
obesity as well as the role of PI3K, leptin, and FGFR1 signalling.
Obesity and insulin resistance may also impact the altered toxicity
profile of systemic cancer treatments.

In this paper, we consolidate the current understanding of the
impact of obesity and diabetes on cancer risk, treatment
outcomes, and toxicity in ER+ breast cancer.

OBESITY, DIABETES, BREAST CANCER RISK AND OUTCOME
In the last four decades, the rising incidence of breast cancer has
been partly attributed to the introduction of national screening
programmes worldwide, promoting the identification of small,
early-stage tumours with favourable prognoses [11]. However,
multiple epidemiological studies across diverse ethnic populations
presented in Table 1, have associated the simultaneous rise in
obesity levels with the increasing breast cancer incidence.
As body size and fat mass increase, endogenous oestrogen

production is heightened, while sex hormone-binding globulin
levels decrease. This hormonal imbalance is hypothesised to
account for the link between obesity and an elevated risk of breast
cancer in postmenopausal women [12, 13].
Although this link is well established in postmenopausal

women, where increased androgen aromatisation in adipose
tissue leads to higher oestrogen levels [14–16], the relationship
between obesity and breast cancer risk in premenopausal women
remains less clear. In this population, obesity is associated with a
reduced incidence of breast cancer [14, 17]. For example, a large
prospective multicentre analysis of over 700,000 premenopausal
women showed that higher BMI during early adulthood is
associated with a reduced risk of developing future breast cancer.
This inverse association was stronger at younger ages and
persisted across all BMI distributions, suggesting that increased
adiposity early in life might have a protective effect against
premenopausal breast cancer [18]. To explain this paradoxical risk
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Table 1. Epidemiological studies investigating a relationship between obesity and risk of postmenopausal breast cancer.

Study title Key findings Sample size Country

Obesity and breast cancer risk in Korean women
[151]

Postmenopausal women: Increased breast cancer
risk with higher BMI.
Risk compared to BMI 18.5–23 kg/m2: <18.5: aHR
0.82 (0.75–0.89)
23–25: aHR 1.11 (1.08–1.14)
25–30: aHR 1.28 (1.25–1.32)
≥30: aHR 1.54 (1.47–1.62)
Premenopausal women:
Decreased breast cancer risk with higher BMI.
Risk compared to BMI 18.5–23 kg/m2: <18.5: aHR
1.02 (0.94–1.11)
23–25: aHR 1.01 (0.97–1.05)
25–30: aHR 0.95 (0.91–0.98)
≥30: aHR 0.90 (0.82–0.98)

6,467,388 (57,626
breast cancer
cases)

South Korea

Body mass index and breast cancer: analysis of a
nationwide population-based prospective cohort
study on 1,393,985 Taiwanese women [152]

Postmenopausal women: Adjusted hazard ratio
(95% CI)= 0.78 (0.63, 0.96), 1.19 (1.12, 1.27), 1.31
(1.21, 1.41), 1.53 (1.38, 1.71) and 1.65 (1.27, 2.13)
for BMI < 18.5, 24–26.9, 27–29.9, 30–34.9 and ⩾35,
respectively
Premenopausal women: Adjusted hazard ratio
(95% CI)= 0.94 (0.81, 1.1), 0.98 (0.91, 1.04), 1.02
(0.93, 1.13), 1.01 (0.86, 1.18) and 0.82 (0.54, 1.24)
for BMI < 18.5, 24–26.9, 27–29.9, 30–34.9 and ⩾35,
respectively

1,393,985 (14,008
breast cancer
cases)

Taiwan

Cancer incidence and mortality in relation to
body mass index in the Million Women Study:
cohort study [153]

Relative risk of breast cancer incidence according
to BMI (95% CI)
BMI 25–27.4 :1.10 (1.04–1.16)
BMI 27.5–29.5: 1.21 (1.13–1.29)
BMI > 30: 1.29 (1.22–1.36)

1.2 million (6808
breast cancer
cases)

United
Kingdom

Body size in early life and the risk of
postmenopausal breast cancer [154]

Greater BMI at age 60 was associated with an
increased risk of postmenopausal breast cancer
(RR per 5 kg/m2= 1.20, 95% CI 1.18–1.22)

342,079 (15,506
breast cancer
cases)

United
Kingdom

Body size and breast cancer risk (EPIC) [155] Obesity linked to increased breast cancer risk in
postmenopausal women not receiving hormone
replacement therapy (HRT); inverse relationship
in HRT users: 31% excess risk compared to
women with BMI < 25 over 4.7-year follow-up.

176,886, (1879
breast cancer
cases)

9 European
countries

Excess body weight, weight gain and obesity-
related cancer risk in women in Norway: the
Norwegian Women and Cancer study [156]

Excess body weight raised the risk of
postmenopausal breast cancer, with overweight
(BMI 25– < 30 kg/m2) showing an HR of 1.13 (95%
CI: 1.00–1.27) and obesity (BMI ≥ 30 kg/m2)
showing a borderline significant HR of 1.20 (95%
CI: 1.00–1.44, P = 0.05).

