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Abstract

Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obe-
sity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS
together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine
organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipoca-

lin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines

and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus:
T2DM,; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships
between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases
mentioned above. In this context, particular emphasis was given on available clinical studies. According to the lat-
est knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased
in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs.
The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-den-
sity lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act

as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated
SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-
derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS
and MetS-related diseases negatively affecting bone quality.
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Introduction

Metabolic syndrome (MetS) represents a clinical condi-
tion characterized by a combination of hyperglycemia,
hypertension, abdominal obesity, and dyslipidemia [1].
It is considered a low-grade chronic inflammatory state
caused by a complex interaction of genetic and environ-
mental factors [2]. Heritability estimates for MetS range
from approximately 10-30% [3]. Environmental factors
such as unhealthy diet, physical inactivity, smoking, and
stress are closely related to the incidence of MetS [4].

The complex nature of MetS has led to several defini-
tions, including those from the World Health Organi-
zation (WHO), American Heart Association/National
Heart, Lung, and Blood Institute (AHA/NHLBI), Inter-
national Diabetes Federation (IDF), with a consensus
reached between the AHA/NHLBI and the IDF in 2009
[1]. According to the aforementioned statement, MetS is
diagnosed based on the presence of at least three out of
five components mentioned below:

1. Abdominal obesity (waist circumference>102cm
for European men or >88cm for European women;
> 90cm for Asian men or >80cm for Asian women;
alternatively, visceral fat area >80 cm?);

2. High serum triglycerides (> 150 mg/dL);

3. Low serum high-density lipoprotein (HDL) choles-
terol (< 40mg/dL in men or < 50 mg/dL in women);

4. Hypertension (systolic blood pressure>130mmHg
and diastolic blood pressure > 85 mmHg);

5. Hyperglycemia (fasting blood glucose > 100 mg/dL).

According to a current meta-analysis by Noubiap et al.
[5], the incidence of MetS ranged from 12.5 to 31.4% in
global general population of adults. The prevalence of
MetS was the highest in Eastern Mediterranean region
(36.6%), followed by USA (33.4%) and lowest in Africa
region (23.1%). Considering the individual components
of MetS, the global prevalence was 45.1% for central obe-
sity, 42.6% for arterial hypertension, 40.2% for low HDL-
cholesterol, 28.9% for high triglycerides (TGs), and 24.5%
for hyperglycemia. Notably, the incidence rate of MetS
increases with age, resulting in a prevalence of 40-45%
in people over 50vyears of age [6]. These data point to the
fact that MetS and its individual components are very
widespread worldwide. Furthermore, MetS is often asso-
ciated with other serious (MetS-related) diseases that
can have an unfavorable impact on bone health. Recent
studies have shown that bone, as an endocrine organ, is
able to secrete several systemic cytokines (osteokines)
that may also act as biomarkers predicting the incidence
of several disorders. The main aim of this review was not
only to summarize current knowledge about MetS, bone-
derived cytokines and the most common MetS-related
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diseases with a negative effect on bone quality (type
2 diabetes mellitus: T2DM; cardiovascular diseases:
CVDs; osteoporosis: OP), but also to provide new inter-
pretations of the relationships between osteokines and
individual components of MetS, as well as between
osteokines and MetS-related disorders, which are cur-
rently not available in such a form. In this context, par-
ticular emphasis was placed on available clinical studies.
Such a review is much more comprehensive and provides
up-to-date knowledge in this field.

The most common metabolic syndrome-related
diseases affecting bone quality

Individual components of MetS together raise the risk of
several serious disorders [7]. The most common MetS-
related diseases associated with impaired bone quality
and health include T2DM, CVDs, and OP, that will be
further considered.

Generally, MetS is linked to T2DM, with hazard ratios
ranging from 3.21 to 7.35 depending on the combination
of the three different components of MetS [8]. Although
T2DM is a multifactorial endocrine disease manifested
by chronic hyperglycemia, the majority of affected indi-
viduals have insulin resistance, relative insulin deficiency
and MetS before the onset of T2DM [9]. In response
to hyperglycemia, insulin exerts its anabolic effects by
inhibiting lipolysis and hepatic gluconeogenesis, whereas
increasing glucose uptake in the liver, muscle, and adi-
pose tissue. When insulin resistance develops in adi-
pose tissue, insulin-mediated inhibition of lipolysis is
impaired. The resulting high concentrations of free fatty
acids elevate the synthesis of cholesterol esters and TGs
and subsequently the production of very low density lipo-
proteins rich in TGs [10]. These alterations in lipoprotein
concentrations may represent a hallmark of atherogenic
dyslipidemia caused by insulin resistance in MetS [11].
Many of the most serious complications of T2DM are due
to oxidative stress and can be classified as macrovascular
and microvascular. Macrovascular complications include
myocardial infarction, stroke, peripheral vascular disease,
and diabetic foot. Microvascular complications mainly
involve diabetic neuropathy, nephropathy, retinopathy,
and diabetic bone disease. Diabetic bone disease is con-
sidered to be secondary OP caused by T2DM. Affected
individuals have altered bone mineral density (BMD),
worse bone quality, elevated risk of fragility fractures at
specific sites, and prolonged fracture healing [12—-14].

MetS can be a significant factor consistent with CVDs,
a group of disorders of the heart and blood vessels that
involve especially coronary heart disease, peripheral
artery disease, cerebrovascular disease, aortic atheroscle-
rosis [15]. Many studies and meta-analyses noted a higher
risk of developing CVD-related events in individuals with
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MetS [16—-18]. Guembe et al. [19] found that the risk of
these events varied with combinations of individual MetS
components and elevated with a higher number of com-
ponents. Several studies have demonstrated an associa-
tion between CVDs and OP. According to Park et al. [20],
reduced BMD was associated with a greater risk of ather-
osclerotic CVD-related death, myocardial infarction, and
ischemic stroke. A meta-analysis by Ge et al. [21] showed
that heart failure was consistent with an increased risk of
all fractures, especially hip fractures.

The relationship between MetS and OP has been
known for a long time and is heterogeneous [22]. Gen-
erally, OP is characterized by decreased BMD, disrupted
bone microarchitecture, and higher risk of fragility frac-
tures. Primary OP type 1 is associated with menopause,
while primary OP type 2 occurs after the age of 75 and
is diagnosed in a ratio of 1:2 in men and women [23, 24].
During menopause, osteoprotective effect of estrogen is
weakened that leads to raising expression of pro-inflam-
matory cytokines, promoting osteoclastogenesis. In addi-
tion, estrogen deficiency not only directly influences the
differentiation of precursor cells less toward osteoblasts
and more toward active osteoclasts, but may also affect
their cellular energy. Increased adiposity and inflamma-
tion after menopause may also be related to bone loss
[25-27]. A gender-specific trend between MetS, BMD
and osteoporotic fractures was noted, possibly due to
factors consistent with body composition and hormonal
status of individuals [28—30]. According to Yu et al. [31],
women with MetS had higher rates of fracture risk com-
pared to those without MetS. On the contrary, men with
MetS had a negative association with bone fractures. Liu
et al. [32] found that the MetS was associated with higher
risk of OP in women but not in men. In this context, it
is important to mention that women and men have dif-
ferent bone metabolism in old age. In men with OP, the
rate of bone formation relative to bone resorption did not
increase compared to the rate in women with OP [33].