138,746 (3836
breast cancer
cases)

Norway

Adiposity, Adult Weight Change, and
Postmenopausal Breast Cancer Risk [157]

Weight gain from age 18 to the current age
linked to higher breast cancer risk in hormone
therapy non-users (RR 2.15, 95% CI: 1.35–3.42 for
a ≥ 50-kg gain vs stable weight).
The risk from adult weight change was stronger
in women with later menarche (RR 4.20, 95% CI:
2.05–8.64 for ≥15 years) compared to earlier
menarche (RR 1.51, 95% CI: 1.11–2.06 for ages
11–12; P= 0.007 for interaction).

99,039 (2111
breast cancer
cases)

United States

Obesity, body size, and breast cancer risk
(Women’s Health Initiative) [158]

Higher BMI in non-HRT postmenopausal women
associated with increased breast cancer risk,
relative risk 2.52; 95% confidence interval
(CI)= 1.62–3.93

85,917 (1030
breast cancer
cases)

United States

Body weight and breast cancer risk among
Swedish women [159]

Positive association between obesity and ER+ PR
+ tumour risk compared to normal weight:
RR= 1.67 (1.34–2.07)
Inverse association between obesity and all PR-
tumour risk: RR= 0.68 (0.47–0.98)
Significant heterogeneity between ER+ PR+ and
PR- tumour risks: P (heterogeneity) <0.0001
Stronger association of obesity with ER+ PR+
tumours in: never-users of HRT: RR= 1.90
(1.38–2.61)
Those without a family history of breast cancer:
RR= 1.82 (1.45–2.29)

51,823 (1188
breast cancer
cases)

Sweden
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reduction, it has been proposed that there is decreased oestrogen
exposure in premenopausal obese women due to increased
anovulatory menstrual cycles, a later decline in progesterone
levels during menstruation, and longer menstruation [14–16, 19].
However, a longitudinal study did not find a clear relationship
between BMI and ovulation-related variables like probable
polycystic ovarian syndrome, oral contraceptives, and infertility
secondary to an ovulatory disorder, which has cast doubt on this
view [14, 18]. There is added complexity when considering
findings from a pooled analysis of seven prospective studies,
which investigated how circulating oestrogen and androgens
affect premenopausal breast cancer risk. This study indicated that
although total oestradiol levels were inversely related to BMI and
positively associated with cancer risk, suggesting that the lower
risk in obese women might stem from its reduced levels, free
oestradiol, oestrone, and androgens such as DHEAS, testosterone,
and free testosterone were found to be positively associated both
with BMI and premenopausal breast cancer risk [20].
Aside from decreased oestrogen exposure, a net reduction in

progesterone production is also hypothesised to account for
decreased breast cancer risk in pre-menopause [21]. Progesterone
is considered a major mitogen in the adult mammary epithelium
in both mice and humans and has been linked to mammary
carcinogenesis [22]. In the obese, premenopausal population,
increased total oestrogen levels from adipose tissue and ovarian
oestrogen production lead to enhanced negative feedback on
hypothalamic pituitary-controlled gonadotropin release, therefore
reducing ovarian steroid synthesis and progesterone production.
Unlike postmenopausal women who produce no ovarian oestro-
gen [21], the oestrogen-progesterone imbalance in premenopau-
sal obese women has been put forward as an explanation for the
reduced breast cancer risk observed in this group.
In postmenopausal women, obesity has also been shown to

increase breast cancer-related disease recurrence and mortality
[7, 9, 23]. A meta-analysis of 82 follow-up studies demonstrated
that breast cancer survivors with a higher BMI have worse overall
and breast cancer-specific survival [7]. Overweight or obese breast
cancer patients often present with larger tumours, higher-grade
malignancy, and more positive lymph nodes at diagnosis.

However, even after adjusting for these known prognostic factors,
obesity independently raises the risk of distant metastases and
breast cancer-related death [24].
Similarly, several meta-analyses in the last 20 years, as detailed

in Table 2, have consistently shown that diabetes is associated
with an increased incidence of breast cancer. It has been proposed
that diabetes contributes to the onset of breast cancer via various
mechanisms, such as mitogenic hyperinsulinaemia/insulin-like
growth factor (IGF) pathway signalling, hyperglycaemia, inflam-
mation caused by excess fat, and alterations in the levels of sex
hormones [25]. These mechanisms are discussed further later in
this article.
Furthermore, there is an approximate 40% increase in mortality

following a breast cancer diagnosis among postmenopausal
women with diabetes compared to women without diabetes.
Nevertheless, this increase may, at least in part, be due to
diabetes-related comorbidities [26]. Breast cancer-specific mortal-
ity also appears to be higher in diabetic women, although it is
uncertain if mortality worsens with increasing severity of type 2
diabetes [27].