Associations between individual components
of metabolic syndrome and bone health
In general, MetS can adversely affect multiple organs,
including bones. Each component of MetS clearly influ-
ences bone mass as well as bone metabolism. Several
mechanisms of action can be proposed for the effects of
individual components of MetS on bone health (Fig. 1).
Abdominal obesity is a significant contributing fac-
tor to negative association with BMD, suggesting that fat
(especially visceral fat) is detrimental to bone mass [34].
Moreover, visceral fat is also considered an endocrine
organ that releases adipokines and cytokines, includ-
ing pro-inflammatory cytokines such as tumor necrosis
factor a (TNF-a), interleukin 1B (IL-1p), interleukin 6

Page 3 of 26

(IL-6). They can stimulate osteoclast differentiation and
bone resorption through activation of receptor activator
of NF-«B ligand (RANKL)/receptor activator of NF-xB
(RANK)/osteoprotegerin (OPG) pathway [35, 36]. Obe-
sity is also associated with bone marrow adipogenesis
which depletes mesenchymal stem cells available to gen-
erate osteoblasts [37]. Visceral fat accumulation, altera-
tions in lipid profile and blood pressure are correlated
with low levels of serum osteocalcin (a sensitive marker
of bone formation) in adult population [38]. In addition,
obesity induces the generation of oxidative stress which
increases osteoclastogenesis and reduces osteoblas-
togenesis, resulting in altered bone microarchitecture
and bone loss [39, 40]. Taking into account other factors
with a negative impact on bone metabolism, elevated
leptin concentrations accelerating bone resorption and
decreasing bone formation were recorded, leading to
raised risk of fractures [41]. Moreover, higher leptin pro-
duction and/or lower adiponectin secretion may con-
tribute to macrophage accumulation in adipose tissue
[42]. Macrophages (another source of pro-inflammatory
factors) further contribute to deleterious effects of pro-
inflammatory cytokines on bone metabolism [37]. Thus,
low-grade chronic inflammation is a hallmark of obesity
[43]. In general, obesity is linked to normal or increased
BMD; however, it is associated with elevated risk of fra-
gility fractures at specific sites, which is termed “obesity
paradox” In fact, obese individuals are at increased risk
of fractures of the humerus, ankle, upper leg, elbow, ver-
tebrae, and rib. On the contrary, obesity is a protective
factor against hip, pelvic, and wrist fractures in elderly
patients. Therefore, the relationship between obesity and
fracture risk is more complex than previously thought.
Implementation of better diagnostic tools to predict body
fat percentage and assess comprehensive bone health
including fragility fracture risk in obese subjects (e.g.
waist circumference: WC, waist to hip ratio: WHR, high-
resolution peripheral quantitative computed tomog-
raphy: HR-pQCT, trabecular bone score: TBS; lumbar
spine BMD/BMI ratio) can be considered an important
clinical and future priority that could improve fracture
prevention in this group of patients [44—49].
Dyslipidemia manifests itself by low HDL choles-
terol and high TG levels. Disorders of lipid metabolism
are consistent with increased levels of oxidized lipids.
Lipid oxidation (as an index of oxidative stress corre-
lated with low HDL levels) stimulates adipocyte differ-
entiation while suppressing osteoblast differentiation
through upregulation of peroxisome proliferator-acti-
vated receptor y (PPARy). PPARy is a member of the
nuclear hormone receptor subfamily of transcription
factors expressed in adipocytes to improve and medi-
ate adipocyte differentiation [50]. Activated PPARy
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Fig. 1 Individual components of MetS including visceral obesity, low serum high-density lipoprotein (HDL) cholesterol, hyperglycemia, high serum
triglycerides (TGs), and hypertension affect bone health through different mechanisms. Visceral fat releases adipokines and pro-inflammatory
cytokines, including tumor necrosis factor a (TNF-a), interleukin 6 (IL-6), interleukin 1( (IL-1B3), which stimulate osteoclast differentiation

through activation of receptor activator of NF-kB ligand (RANKL)/receptor activator of NF-kB (RANK)/osteoprotegerin (OPG) pathway. Obesity

also depletes mesenchymal stem cells (MSC) for adipocyte formation at the expense of osteoblasts. Obese individuals exert elevated leptin

and decreased adiponectin levels, and higher oxidative stress, which ultimately suppress osteoblastogenesis and stimulate osteoclastogenesis. Low
HDL is correlated with increased levels of oxidative stress and oxidized lipids that stimulate adipocyte differentiation while suppressing osteoblast
differentiation through upregulation of peroxisome proliferator-activated receptor y (PPARy). In addition, low HDL stimulates osteogenic activity

in vascular cells. Elevated TGs, usually present with low HDL cholesterol, can induce endothelial cell dysfunction and potentiate atherogenic
changes. Hyperglycemia causes enhanced inflammatory response, accumulation of advanced glycation end products (AGEs), and disturbances

in calcium (Ca) metabolism, favoring bone resorption over bone formation. Arterial hypertension affects bone mainly through increased excretion
of Ca in the urine, resulting in activation of parathyroid hormone (PTH), thereby raising bone resorption. Finally, multiple mechanisms involving
visceral fat accumulation, alterations in lipid profile and blood pressure are correlated with lower serum osteocalcin levels, suggesting reduced

bone formation (Created with BioRender.com)

has been reported to enhance adipocyte differentiation
and inhibit osteoblast formation in various mesenchy-
mal cell lines and bone marrow [51]. In general, HDL
inhibits osteogenic activity in vascular cells by induc-
ing pro-inflammatory cytokines. Oxidation of HDL
makes it pro-osteogenic, suggesting that HDL regulates
osteoblast differentiation [52]. On the contrary, oxidized
low-density lipoprotein (LDL) cholesterol particles and
excess free fatty acids in dyslipidemia can uncouple bone
remodeling, favoring bone resorption [53]. Overall, ele-
vated TG levels can be negatively correlated with femoral

neck BMD in postmenopausal women [54]. In addition,
high TGs were also negatively correlated with BMD at all
sites in adolescent girls [55].