GENETIC LINKS AND SHARED SUSCEPTIBILITY IN OBESITY,
DIABETES, AND BREAST CANCER
Various hypotheses have been proposed to explain the frequent
co-occurrence of obesity, diabetes and breast cancer, with one of
the most prominent being the shared genetic aetiology. Recent
advancements in genetic research, particularly through large
Genome-Wide Association Studies (GWAS), have revealed that
specific genetic variants are associated with these complex
diseases across different populations.
Several variants that are associated with T2DM have also been

linked to breast cancer. Notable examples include polymorphisms
mapping to loci at 10q25.2 and 9p21.3 at which transcription factor
7-like 2 (TCF7L2) and cyclin-dependent kinase inhibitor 2A/B
(CDKN2A/B) have been proposed as the target genes and both of
which are involved in signalling pathways that regulate cell-cycle
progression and proliferation [28–31]. The first obesity susceptibility
locus discovered by GWAS mapped to 16q12.2, proximal to the

Table 1. continued

Study title Key findings Sample size Country

Overall and central adiposity and breast cancer
risk (Sister Study) [160]

Positive association between weight, BMI, waist
circumference, waist-to-hip ratio, and breast
cancer risk, with hazard ratios being greater in
postmenopausal women. A non-linear increase in
overall breast cancer risk was observed for
increased categories of BMI. Estimates were
stronger and monotonic for women with ER+ PR
+ invasive tumours (25–29 kg/m2, HR= 1.45, 95%
CI 1.23, 1.71; 30–34.9 kg/m2, HR= 1.42, 95% CI
1.16, 1.75; ≥35 kg/m2, HR= 1.49, 95% CI 1.18,
1.88, vs. 18.5–24.9 kg/m2).

50,884 (2009
breast cancer
cases)

United States

Obesity/weight gain and breast cancer risk:
findings from the Japan collaborative cohort
study for the evaluation of cancer risk [161]

Among postmenopausal women, adjusted HR
increased with BMI. Risk increased among
women with a BMI of 24 or higher HR: 1.50 (95%
CI: 1.09–2.08) for BMI of 24–28.9, and 2.13
(1.09–4.16) for BMI ≥ 29) compared with women
with a BMI of 20–23.9.

36,164 (234 breast
cancer cases)

Japan

Maximum and Time-Dependent Body Mass Index
and Breast Cancer Incidence Among
Postmenopausal Women in the Black Women’s
Health Study [162]

For overall breast cancer, the HR for BMI ≥ 35
versus BMI < 25 was 1.24 (95% CI: 1.02, 1.50).
Stronger association for ER+ breast cancer
(HR= 1.42, 95% CI: 1.10, 1.84)

31,028 (1384
breast cancer
cases)

African
American

A primary search for publications in the PubMed database from January 2000 to January 2024 for epidemiological studies investigating the relationship
between obesity and risk of postmenopausal breast cancer was achieved using certain text keywords: breast cancer, obesity, body weight, BMI and
epidemiology. An additional literature search was carried out with no systematic component. We limited the studies to those that included greater than
30,000 patients.
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fat mass and obesity-associated (FTO) gene which has been
recognised as a regulator in DNA repair mechanisms, DNA damage
and inflammatory responses. Polymorphisms at this locus have
also been associated with breast cancer risk [32–36]. Furthermore,
the FTO-encoded protein, an RNA N6-methyladenosine (m6A)
demethylase, has been implicated in breast tumourigenesis and
progression [37, 38].
Recently, interest in the FTO gene has been renewed following

a systematic analysis exploring the potential overlap of known
GWAS risk variants for obesity, T2DM and breast cancer. This study
identified 91 candidate variants in linkage disequilibrium using
datasets from the 1000-Genomes Project to analyse candidate
haplotypic blocks. Surprisingly, all variants were located within the
vicinity of the FTO gene, thus highlighting the significant
association of this locus with these diseases and strengthening
the hypothesis of a shared genetic basis [39].
However, conflicting evidence from previous case–control

studies in women of various ethnicities has questioned the
potential pleiotropic effects of these risk variants on breast cancer,
obesity and diabetes traits [40–42]. In addition, a case–control
study involving U.S. Caucasian women found non-significant
correlations between intronic and intergenic single nucleotide
polymorphisms (SNPs) located in or near 29 diabetes-related
genes and breast cancer incidence and mortality, casting further
uncertainty on the functional significance of these variants in
relation to breast cancer risk [43]. Finally, Mendelian randomisa-
tion analyses have been implemented to infer causality between
genetic instruments associated with obesity and diabetes and

breast cancer risk [44–46]. This method provides clearer insights
into causal associations by reducing bias and confounding, as well
as mitigating reverse causation. Nevertheless, further mechanistic
studies will be required to elucidate the underlying biological
pathways and interactions that drive these associations.

Mechanisms of obesity-induced carcinogenesis and treatment
resistance in breast cancer
Breast cancer development in the context of obesity has been
linked to increased inflammation in adipose tissue, marked by
macrophage infiltration and the formation of crown-like structures
(CLS) around dead adipocytes. This increased inflammation within
the adipose tissue microenvironment has been shown in obese
mouse models and is associated with increased cell proliferation
and higher levels of inflammatory cytokines, including TNF-alpha,
IL-1β and Cox-2, as well as insulin resistance [47–49]. In a study of
women undergoing mastectomy or breast cancer surgery, CLS
was detected in 40% of cases, and was associated with higher
levels of insulin, glucose, leptin, triglycerides, C-reactive protein
and IL-6 [50]. The presence of CLS in breast tissue is linked to an
increased risk of breast cancer and a poorer prognosis, with
evidence showing associations with metastasis and decreased
overall survival [49, 51, 52]. Several mechanisms may contribute to
CLS formation and resistance to ET. Understanding and selectively
targeting these mechanisms could affect both breast cancer
development and associated insulin resistance. A summary of the
mechanisms of breast cancer carcinogenesis in obesity is
described in Fig. 1.

Table 2. Meta-analyses of diabetes and breast cancer risk.

Study title Year Key findings

Diabetes and incidence of breast cancer and its
molecular subtypes: a systematic review and meta-
analysis [163]

2024 70 studies: 24 case–control; 46 cohort. Diabetes was associated with an
overall increased risk of breast cancer (RR= 1.20, 95% CI: 1.11–1.29).
Postmenopausal women had an elevated risk of developing breast cancer
(RR= 1.12, 95% CI: 1.07–1.17). No association between diabetes and breast
cancer risk among premenopausal women (RR= 0.95, 95% CI: 0.85–1.05).
Diabetes associated with significantly increased risk of (ER)+ breast cancer
(RR= 1.09, 95% CI: 1.00–1.20), ER- (RR= 1.16, 95% CI: 1.04–1.30).

Breast cancer risk for women with diabetes and the
impact of metformin: a meta-analysis [164]

2022 30 studies, 821,527 cases of breast cancer: In type 2 diabetic females, breast
cancer RR= 1.15 (95% CI, 1.09–1.21). Adjusted for BMI: RR= 1.22 (95% CI,
1.15–1.30). Adjusted for BMI & menopause: RR= 1.20 (95% CI, 1.05–1.36).
Metformin users vs. non-users, breast cancer RR= 0.82 (95% CI, 0.60–1.12).

Diabetes increases the risk of breast cancer: a meta-
analysis [165]

2012 43 studies, 422,631 cases: 40 on women’s breast cancer, 6 on men’s and
women’s breast cancer. Women with diabetes had increased breast cancer
risk (OR 1.20, 95% CI 1.13–1.29). Type 2 diabetes: unchanged association
(OR 1.22, 95% CI 1.07–1.40). Gestational diabetes: no association (OR 1.06,
95% CI 0.79–1.40). Insufficient data for type 1 diabetes. Males with diabetes
showed increased breast cancer risk, not statistically significant (OR 1.29,
95% CI 0.99–1.67).

Diabetes and breast cancer risk: a meta-analysis [166] 2012 Studies included a total of 56,111 breast cancer cases. 39 studies: breast
cancer SRR in diabetic women = 1.27 (95% CI, 1.16–1.39). Prospective
studies: SRR= 1.23 (95% CI, 1.12–1.35). Retrospective studies: SRR= 1.36
(95% CI, 1.13–1.63). Type 1 diabetes/premenopausal: no association
(SRR= 1.00 (95% CI, 0.74–1.35) and 0.86 (95% CI, 0.66–1.12), respectively).
BMI-adjusted: SRR= 1.16 (95% CI, 1.08–1.24). Non-BMI-adjusted: SRR= 1.33
(95% CI, 1.18–1.51).

Association between diabetes mellitus and breast cancer
risk: a meta-analysis of the literature [167]

2011 16 studies (2000–2010). A total of 730,069 patients. Diabetes linked to 23%
increased breast cancer risk, notably in postmenopausal women (RR= 1.25,
95% CI 1.20–1.29). Significant correlation in Europe (RR= 1.88, 95% CI
1.56–2.25), and America (RR= 1.16, 95% CI 1.12–1.20), not significant in Asia
(RR= 1.01, 95% CI 0.84–1.21). Diabetes raised breast cancer mortality
(RR= 1.44, 95% CI 1.31–1.58).

Diabetes mellitus and risk of breast cancer: a meta-
analysis [168]

2007 20 studies (5 case–control and 15 cohort studies). Diabetes associated with
increased breast cancer risk (RR= 1.2, 95% CI 1.12–1.28).

A primary search for publications in the PubMed database from January 2005 to January 2024 for meta-analyses investigating the relationship between
diabetes and risk of postmenopausal breast cancer was achieved using the text keywords: breast cancer, diabetes and meta-analysis.
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RANKL/TNF-alpha/NF-κB activation. The accumulation of macro-
phages in CLS is thought to be caused by a decrease in
macrophage apoptosis within obese adipose tissue through the
activation of the transcription factor NF-κB [53]. NF-κB has been
found to be activated in human breast cancer cell lines and is
considered critical in the genesis of ET resistance in ER+ breast
cancer, as it has been shown to promote tamoxifen resistance,
early recurrence, metastasis, and worse overall survival [53–56].
There also appears to be cross-talk between ER and NF-κB,
potentially working in tandem to support breast cancer cell
survival and transition to a more aggressive phenotype [57]. The
upregulation of NF-κB is independently associated with hyper-
insulinemia, and reduced β-cell function [58].
Novel therapies inhibiting NF-κB gene activation could there-