Arterial hypertension is known to be an important fac-
tor affecting bone loss. As a result of hypertension, there
is an increased excretion of calcium (Ca) in the urine
due to competition between sodium (Na) and Ca ions in
the renal proximal tubule [56]. Urinary excretion of Ca
reduces the level of circulating Ca, resulting in activation
of parathyroid hormone (PTH), thereby increasing bone
resorption [57, 58]. Therefore, it can be hypothesized that
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maintenance of Ca levels provides protective effects on
bone strength and reduces the incidence of bone frac-
tures in hypertension by limiting urinary Ca loss [59].
Sympathetic tone, vascular perturbations, cytokines,
renin/angiotensin/aldosterone system, and vitamin D
were described as further aspects connecting OP, hyper-
tension, and related CVDs [60]. According to Li et al.
[61], the risk of fragility fractures was higher in subjects
with hypertension compared to healthy individuals. A
cross-sectional study by Li et al. [62] revealed a posi-
tive association between hypertension and lumbar spine
BMD in both postmenopausal women and older men. In
general, thiazide diuretics (thiazides) are well-tolerated
and effective antihypertensive drugs that are considered
candidates for the prevention of postmenopausal bone
loss due to their ability to reduce urinary Ca excretion
[63]. Furthermore, they are known to have a positive
effect on BMD [64—66] and their use is associated with
a reduced risk of OP-related fractures [67—-69]. A meta-
analysis of Cheng et al. [70] showed that patients treated
with thiazides had significantly higher serum Ca levels,
lower urinary Ca levels, and unchanged BMD. The recent
findings by van der Burgh et al. [71] suggest their posi-
tive impacts on lumbar spine BMD but not on lumbar
spine TBS. Therefore, reduced fracture risk after thiazide
therapy can be explained by elevated bone mass rather
than improved bone microarchitecture. Other antihy-
pertensives such as angiotensin receptor blockers (ARBs)
and selective -adrenergic receptor blockers might also
improve BMD. A recent meta-analysis by Langerhuizen
et al. [72] revealed that, in addition to thiazide diuretics,
ARBs and B-blockers can reduce the risk of hip fracture.
Additionally, nonselective B-adrenergic receptor block-
ers and dihydropyridine Ca channel blockers were found
to have no significant relationship with BMD or bone
strength. Since negative results have been reported on
the impact of loop diuretics and a-adrenergic receptor
blockers on OP indicators, they are not recommended
for patients who are at increased risk of OP or already
have OP [57, 73-75].

Hyperglycemia can cause bone loss through increased
inflammatory response and disturbances in Ca metabo-
lism. Impaired insulin secretion and/or insulin action due
to T2DM elevates levels of TNF-a and IL-6 [59]. Accumu-
lation of advanced glycation end products (AGEs) induces
apoptosis of mesenchymal stem cells and leads to higher
bone resorption, resulting in poorer bone quality and
strength [76]. The impact of hyperglycemia on bone metab-
olism is also dependent on insulin and insulin-like growth
factor 1 (IGF-1) deficiency. As a humoral factor, IGF-1 acts
as a vital anabolic signal to increase bone formation. There-
fore, IGF-1 deficiency is associated with low bone size,
decreased BMD, growth retardation, and development of
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OP [77]. Glycosuria is an indirect consequence of hyper-
glycemia. According to Schneider et al. [78], glycosuria
caused defective reabsorption of both Ca and glucose in
the renal proximal tubule, leading to hypercalciuria. Cor-
respondingly, circulating Ca levels were reduced, which
was reflected by impaired bone quality and bone loss [79].
It is widely recognized that sodium-glucose cotransporter
2 (SGLT?2) inhibitors can also induce glycosuria [80]. How-
ever, due to its unique mechanism of glucose regulation
through renal proximal tubules, SGLT2 inhibitors may also
affect Ca and phosphate (P) homeostasis, potentially lead-
ing to reduced BMD. Furthermore, they demonstrated
an indirect increase in bone turnover through weight loss
[81]. Current data suggest that the effect of SGLT?2 inhibi-
tors on bone turnover and BMD varies between drugs.
Canagliflozin and ertugliflozin might elevate bone resorp-
tion [82], while dapagliflozin and empagliflozin might not
have any effect on bone turnover [83—85]. Bilezikian et al.
[86] revealed significant reduction in total hip BMD and an
increase in markers of bone formation and bone resorption
in T2DM subjects treated with canagliflozin. Conversely,
dapagliflozin had no effect on BMD or bone formation and
bone resorption markers in individuals with T2DM [83].
The impact of SGLT?2 inhibitors on fracture risk remains
controversial [81, 87, 88].

Bone cells are known to be able to secrete various bio-
active substances that can regulate bone remodeling. In
addition, they can be released into systemic circulation and
affect distant organs such as the pancreas, testes, brain,
kidneys and regulate global energy homeostasis [89, 90].
In this review, bone-derived cytokines, namely fibroblast
growth factor 23 (FGF23), lipocalin 2 (LCN2), and scle-
rostin (SCL) are further considered because they are inti-
mately involved in bone metabolism, metabolic functions,
and may also act as biomarkers predicting the prevalence of
multiple disorders, as well as the progression of their com-
plications. The present findings indicate clinical relevance
of aforementioned cytokines as prognostic tumor biomark-
ers and potential therapeutic targets in bone metastases
[91]. This review further focuses on aspects linking FGF23,
LCN2, SCL to individual components of MetS, as well as
to the most frequently occurring MetS-related disorders
(T2DM, CVDs, OP) that affect bone quality. Such relation-
ships appear only sporadically in the scientific literature.

Links among fibroblast growth factor 23,
metabolic syndrome, and the most common
metabolic syndrome-related diseases affecting
bone quality

Fibroblast growth factor 23 (FGF23) is a bone-derived
protein belonging to a subfamily of endocrine FGFs
[92]. The FGF23 gene is located on human chromo-
some 12p13, containing 3 coding exons [93]. Product



Martiniakova et al. Diabetology & Metabolic Syndrome (2024) 16:217

of this gene is a 32-kDa glycoprotein, which consists of
251 amino acid residues including a signal sequence (24
amino acids), an N-terminal hydrophobic region (155
amino acids), and a specific carboxy-terminal sequence
(72 amino acids; Fig. 2) [94]. FGF23 is predominantly
secreted by osteocytes and osteoblasts, and is able to tar-
get cells in distant organs (e.g. kidneys, heart) [92, 95].
Binding of FGF23 to target cells needs a receptor com-
plex containing of FGF tyrosine kinase receptors (FGFRs
subtypes 1c¢,3c, or 4c) and the transmembrane protein
a-Klotho, a co-receptor for FGF23 [96]. The secretion
of FGF23 is stimulated by a plethora of humoral fac-
tors, such as vitamin D, Ca, P, PTH, and pro-inflamma-
tory cytokines [94]. FGF23 plays a key role as an auto-/
paracrine regulator of energy metabolism and mineral
homeostasis [97]. According to Martin et al. [98], FGF23
acts as a counterregulatory phosphaturic hormone to
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maintain P homeostasis in response to 1,25-dihydroxy-
vitamin D (1,25(0OH)2D), which can promote FGF23
expression [99]. FGF23 can inhibit the expression of renal
la- hydroxylase (CYP27B1), that converts 25-hydroxyvi-
tamin D into 1,25-dihydroxyvitamin D3 (the active form),
subsequently interfering with Ca homeostasis [100].
Mirza et al. [101] pointed out the relationships between
FGF23 and MetS incidence as well as between FGF23
and individual components of MetS. According to Hu
et al. [102], FGF23 levels were significantly higher in
overweight/obese individuals. Moreover, FGF23 levels
were positively associated with body mass index (BMI),
WC, and visceral fat area (VFA) in both postmenopau-
sal women and men. Positive correlations between VFA
and FGF23, WC, and FGF23 were also identified by Xu
et al. [103] and Mirza et al. [101]. Hanks et al. [104] found
a positive association of FGF23 with BMI and WC in
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Fig. 2 Human FGF23 structure prediction according to AlphaFold Protein Structure Database (RRID: SCR_023662; [264, 265)). 3D visualization

of FGF23 structure prediction with colored per-residue confidence metric (pLDDT) is shown. The structures of the signal sequence and N-terminal
peptide demonstrate the highest confidence score. Positions of glycosylation, phosphorylation, and disulfide bond on FGF23 molecule are
illustrated according to the database UniProt (RRID: SCR_002380). Binding regions for a-Klotho are labeled according to Suzuki et al. [266]
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subjects with normal renal function. A study of Streicher
et al. [105] suggests that a vitamin D receptor-dependent
mechanism underlies FGF23 regulation of fat accumu-
lation and distribution. In addition, a feedback effect of
adipose tissue on FGF23 levels may also be present, as
animal studies have shown stimulatory effects of adi-
pokines (such as leptin) on FGF23 expression in bone
[106].

Higher TGs were also consistent with increased FGF23
levels independently of age, BMI, hypertension, or dia-
betic state [101, 107]. On the other hand, several stud-
ies did not find any correlation between FGF23 and TGs
[108, 109]. According to a cross-sectional study of Mont-
ford et al. [110], higher FGF23 levels were related to dys-
lipidemia (including lower HDL cholesterol) in patients
with chronic hemodialysis. Similarly, raised FGF23 levels
were associated with 7—22% lower HDL cholesterol [101].
However, cohort studies by Ebert et al. [108] and Yama-
moto et al. [109] demonstrated no correlation between
FGF23 and HDL cholesterol.

Elevated levels of FGF23 may also be linked to hyper-
tension. According to Andrukhova et al. [111], FGF23
can serve as a key regulator of renal Na reabsorption
and plasma volume, and this fact can contribute to the
association between FGF23 and cardiovascular risk in
patients with chronic kidney disease (CKD). FGF23
may also participate in the pathogenesis of hypertension
through an activation of the renin-angiotensin-aldoster-
one system [112]. Additionally, Drew et al. [113] have
shown that increased FGF23 levels were related to preva-
lent and incident hypertension, as well as higher systolic
blood pressure in older adults. On the other hand, Ebert
et al. [108] did not find a correlation between FGF23 and
blood pressure. Table 1 shows the relationships between
bone-derived cytokines, including FGF23, and individual
components of MetS.

Most clinical researches revealed elevated levels of
circulating FGF23 in patients with T2DM and CKD
[114, 115]. However, a study by Tunon et al. [116] did
not confirm this association. Levels of FGF23 were
found to be higher also in prediabetic state and in
normal blood glucose patients with a family history
of first-degree diabetes [117, 118]. Moreover, T2DM
was closely associated with an increase in FGF23 from
midlife to late life [119]. According to Hanks et al. [104]
and Garland et al. [120], FGF23 was positively related
to insulin resistance. Conversely, Wojcik et al. [121]
and Holecki et al. [122] reported an inverse correlation
or no association. A study of Bar et al. [123] suggests
that insulin suppresses the production of FGF23 and
patients with hyperinsulinemia should have low levels
of FGF23. However, a chronic inflammatory state, often
present in T2DM patients, may overrule suppressive
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effect of hyperinsulinemia, resulting in higher FGF23
levels [124]. There are no data supporting a direct
role of FGF23 in glucose and lipid metabolism [125],
although FGF23 may act indirectly by regulating the
stability of P levels [126]. However, increased FGF23
was strongly associated with a higher risk of cardiovas-
cular morbidity and mortality in T2DM patients, and a
close relationship was found between FGF23 and dia-
betic complications [115, 125, 127].

CVD is the leading cause of death in patients with CKD
[128]. As elevated FGF23 levels are commonly found in
CKD patients, FGF23 has also gained a significant inter-
est due to its strong association with CVDs. Increased
FGF23 concentrations were associated with prevalent
CVDs in older women stratified by CKD, but also in all
subjects and non-CKD patients [129]. Higher FGF23 lev-
els were related to total body atherosclerosis as well as
vascular dysfunction [101, 130]. In patients with coronary
artery disease and heart failure with reduced ejection
fraction, FGF23 was consistent with CVD-related events
[131, 132]. In addition, patients stabilized after acute cor-
onary syndrome with elevated FGF23 had an increased
risk of death, hospitalization due to heart failure, myo-
cardial infarction, or stroke [133]. Raising levels of FGF23
were also related to the severity of coronary artery calci-
fication; however, they were not associated with carotid
artery atherosclerosis in hemodialysis patients [134, 135].
Considering stroke, higher FGF23 was found to be an
independent risk factor for cardioembolic stroke but not
other stroke subtypes in adults [136]. Several studies sug-
gest an association between higher FGF23 level and left
ventricular hypertrophy (LVH) or left ventricular mass
(LVM) in patients with CKD and hemodialysis, but also in
general population [137-139]. It is known that LVH pre-
dicts CVD-related events. However, CKD patients had
excessive cardiomyocyte production of FGF23 leading to
upregulation of FGFR4 and activation of the calcineurin-
NFAT pathway [140]. A recent study by Watanabe et al.
[141] showed that not serum but cardiac FGF23 levels
were altered also in early stage of LVH without CKD, and
the renin-angiotensin-aldosterone system may also play
an important role. Moreover, several studies suggest that
high FGF23 may follow, rather than induce, myocardial
disease under certain conditions, and some beneficial
cardiovascular effects of FGF23 in primary cardiomyo-
cytes have been described. Therefore, further research on
FGF23 in relation to CVDs is needed [142].