fore potentially prevent ER+ tumour recurrence and restore
endocrine responsiveness. Preclinical studies indicate that sup-
pressing NF-κB significantly enhances the sensitivity of resistant
breast cancer tumour cells to tamoxifen [59, 60]. Riggins et al.
demonstrated that pharmacologic inhibition of NF-κB by parthe-
nolide, a small molecule inhibitor against NF-κB, could restore
fulvestrant-mediated suppression of growth in breast cancer cell

lines [61]. Despite this preclinical data, clinical trials exploring NF-
κB inhibition have not been promising to date. Three Phase II
studies investigating bortezomib, a proteosome inhibitor that
blocks the NF-κB pathway, as a single agent or in combination
with ET, did not elicit an objective tumour response in metastatic
breast cancer patients [62–64].
Targeting upstream or downstream signals of NF-κB may provide

more promising therapeutic prospects. RANK ligand (RANKL), a TNF-
related molecule, has been shown to activate NF-κB in preclinical
studies and thereby promote proliferative changes in the mammary
epithelium as well as epithelial-mesenchymal transition, which
induces tumour cell migration, invasion and metastasis [65–67].
Systemic and hepatic blockage of RANKL signalling can also improve
hepatic insulin sensitivity and glucose tolerance [58]. Currently in
clinical practice, the use of the RANKL inhibitor denosumab is not
extended beyond the prevention or treatment of osteoporosis,
primarily due to disappointment on its efficacy in improving disease-
free survival (DFS) in patients [68, 69]. However, the potential of
RANKL inhibitors, particularly denosumab, to counteract NF-κB-
mediated resistance in ER+ breast cancer may still merit further
clinical investigation.
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Similarly, TNF-alpha, a cytokine acting upstream of NF-κB, has
been shown to induce proliferation in murine mammary tumour
cells [70]. By upregulating PTEN and suppressing the AKT/eNOS/
NO signalling pathway, TNF-alpha also contributes to vascular
insulin resistance [71]. Infliximab, which binds to an neutralises
TNF-alpha, was found to be tolerable in patients with advanced
cancer with some evidence of on-target activity [72]. In metastatic

breast cancer, a Phase II clinical trial demonstrated the safety
of another anti-TNF-alpha agent, etanercept, in heavily pre-treated
patients, although more research is required to understand
efficacy and any treatment role [73]. TNF-alpha blockade
may also have a role in overcoming resistance to anti-PD-1
therapy, and combination therapy should be assessed for
feasibility [74].
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metformin reduce circulating insulin levels, offering potential therapeutic value in combination with endocrine therapy. Inflammatory
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mSIN1 mammalian stress activated MAP kinase-interacting protein 1, Protor protein observed with Rictor-1, PDK1 phosphoinositide-
dependent kinase-1, FOXO forkhead box O, BAD Bcl-2-associated death promoter, CASP9 caspase-9, IKKα I kappa B kinase alpha, IKKβ I kappa
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glucose transporter 4, LDHA lactate dehydrogenase A, MMP9 matrix metallopeptidase 9, VEGF vascular endothelial growth factor. (Created
with BioRender.com.).
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Hypoxia and induction of hypoxia-inducible factor 1-alpha (HIF-1α).
The activation of NF-κB in obesity-related breast cancer may be
driven by adipocyte hypoxia [75]. It is hypothesised that adipocyte
hypertrophy without hyperplasia leads to accelerated tissue
growth with insufficient supportive angiogenesis [76]. Hypoxia in
turn triggers the activation of hypoxia-inducible factors (HIFs),
which are associated with increased proliferation and expression
of ER and VEGF, suggesting a possible relationship with more
aggressive tumours [77]. HIF-1α expression is associated with
poorly differentiated breast cancer, a higher pathological stage,
and poor treatment response and outcome [77, 78]. Obesity is also
associated with elevated HIF-1α mRNA and protein in adipose
tissue [79], while HIF-1α activation in macrophages is associated
with the development of insulin resistance and glucose metabo-
lism in addition to pro-tumour mechanisms [80]. This may be in
part due to HIF-1α-induced upregulation of insulin receptor
substrate 2 (IRS-2), which is an important mediator of insulin,
glucose metabolism, and mitogenesis [81]. PI3K and downstream
signalling effectors AKT and mTOR are activated through the
recruitment of the IRS proteins.
Hypoxia is also a recognised driver of ET resistance, with

elevated expression of HIF-2α observed in endocrine-resistant
ERα-positive breast cancer cell lines [78, 82]. Introducing HIF-2 into
previously sensitive cells leads to their development of resistance
to antioestrogens and inhibiting HIF-2α signalling can restore
sensitivity in cells that have become resistant to ET [82].
Additionally, established HIF inhibitors such as digoxin and
acriflavine appear to have activity against breast cancer metastatic
niche formation [83], and have been shown to decelerate diet-
induced obesity by various mechanisms in mouse studies,
including decreasing lipogenesis [84–86]. Therefore, focusing on
HIF inhibitors may not only help overcome resistance to ET in
obesity but also provide valuable insights into preventing diet-
induced obesity.