Studies examining the association between FGF23 and
BMD reported inconsistent findings. In CKD patients
on dialysis, FGF23 was negatively correlated with lum-
bar spine BMD [143-145] and/or both lumbar spine and
femoral neck BMD [146, 147]. On the other hand, Torres
et al. [148], Desjardins et al. [149], Zheng et al. [150] did
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Table 1 Relationships between bone-derived cytokines and individual components of MetS
Cytokine MetS component Subjects (N) Relationships between the cytokine and the Pvalue Ref.
MetS component
FGF23 Obesity Normoglycemic men (597) with normal renal 0.71% increase in FGF23 levels at 10% increase 0.001  [102]
function in VFA
Postmenopausal normoglycemic women (591) 0.94% increase in FGF23 levels at 10% increase 0.001  [102]
with normal renal function in VFA
Adult men and women (1040) FGF 23 positively associated with WC (3=3.02) 0.004 [104]
Elderly men and women (946) 2% increase in WC at 10% increase in FGF23 level <0.01 [101]
Middle aged men and women (1179) FGF23 positively correlated with VFA 0.035, [103]
(B=0.089);increase in FGF23 level (1 SD) associ- ~ <0.001
ated with VFA (OR 1.326)
Triglycerides Middle aged men (1261) Differences in FGF23 levels from 1.6 to 7.2 RU/mL  <0.01 [107]
depending on triglycerides quartile
Elderly men (964) 3% increase in triglycerides at 10% increase <0.001 [101]
in FGF23 level
Middle aged men and women (1046) No correlation between FGF23 and triglycerides 0962 [108]
Elderly men and women (73) No correlation between FGF23 and triglycerides 0.29 [109]
HDL cholesterol Elderly men and women (73) No correlation between FGF23 and HDL 035 [109]
Middle aged men and women (1046) No correlation between FGF23 and HDL 0.054 [108]
Hemodialysis patients (654) Higher FGF23 levels associated with lower HDL 0.03 [110]
B=-214
Hypertension Middle aged men and women (1046) No correlation between FGF23 and blood pres- 0943  [108]
sure
Older men and women (2496) 2-fold higher FGF23 associated with prevalent <0.05 [113]
baseline hypertension (OR 1.46) and incident
hypertension (HR 1.18)
Middle aged men (1261) Difference in FGF23 levels of 6.0 RU/ml <0.01 [107]
in the presence of hypertension
Elderly men and women (73) No association between FGF23 and hyperten- 0.087 [109]
sion
LCN2 Obesity Older women (705) Women in the highest LCN2 quartile had higher  <0.05 771
BMI (28.9+4.8) compared to women in the low-
est quartile (25.8+4.0)
Adult women and men (100 lean, 80 overweight, LCN2 was positively correlated with BMI <0001 [180]
49 obese) (r=0.394) and WC (r=0.404)
Postmenopausal women with prediabetes (88) Strong positive correlation between LCN2 0.004, [181]
and BMI (r=0.30) and WC (r=0.29) 0.006
Men (169) and postmenopausal women (92) LCN2 was positively correlated with BMI 0.011, [178]
who underwent coronary angiography (r=0.195) and WC (r=0.164) 0.033
Healthy women and men (53) LCN2 was positively correlated with BMI 0.02 [179]
(r=0402)
Obese women (188) LCN2 was positively correlated with BMI 0.005, [182]
(r=0.205) but not with WC 0.49
Normal (101) and overweight/obese (136) T2DM  LCN2 was positively correlated with BMI <0.001 [183]
patients (r=0.546)
Patients with coronary heart disease (49) No correlation between LCN2 and WC (r=0.18) 0.161  [185]
and controls (42)
Healthy men (100) No correlations between LCN2 and BMI and WC 0.88, [184]
0.98
Triglycerides Older women (705) Women in the highest LCN2 quartile had <0.05 [177]
higher triglycerides (148.6+57.1 mg/dL)
compared to women in the lowest quartile
(120.6+52.2 mg/dL)
Men (169) and postmenopausal women (92) LCN2 was positively correlated with triglycerides 0.005 [178]

who underwent coronary angiography

(r=0.215)
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Table 1 (continued)
Cytokine MetS component Subjects (N) Relationships between the cytokine and the Pvalue Ref.
MetS component
Healthy women and men (53) LCN2 was positively correlated with triglycerides 0.01 [179]
(r=04811)
Obese women (188) LCN2 was positively correlated with triglycerides 0.003 [182]
(r=0.214)
Normal (101) and overweight/obese (136) T2DM  LCN2 was positively correlated with triglycerides  <0.001  [183]
patients (r=0.325)
Patients with coronary heart disease (49) No correlation between LCN2 and triglycerides 0578  [185]
and controls (42)
Healthy men (100) No correlation between LCN2 and triglycerides 0.21 [184]
HDL cholesterol Older women (705) Women in the highest LCN2 quartile had lower <0.05 771
HDL cholesterol (54.2+14.7 mg/dL) compared
to women in the lowest quartile (60.4+15.7 mg/
db)
Adult women and men (100 lean, 80 overweight, LCN2 was negatively correlated with HDL cho- 0.002 [180]
49 obese) lesterol (r=-10.2)
Healthy women and men (53) LCN2 was negatively correlated with HDL cho- 0.03 [179]
lesterol (r= — 0.4034)
Obese women (188) LCN2 was negatively correlated with HDL cho- <0.001 [182]
lesterol (r=—0.299)
Normal (101) and overweight/obese (136) T2DM  LCN2 was negatively correlated with HDL cho- <0.001 [183]
patients lesterol (r=—-0.237)
Patients with coronary heart disease (49) LCN2 was negatively correlated with HDL cho- 0016  [185]
and controls (42) lesterol (r=—10.3)
Healthy men (100) LCN2 was negatively correlated with HDL cho- 0004 [184]
lesterol (r=—0.29)
Hypertension Older women (705) No differences in blood pressure between LCN2 NS [177]
quartiles
Adult women and men (100 lean, 80 overweight, LCN2 was positively correlated with systolic 0.017, [180]
49 obese) (r=0.154) but not with diastolic blood pressure 0.637
Obese women (188) LCN2 was positively correlated with systolic <0.001, [182]
(r=0.325) but not with diastolic blood pressure 013
Normal (101) and overweight/obese (136) T2DM  LCN2 was positively correlated with systolic 0.003, [183]
patients (r=0.189) and diastolic (r=0.201) blood pressure 0.002
Patients with coronary heart disease (49) No correlations between LCN2 and systolic 0.057, [185]
and controls (42) and diastolic blood pressures 0214
Patients with essential hypertension (62) LCN2 levels were higher in patients with essen- <0.001 [187]
and controls (16) tial hypertension than in controls (85.0+37.6 ng/
mL vs.43.8+13.1 ng/mL)
Healthy men (100) No correlations between LCN2 and systolic 068, [184]
and diastolic blood pressures 0.92
SCL Obesity Older men (694) Higher SCL was associated with severity of MetS  <0.05 [220]
(OR 1.24 per SD increase)
Older men (115) and postmenopausal women SCL was positively associated with vertebral <001, [221]
(134) bone marrow fat in older men (52.2% in the low- NS
est tertile of serum SCL, 56.3% in the highest
tertile) but not women
Postmenopausal women (352) SCL was positively correlated with abdominal fat 0.018 [222]
(r=0.18)
Children and adolescents (1325) SCL level in children with obesity increased <0.001 [223]
with BMI standard deviation score (r=0.035)
Adolescent females with increased physical SCL was positively correlated with body fat <0.05 [226]
activity (73) (r=0.38)
Morbidly obese patients (94) SCL was positively associated with WC (3=0.028) 0.016, [224]
and positively correlated with WC (r=0.238), <0.05

waist-to-hip/waist-to-height ratios (r=0.315;
r=0.234), VFA and subcutaneous fat area
(r=0.220;r=0.228)
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Table 1 (continued)

Page 10 of 26

Cytokine MetS component Subjects (N)

Relationships between the cytokine and the Pvalue Ref.