PI3K–AKT–mTOR pathway activation. PI3K–AKT–mTOR is a key
signal transduction pathway that mediates cell growth, metabo-
lism, and cell survival. PI3K–AKT–mTOR integrates upstream
signals, including those from insulin and insulin growth factors
(IGF-1 and IGF2) as well as cellular nutrients, energy and oxygen
levels (Fig. 2). There is cross-talk between the PI3K–AKT–mTOR
pathway and the oestrogen receptor (ER) pathway at multiple
levels [87, 88].
Genetic alterations affecting different nodes of the PI3K–AKT–mTOR

pathway are common in ER+ breast cancer [89]. The international data
sharing consortium, AACR Project GENIE, showed that genetic
alterations in PIK3CA, PTEN and AKT1 occur in ~36%, 7% and 5% of
breast cancer, respectively [90]. It is not known whether these
activating mutations are more likely to arise in breast cancer for
patients that have insulin resistance or may influence the response to
fasting in the context of ET.
Activation of the insulin receptor (IR) promotes downstream

PI3K–AKT–mTOR signalling (see Fig. 2). Increased insulin levels are
associated with higher breast cancer incidence and mortality [91].
Studies with both insulin analogues, blocking and stimulating anti-IR
antibodies, and small molecule inhibitors, have shown a role for insulin
signalling in breast cancer development and progression [92]. IR
expression in breast cancer is well described, and high IR expression
has been implicated in poor prognosis [93]. IR is more commonly
expressed in endocrine-resistant breast cancer, and low expression
correlates with improved survival [94].
Several preclinical studies have shown that the PI3K–AKT–mTOR

pathway plays a key role in mediating resistance to ET in breast cancer,
and the concept of targeting the PI3K–AKT–mTOR pathway to
augment ET has now been proven in clinical settings. The BOLERO-2
Phase 3 trial demonstrated an improvement in median progression-
free survival when the mTOR inhibitor everolimus was combined
with the aromatase inhibitor exemestane in patients already refractory

to single-agent aromatase inhibitor therapy [95]. The SOLAR-1
Phase 3 study has now also shown that the combination of the
PI3K inhibitor, alpelisib, with fulvestrant led to an improvement in
progression-free survival versus fulvestrant alone in PIK3CA-mutant,
ER+metastatic breast cancer resistant to first-line ET [96]. The Phase 3
placebo-controlled CAPltello-291 trial reported an improvement in
progression-free survival with the addition of the AKT inhibitor,
capivasertib to fulvestrant in patients with ER+ advanced breast
cancer, irrespective of PIK3CA mutation status [97]. Lastly, the
combination of inavolisib (a novel PI3K inhibitor) + palbociclib +
fulvestrant in ER+ve metastatic breast cancer showed a significant
improvement in investigator-assessed progression-free survival [98].
Drugs that lower circulating glucose and insulin levels, in particular

metformin and SGLT2 inhibitors, have been proposed as treatments
for breast cancer and could potentially synergise with ET by reducing
PI3K–AKT–mTOR signalling (Fig. 2) [99, 100]. In particular, metformin
has been extensively studied as a potential anticancer therapy, and a
number of window-of-opportunity clinical trials have suggested that
metformin may reduce cancer cell proliferation, and this effect may be
greater in insulin-resistant women [100]. One meta-analysis of 11
observational studies has reported improved overall and cancer-
specific survival in patients with breast cancer and diabetes who
received metformin when compared with patients receiving other
antidiabetic treatments [101]. However, another pharmacodynamic
clinical study showed no clear link between metformin-induced
reductions in circulating insulin levels and changes in tumour biology
[102]. A large Phase 3 trial of 5 years of adjuvant metformin therapy in
breast cancer showed no evidence of clinical benefit, although this
study excluded patients with diabetes [103].
Aside from targeted therapies, dietary interventions have the

potential to modulate the PI3K–AKT-mTOR pathway. Caffa et al. found
that combining a periodic or fasting-mimicking diet (FMD) with
hormone therapy, specifically fulvestrant and tamoxifen, enhanced
anticancer effects in ER+ breast cancer mouse models by reducing
leptin, insulin, and IGF-1 levels. Besides promoting sustained
tumour regression, this approach could also revert acquired drug
resistance [104].