MetS component

Obese (31), overweight (23) and normal (21)

subjects

Triglycerides Adult patients (2054)

Adult patients (502617)

HDL cholesterol Adult patients (2054)

Hypertension Adult patients (3015)

Adult patients (502617)

SCL levels were lower in obese subjects ver- 0.014  [225]
sus controls (1.02+0.45 vs. 1.58 +0.83 ng/mL)

Positive association between SCL and triglycer- 0.038 [231]
ides (3=0.05)

Positive association between BMD-increasing 0.02 [232]
SOST variants (rs7209826 and rs188810925)

and triglycerides (9.58 mg/dL higher)

SCL was inversely related to HDL cholesterol (3 <0.001 [231]
=-0.08)

Positive association between SCL and hyperten- 0.03 [231]
sion (OR 1.19)

Positive association between BMD-increasing <0.001 [232]

SOST variants (rs7209826 and rs188810925)
and hypertension (OR 1.12)

BMD bone mineral density, BMI body mass index, FGF23 fibroblast growth factor 23, HDL high-density lipoprotein, HR hazard ratio, LCN2 lipocalin 2, LDL low-density
lipoprotein, MetS metabolic syndrome, OR odds ratio, r correlation coefficient, SCL sclerostin, SD standard deviation, T2DM type 2 diabetes mellitus, VFA visceral fat

area, WC waist circumference

not find any correlation between FGF23 and BMD. For
non-CKD individuals, FGF23 showed negative relation-
ships with lumbar spine or proximal femur BMD [151]
and/or with femoral neck BMD [152]. However, other
studies did not reveal an association between FGF23
and lumbar spine BMD [153] and/or hip BMD [154].
Accordingly, BMD was not correlated with FGF23 in pre-
menopausal women [155]. In men, elevated FGF23 levels
were associated with higher total hip and lumbar spine
BMD [154] or the correlation between FGF23 and BMD
became nonsignificant after adjustment for established
confounding variables [156]. Furthermore, higher FGF23
levels were consistent with an increased fracture risk in
men [157]. In a study of Isakova et al. [158], no associa-
tions were found between FGF23 levels and bone loss or
fracture risk. Using a Mendelian randomization analysis,
FGF23 was inversely related to femoral neck and heel
BMD, but not to lumbar spine BMD and fracture risk
[159, 160]. In addition to BMD, a relationship between
C-terminal FGF23 and bone microarchitecture has been
reported in patients with OP [161]. FGF23 negatively
correlated with relative bone volume as well as trabecu-
lar number at the distal radius and tibia. No association
between FGF23 and BMD (assessed by DXA) was noted
in this study. The relationships between bone-derived
cytokines, including FGF23, and T2DM, CVDs, OP are
presented in Table 2.

Taking into account the information presented in
this chapter, we can conclude that FGF23 levels are sig-
nificantly increased in patients suffering from obesity,
T2DM, and CVDs. In obese individuals, FGF23 levels
are positively associated with BMI, WC, and VFA. In
patients with T2DM, raising FGF23 is strongly related

to a higher risk of cardiovascular morbidity and mortal-
ity, and a close relationship between FGF23 and diabetic
complications has been determined. Elevated FGF23
levels are strongly linked to total body atherosclerosis,
vascular dysfunction, acute coronary syndrome, cardi-
oembolic stroke, and LVH. Furthermore, increased circu-
lating FGF23 is commonly found in CKD patients, so it
can be used as a predictive factor to evaluate the progres-
sion of this disease. On the contrary, studies investigating
the association between FGF23 and BMD report incon-
sistent findings.

Links among lipocalin 2, metabolic

syndrome, and the most common metabolic
syndrome-related diseases affecting bone quality
Lipocalin 2 (LCN2), a novel adipokine, is also termed
as neutrophil gelatinase-associated lipocalin (NGAL)
[95]. It belongs to lipocalin superfamily, a large group
of transporters of hydrophobic ligands in circulation,
including various steroids, hormones, prostaglandins,
and retinoids [162]. Human LCN2 protein is encoded
by the LCN2 gene located at the chromosome locus
9q34.11 [163]. Product of this gene, a soluble secretory
glycoprotein, circulates as a 25 kDa monomer, a 46 kDa
disulphide-linked homodimer and a 135-kDa disulphide-
linked heterodimer [164]. The LCN2 structure is com-
prised of an eight stranded [B-barrel that represents the
internal ligand-binding site. This site is larger and more
polar than in other lipocalin proteins and allows LCN2 to
form large molecule complexes. At the N-terminal region
of the human LCN2 protein, there is a 20-amino acid sig-
nal peptide, which is detached from the molecule before
release [162] (Fig. 3). In humans, LCN2 is released by
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Fig. 3 Human LCN2 structure prediction according to AlphaFold Protein Structure Database (RRID: SCR_023662; [264, 265]). 3D visualization
of LCN2 structure prediction with colored per-residue confidence metric (pLDDT) is shown. Positions of glycosylation, modified residue,
and disulfide bond on LCN2 molecule are illustrated according to the database UniProt (RRID: SCR_002380)

numerous cells, e.g. osteoblasts [95, 165], immune cells,
adipocytes, hepatocytes, renal cells [162], chondrocytes
[166]; as well as by bone marrow, thymus, small intestine
[162], spleen, muscles [167].

LCN2 plays a key role in various biological processes,
such as iron (Fe) and fatty acids delivery, metabolic
homeostasis, apoptosis of hematopoietic cells [166], cell
proliferation [168], organogenesis [169], and modulation
of inflammation [170]. Interestingly, LCN2 expression is
upregulated in numerous diseases, e.g. various cancers
[171-173], cardiomyopathies [174], CKD [175], liver dis-
ease [176].

It was reported that higher circulating levels of LCN2
were associated with an increased risk of MetS in older
women. Women in the highest LCN2 quartile had
approximately three times greater risk of MetS compared
to those in the lowest quartile [177]. Elevated levels of
LCN2 were observed in men versus women [178, 179].
In addition, LCN2 levels were higher in men with MetS
compared to non-MetS subjects and showed a posi-
tive correlation with the number of MetS components
[178]. Most studies demonstrated a close relationship
between LCN2 levels and obesity. A positive correlation
between circulating LCN2, BMI, and WC was found in
lean as well as overweight/obese individuals [180], pre-
diabetic women [181], and men [178]. LCN2 was corre-
lated with BMI in healthy individuals [179], obese women
[182], and T2DM patients [183]. On the other hand, no
significant correlation between LCN2 levels and BMI
or WC was reported in healthy men [184] and patients
with coronary heart disease [185]. According to Mosialou
et al. [181, 186], LCN2 suppresses appetite in a melano-
cortin 4 receptor-dependent manner. LCN2 upregulation
may serve as a protective mechanism to combat obesity-
induced glucose intolerance by reducing food intake and

promoting adaptive B-cell proliferation. The regulatory
importance of LCN2 may be associated with the stimula-
tion of PPARY, which mediates adipogenesis and lipogen-
esis in liver and adipose tissues.

Positive correlations between TGs and LCN2 levels
were reported in obese women, healthy women and men,
T2DM patients and those underwent coronary angiogra-
phy [177-180, 182, 183]. However, in healthy men [184]
and patients with coronary heart disease [185], LCN2
did not correlate with TGs. On the other hand, circu-
lating LCN2 was negatively correlated with HDL cho-
lesterol [177, 179, 180, 182—185]. In studies by Park and
Choi [187] and Zhang et al. [183], LCN2 concentrations
positively correlated with systolic and diastolic blood
pressures. Some researches [180, 182] revealed a posi-
tive correlation between LCN2 and systolic blood pres-
sure but not diastolic blood pressure. Conversely, several
studies [177, 184, 185] found no correlation between
LCN2 levels and blood pressure.

In most clinical studies [181, 182, 188-191], signifi-
cantly higher LCN2 levels were determined in T2DM
patients, as LCN2 expression is increased after the onset
of hyperglycemia and is stimulated by insulin in the glu-
cose- and NF«kB-dependent manner [192]. On the con-
trary, findings by De la Chesnaye et al. [179] showed
decreased LCN2 levels in patients suffering from T2DM.
Al-Absi et al. [193] identified no significant differences in
LCN2 between T2DM men and their controls.

Regarding CVDs, LCN2 is highly expressed in cardio-
myocytes and atherosclerotic plaques [194, 195]. There-
fore, elevated LCN2 levels were recorded in patients
with coronary heart disease [185], acute heart failure and
acute coronary syndromes [196, 197]. According to Ni
et al. [178], males with coronary artery disease had higher
LCN2 levels versus controls, whereas females did not.
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Similarly, increased levels of LCN2 were found in men
with CVD-related events but not in women [198]. These
sex-dependent differences can be explained by the inter-
relationship between LCN2 levels, estrogens and their
effects, as LCN2 influences estradiol biosynthesis and
estrogen receptor signaling. Increased circulating LCN2
levels were also determined in T2DM patients with sub-
clinical atherosclerosis and positive correlations were
observed also between LCN2 and carotid and femoral
intima-media thickness [199]. In addition, higher levels
of LCN2 were recorded in T2DM patients with cardiac
hypertrophy [200]. Some clinical observations and fol-
low-up studies suggest that LCN2 may have an impor-
tant prognostic value in survival assessment. Circulating
LCN2 predicted cardiovascular mortality in patients after
cerebrovascular ischemia [201], those with chronic heart
failure [202], as well as in older adults [203, 204].

LCN2 is expressed by osteoblasts at ten-fold higher
levels than in white adipose tissue or other organs [186].
Additionally, LCN2 has been identified as essential for
normal osteogenic differentiation of mesenchymal stem
cells, but its overexpression and oversecretion inhibited
osteogenic differentiation of these cells [205]. Clinical
studies found no association between LCN2 levels and
BMD in postmenopausal women with OP [206-208].
No significant differences in LCN2 concentrations were
noted between patients with and without fracture in
postmenopausal as well as premenopausal women [209].
On the other hand, a prospective study in a cohort of
elderly women demonstrated that high levels of circulat-
ing LCN2 predicted future risk of OP-related fractures
[210]. These findings are consistent with observations in
transgenic mice overexpressing LCN2, where changes
in bone microarchitecture were linked to bone fragility
[211]. Moreover, according to Rucci et al. [212], LCN2
could be involved in the onset of OP in the presence of
mechanical constraints such as inactivity, bed rest, mus-
cle damage or aging. The mechanisms of LCN2 action
could include a decrease in osteoblast differentiation and
an increase in osteoblast-induced osteoclastogenesis. It
could also affect osteoblasts through the modulation of
energy metabolism [213].

Summarizing the aforementioned information, it can
be stated that higher levels of LCN2 are positively cor-
related with the number of MetS components. In addi-
tion, LCN2 levels are higher in individuals with obesity,
T2DM, and CVDs. In obese subjects, a positive correla-
tion was found between circulating LCN2, BMI, WC, and
TGs. Conversely, circulating LCN2 was negatively corre-
lated with HDL cholesterol. Elevated levels of LCN2 have
been found in T2DM patients, T2DM subjects with sub-
clinical atherosclerosis, patients with coronary heart dis-
ease, acute heart failure, and acute coronary syndromes.
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However, most clinical studies showed no association
between LCN2 levels and BMD in individuals with OP.
Circulating LCN2 can also be used as a promising pre-
dictor for cardiovascular mortality in patients after cer-
ebrovascular ischemia, those with chronic heart failure,
as well as in older adults.

Links among sclerostin, metabolic

syndrome, and the most common metabolic
syndrome-related diseases affecting bone quality
Sclerostin (SCL) is secreted by osteocytes and plays an
important role in the development and maintenance of
bone tissue [214]. It is primarily synthesized as a 24 kDa
and 213 amino acid-long glycoprotein with a signal pep-
tide comprising the first 23 amino acids. The circulating
form of SCL is a 190-residue glycoprotein with a molecu-
lar weight of 22 kDa, which is formed by cleavage of the
signal peptide (Fig. 4). SCL is encoded by the SOST gene,
which is located on the chromosomal region 17q12-21
in humans [215]. Human SOST mRNA is expressed in
the heart, aorta, liver, and kidneys [216]. SCL as a potent
inhibitor of osteoblastogenesis, binds to the Wnt co-
receptors of the low-density lipoprotein receptor-related
protein (LRP) family, LRP5 and LRP6, antagonizing
downstream signaling. In addition, SCL via inhibition of
Wnt signaling pathway has a potential to stimulate osteo-
clast differentiation and enhance bone resorption [217].
It has been reported that this bone-derived cytokine may
have a potential role in extra-skeletal tissue as well [214].
Recent studies [218, 219] have highlighted an important
role of SCL in myogenesis, where SCL inhibits myo-
blast differentiation, thereby modulating bone-muscle
interaction.
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Fig. 4 Human SCL structure prediction according to AlphaFold
Protein Structure Database (RRID: SCR_023662; [264, 265]). 3D
visualization of SCL structure prediction with colored per-residue
confidence metric (pLDDT) is shown. Positions of glycosylation
and disulfide bonds on the SCL molecule are illustrated according
to the database UniProt (RRID: SCR_002380)
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In general, serum SCL was higher in older men with
MetS and its level increased significantly across the
elevating number of MetS components. A positive cor-
relation between SCL level and WC was recorded.
However, this correlation lost significance after cor-
rection for whole-body bone mineral content (BMC)
[220]. Accumulating evidence has revealed an associa-
tion between circulating SCL and obesity. According to
Ma et al. [221], SCL levels were related to higher total fat
mass (FM) and vertebral bone marrow fat in older men
but not in women. On the contrary, Urano et al. [222]
stated that SCL levels were positively associated with
FM and strongly correlated with LDL cholesterol and
homocysteine in postmenopausal women. In addition,
high SCL levels were determined in obese patients and
they decreased significantly after laparoscopic sleeve gas-
trectomy [223, 224]. On the contrary, Azzam et al. [225]
revealed lower SCL levels in obese individuals compared
to overweight and control groups; however, these groups
included low numbers of individuals. Furthermore, FM
was one of the most important predictors of SCL level
in adolescent females with increased physical activity
[226]. Moreover, circulating SCL declined in response to
moderate-intensity exercise training in older adults [227].
According to Kurgan et al. [228], subcutaneous adipose
tissue SCL was reduced and Wnt signaling was enhanced
after four weeks of interval sprint training in young obese
men, suggesting a role of SCL in regulating adipose tissue
in response to exercise. Finally, mutations in LRP5, par-
ticularly those affecting the interaction of SCL with this
Wnt coreceptor [229], were associated with altered fat
distribution [230]. Frysz et al. [231] found that SCL was
positively associated with TGs and hypertension. Con-
versely, higher SCL was linked to lower HDL cholesterol.
Bovijn et al. [232] examined BMD-increasing alleles in
the SOST locus (as a proxy for SCL inhibition) and deter-
mined their association with higher risk of hypertension,
systolic blood pressure, and TGs.