Adipokine dysregulation and breast cancer. Investigating adipo-
cyte biology, which goes beyond passive fat storage, is essential
for comprehending the microenvironmental alterations linked to
obesity. Adipocytes modulate the adipose tissue microenviron-
ment through adipokine-mediated paracrine and autocrine
signalling pathways. Two key adipokines involved in breast
carcinogenesis are leptin and adiponectin.
Excess body fat increases leptin release from adipocytes, and

BMI correlates with elevated leptin levels. By stimulating its
receptor and a number of downstream pathways, including Jak2/
Stat3, MAPK and PI3K–AKT, leptin likely promotes cell invasion and
proliferation [104, 105]. A meta-analysis of 35 studies linked higher
serum leptin levels with increased breast cancer risk, especially in
postmenopausal women, suggesting its potential as a biomarker
[106]. In addition, genetic variations in the leptin-coding genes LEP
and ADIPOQ have been associated with elevated breast cancer risk
[107]. Leptin has also been implicated in resistance mechanisms to
tamoxifen and aromatase inhibitor treatment [108, 109].
Visceral adipose tissue (VAT) is known to produce leptin [50],

but the effect of locally generated leptin from breast fat tissue
compared to circulating leptin on breast tumour progression is
not well understood.
On the other hand, low levels of adiponectin are associated with

obesity and Type 2 diabetes, and studies suggest adiponectin may
suppress cancer growth by modulating a number of intracellular
metabolism and proliferation pathways associated with mitogen-
esis, including TNF-alpha, AMPK and SREBP-1 signalling [110, 111].
Unfavourable outcomes for breast cancer have been linked
to both low adiponectin levels and increased leptin levels
[112, 113], and it is speculated that the adiponectin:leptin ratio
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may be more important for breast cancer growth than the
absolute levels [114].
Because high leptin levels are associated with an increased risk

of breast cancer and may increase resistance to ET, as demon-
strated in preclinical breast cancer models [115, 116], it has been
speculated that lowering leptin levels through weight loss may
improve outcomes for breast cancer survivors. Furthermore, a
recent randomised study in this population demonstrated that
both exercise and weight loss were associated with decreased
leptin expression and improvements in the adipokine/leptin ratio
[117], although whether this definitively translates to better
clinical outcomes remains unanswered.

Obesity and FGF1, FGF2 and FGFR signalling. Another obesity-
associated marker of elevated breast cancer risk, especially in the
case of visceral fat, is fibroblast growth factor-2 (FGF2), which is
released by adipose tissue. FGF2 binds to FGFR1 and FGFR2, and
at least 10% of breast cancers harbour FGFR1 amplification, which
is linked to early relapse and poor prognosis [118].
FGFR1 signalling directs healthy mammary duct development
[119], and FGF2 levels are lowered in mice that have had a
substantial fat pad removed, suggesting that FGF2 may have
endocrine-mediated functions in addition to local ones [120]. Poor
prognosis in breast cancer has been associated with elevated
expression of the leptin receptor (LepR) and FGFR1 amplification,
and co-expression of the FGFR1 gene and leptin protein copy
number has been observed in primary breast tumours [121].
Antagonism of FGFR signalling in an obese mouse breast cancer
model prevented outgrowth of pulmonary metastases [122] and
FGFR inhibitors have already shown some promise in the clinic for
the treatment of endocrine-resistant ER+ breast cancer [123].
In preclinical studies, elevated circulating levels of FGF2 have

been linked to breast cancer development through the activation
of oncogenic signalling pathways, including MAPK/ERK, cMYC and
PI3K/AKT/mTOR. FGFR1 amplification is a key driver of ET
resistance through MAPK signalling activation, and this therapeu-
tic opportunity is currently being explored in clinical trials
[124, 125]. Direct targeting of FGF2 is also being considered as a
potential clinical approach [126].
FGF1 promotes adipocyte glucose uptake through AKT cross-talk

as well as transcriptional promotion of glucose transporter protein
type 1 (GLUT1), the primary glucose transporter [127–129]. GLUT1 is
associated with higher grade, proliferation, as well as poorer
prognosis in breast cancer [130, 131], although no link was observed
between GLUT1 expression in breast cancer and background obesity
or diabetes in one small study [132]. Notably, recent work has shown
that FGF1 stimulates oestrogen receptor activation in obese mouse
breast cancer models after oestrogen deprivation [128].

Aromatase overexpression in obesity. Aromatase inhibitors (AI)
play a pivotal role in the treatment of ER+ breast cancer as a
monotherapy in postmenopausal women. Postmenopausal status
leads to a shift in the primary site of aromatase activity to the
adipose tissue in the breast and gluteal areas. It is well described
that AIs are less efficient at suppressing serum oestradiol levels in
obese women [10]. A plausible explanation for this reduced
efficiency is the observation that women with BMI >30, both with
and without breast cancer, have elevated baseline oestrogen
levels compared to those with BMI <22, and this may result in less
effective suppression of oestrogen by an AI in postmenopausal
women [133].
The formation of CLS in obesity is associated with heightened

levels of gene transcription and increased activity of aromatase in
mammary glands and visceral fat [51]. Aromatase expression is
especially elevated in the adipose fibroblasts near breast tumours
through the activation of proximal promoters, with immature
fibroblasts primarily responsible for its production [134]. Further-
more, tumour cells in adipose tissue inhibit adipocyte

differentiation by release of TNF-alpha and interleukin-11, thereby
increasing the fibroblast:adipocyte ratio. This shift sustains
elevated aromatase production, promoting local oestrogen
synthesis and tumour progression [135].
A systematic review of three randomised controlled trials and

five retrospective cohort studies suggested reduced efficacy of
aromatase inhibitors in obesity, although the exact magnitude of
this effect is not clearly established [136]. In a recent nationwide
cohort study of 13,000 patients with hormone receptor-positive
breast cancer, Harborg et al. showed that the risk of recurrence
was higher among patients with obesity compared to those with a
healthy weight (BMI 18.5–24.9) [4]. The ATAC study, which
randomly assigned postmenopausal women with early-stage
breast cancer to receive oral daily anastrozole alone, tamoxifen
alone, or the combination, supported these findings. Specifically,
women on anastrozole had a 27% lower recurrence rate
compared to those taking tamoxifen, with women having a BMI
<23 deriving an even greater benefit from treatment with an
aromatase inhibitor [9].
In premenopausal women, AIs should be combined with

ovarian suppression, typically with gonadotropin-releasing hor-
mone (GnRh) analogues. Alternatively, selective oestrogen recep-
tor modulators, such as tamoxifen, may be used alone or in
combination with GnRh analogues. In premenopausal patients
with HR-positive breast cancer who received adjuvant tamoxifen,
a high BMI has been linked to a poorer prognosis [137]. However,
to date, no similar association has been reported when ovarian
suppression is used in conjunction with aromatase inhibitors.
AIs are usually provided at a standard dose that does not take

specific inter-patient variation into consideration. Early studies
investigating whether a larger dosage of AIs may improve outcomes
for obese individuals with metastatic cancer suggested no additional
benefits from an increased dose. However, these trials were
conducted prior to the introduction of AIs as a standard-of-care
option for postmenopausal ER+ breast cancer and therefore weight-
dependent dosing may be revisited [138, 139].
Another issue demanding attention is the heightened insulin

resistance and increased adiposity associated with postmenopausal
women with breast cancer undergoing treatment with AIs. Studies in
aromatase knockout mice and rare cases of congenital aromatase
deficiency indicate a correlation with elevated adiposity, hepatic
steatosis and insulin resistance [140–142]. Consequently, the
advantages of ET must be weighed against the potential risks of
obesity, metabolic syndrome and diabetes. This emphasizes the need
for further investigation as to whether these changes in metabolism
are associated with a worse prognosis and whether early drug or
dietary intervention might be beneficial.

IMPLICATIONS FOR TOXICITY
It has long been recognised that there is a challenge in correctly
dosing obese patients with adjuvant chemotherapy, as the
maximum tolerated dose for cytotoxic therapy will have typically
been determined in a leaner population. Obese patients are
thought to be often underdosed due to empirical dose reductions,
contrary to guidelines recommending full weight-based dosing.
Although there is limited clinical data, it is hypothesised that this
may lead to worse outcomes [143, 144]. There is also considerable
uncertainty when using drugs with a high risk of cumulative
toxicity, such as doxorubicin, fluoropyrimidines and cyclopho-
sphamide. Studies are ongoing to determine whether better
measures of body composition can more accurately predict
toxicity in early breast cancer treatment [145].
Furthermore, studies have shown that obese patients with

breast cancer receiving ET experience increased adverse effects,
such as increased joint symptoms and cardiovascular events,
which could potentially lead to treatment discontinuation
[146, 147]. Hence, lack of treatment compliance in this context
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may be a contributing factor to poorer outcomes. Notably, in the
context of treatment with adjuvant CDK4/6 inhibitors, obese
patients had lower rates of neutropaenia which translated into a
reduced treatment discontinuation rate in the PALLAS trial. The
investigators hypothesised that obese patients may have a lower
distributional volume, although survival data are still immature
[148]. This suggests a need for dosage adjustments based on body
composition rather than standard weight-based protocols to
maximise therapeutic effects in obese patients.
The use of mTOR and PI3K inhibitors in conjunction with ET for

the treatment of breast cancer may be especially problematic in
patients with obesity or insulin resistance. Using clinical trial data
from two studies of PI3K inhibitors, Rodon et al. developed a risk
prediction model for grade 3/4 hyperglycaemia, and identified five
factors, including baseline fasting plasma glucose, HbA1c and BMI,
as the strongest predictors for classifying patients as low or high
risk [149]. Notably, preclinical research has shown that the insulin
feedback causing hyperglycaemia can be prevented using dietary
or pharmaceutical approaches, which greatly enhance the efficacy
of treatment [150].

CONCLUSION
For some time, it has been understood that obesity and insulin
resistance are associated with both an increased risk of develop-
ing ER+ breast cancer and poorer outcomes. Substantial
preclinical evaluation has now provided greater insight into the
mechanisms that drive these phenomena, and potential ther-
apeutic strategies have been proposed. Clinical studies of
interventions aimed at improving outcomes for breast cancer
patients with metabolic disorders are warranted. More accurate
measures of body composition beyond BMI and their association
with patient outcome need to be assessed in the clinic and
potential differences in treatment resistance between premeno-
pausal and postmenopausal women in the context of obesity
remain understudied. Lastly, the breast cancer community needs
to evaluate strategies to effectively manage treatment toxicity in
the context of obesity.
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