Considering T2DM, most studies reported higher SCL
levels in T2DM patients and showed their positive cor-
relations with BMI and age in both diabetic and healthy
subjects [233-238]. Interestingly, if gender was taken
into account, men with T2DM had increased SCL levels
than women with T2DM [235, 236, 239], and this fact
was associated with elevated risk of vertebral fractures
[239]. On the other hand, findings from a cohort study by
Yu et al. [240] showed that SCL levels were not strongly
linked to T2DM risk, despite higher SCL levels in T2DM
patients. Consistent with several studies, SCL levels were
higher in individuals with impaired glucose regulation
than in subjects with normal glucose tolerance. Further-
more, SCL levels positively correlated with fasting blood
glucose and insulin resistance [241-243].
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Recent studies have shown the importance of SCL in
CVD-related events. Higher SCL levels were consistent
with prevalence and extent of coronary artery calcifica-
tion in older men [244]. According to Frysz et al. [231],
SCL levels appear to be positively associated with coro-
nary artery disease severity and mortality, which can be
partially explained by the relationship between higher
SCL levels and major CVD risk factors. Inhibition of SCL
may be a therapeutic approach to reduce fracture risk in
patients with OP. However, in this context, SCL lowering
can increase the risk of myocardial infarction, the extent
of coronary artery calcification, hypertension, and T2DM
[245, 246]. Therefore, the use of romosozumab, a human-
ized anti-SCL monoclonal antibody, is not recommended
for women at high risk of CVDs, particularly those who
have had recent heart attacks or strokes [247]. Similarly,
Bovijn et al. [232] reported an increased risk of CVD-
related events after SCL inhibition. In their study, the
SOST genetic variants were associated with a lower risk
of fractures and OP, but with a higher risk of myocardial
infarction and/or coronary revascularization, central adi-
posity, elevated systolic blood pressure, and T2DM.

In the majority of studies, lower SCL levels were deter-
mined in patients with OP [248-254]. Only Suarjana
et al. [255] identified higher SCL levels in postmenopau-
sal women with OP. The positive association between
SCL and BMD suggests that serum SCL may reflect the
number of SCL-secreting osteocytes, being reduced in
patients with OP [256]. Moreover, higher mechanical
strains in bones with lower BMD are also associated with
decreased SCL levels [257]. Regarding SCL levels and the
occurrence of OP fractures, Lim et al. [257] and Gorter
et al. [258] found that patients with OP fractures had
lower SCL levels than those without or non-OP fractures.
Wanby et al. [259] did not find any difference in SCL level
between patients with hip fracture and control group;
however, much older individuals (over 75 years) were
included in this study. On the other hand, considering the
risk for OP-related fractures, two large prospective stud-
ies [260, 261] revealed that high levels of SCL may serve
as a strong and independent risk factor for OP-related
fractures in postmenopausal women. In this case, asso-
ciations between SCL levels and fracture risk were inde-
pendent of BMD and/or hip fracture risk was enhanced
when high SCL levels were combined with lower BMD.
However, these findings were strongly supported by the
application of the SCL inhibitor romosozumab, which
demonstrated that lowering SCL resulted in a reduction
in fracture risk (by 73% and 36% for vertebral and clini-
cal fractures, respectively) and an increase in BMD (by
13.3% in lumbar spine BMD) after one year of the ther-
apy [262, 263]. The exact mechanism linking SCL levels
and OP-related fracture risk is not clear, but it appears
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to be related to SCL-induced inhibition of Wnt signaling
pathway and subsequent decreased bone formation and
increased bone resorption [260].

The information presented in this chapter shows that
higher levels of SCL are reported in individuals with
obesity, T2DM, and CVDs. In obese subjects, SCL lev-
els are positively associated with FM, TGs, hypertension
and show a decreasing trend in response to moderate or
increased physical activity. In addition, circulating SCL
appears to be positively related to coronary artery disease
severity and mortality. On the other hand, higher SCL
is associated with lower HDL cholesterol. Considering
T2DM, SCL levels are elevated in patients with impaired
glucose regulation and positively correlate with fasting
blood glucose and insulin resistance. In patients with OP,
reduced SCL levels are recorded.

Conclusion

Recent research demonstrates diverse functions of
bone-derived cytokines and suggests their involve-
ment in MetS. In fact, each component of MetS clearly
affects bone mass and bone metabolism. In addition,
MetS is associated with other serious disorders, includ-
ing T2DM, CVDs, OP, which have an unfavorable impact
on bone quality. Based on current studies, FGF23 may
become useful biomarker for obesity, T2DM, and CVDs,
as FGF23 levels were elevated in patients suffering from
these diseases. In addition, FGF23 can be used as a pre-
dictive factor to evaluate the progression of CKD. LCN2
could serve as an indicator of obesity, dyslipidemia,
T2DM, and CVDs. The levels of LCN2 positively cor-
related with obesity indicators, TGs, and negatively cor-
related with HDL cholesterol. Moreover, patients with
T2DM and CVDs had increased LCN2 levels. Circulating
LCN2 can also be used as a promising predictor related
to cardiovascular mortality. SCL may act as a potential
biomarker predicting the occurence of MetS including
all its components, T2DM, CVDs, and OP. In contrast
to LCN2, a positive association with hypertension was
recorded for SCL. Higher levels of SCL were noted in
subjects with T2DM, CVDs and lower in patients with
OP. In conclusion, we can state that aforementioned
bone-derived cytokines are involved in the outcomes
of MetS, T2DM, CVDs, and OP. Therefore, they have
the potential to serve as hopeful predictors and possi-
ble treatment targets in these diseases. However, further
research on the endocrine system through bone-derived
cytokines is needed, which may reveal new insights into
the prediction, prevention, and treatment of MetS and
MetS-related diseases negatively affecting bone quality.
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