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Abstract 

Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obe-
sity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS 
together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine 
organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipoca-
lin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines 
and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: 
T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships 
between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases 
mentioned above. In this context, particular emphasis was given on available clinical studies. According to the lat-
est knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased 
in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. 
The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-den-
sity lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act 
as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated 
SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-
derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS 
and MetS-related diseases negatively affecting bone quality.
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Introduction
Metabolic syndrome (MetS) represents a clinical condi-
tion characterized by a combination of hyperglycemia, 
hypertension, abdominal obesity, and dyslipidemia [1]. 
It is considered a low-grade chronic inflammatory state 
caused by a complex interaction of genetic and environ-
mental factors [2]. Heritability estimates for MetS range 
from approximately 10–30% [3]. Environmental factors 
such as unhealthy diet, physical inactivity, smoking, and 
stress are closely related to the incidence of MetS [4].

The complex nature of MetS has led to several defini-
tions, including those from the World Health Organi-
zation (WHO), American Heart Association/National 
Heart, Lung, and Blood Institute (AHA/NHLBI), Inter-
national Diabetes Federation (IDF), with a consensus 
reached between the AHA/NHLBI and the IDF in 2009 
[1]. According to the aforementioned statement, MetS is 
diagnosed based on the presence of at least three out of 
five components mentioned below:

1. Abdominal obesity (waist circumference ≥ 102 cm 
for European men or ≥ 88 cm for European women; 
≥ 90 cm for Asian men or ≥ 80 cm for Asian women; 
alternatively, visceral fat area ≥ 80  cm2);

2. High serum triglycerides (≥ 150 mg/dL);
3. Low serum high-density lipoprotein (HDL) choles-

terol (< 40 mg/dL in men or < 50 mg/dL in women);
4. Hypertension (systolic blood pressure ≥ 130 mmHg 

and diastolic blood pressure ≥ 85 mmHg);
5. Hyperglycemia (fasting blood glucose ≥ 100 mg/dL).

According to a current meta-analysis by Noubiap et al. 
[5], the incidence of MetS ranged from 12.5 to 31.4% in 
global general population of adults. The prevalence of 
MetS was the highest in Eastern Mediterranean region 
(36.6%), followed by USA (33.4%) and lowest in Africa 
region (23.1%). Considering the individual components 
of MetS, the global prevalence was 45.1% for central obe-
sity, 42.6% for arterial hypertension, 40.2% for low HDL-
cholesterol, 28.9% for high triglycerides (TGs), and 24.5% 
for hyperglycemia. Notably, the incidence rate of MetS 
increases with age, resulting in a prevalence of 40–45% 
in people over 50 years of age [6]. These data point to the 
fact that MetS and its individual components are very 
widespread worldwide. Furthermore, MetS is often asso-
ciated with other serious (MetS-related) diseases that 
can have an unfavorable impact on bone health. Recent 
studies have shown that bone, as an endocrine organ, is 
able to secrete several systemic cytokines (osteokines) 
that may also act as biomarkers predicting the incidence 
of several disorders. The main aim of this review was not 
only to summarize current knowledge about MetS, bone-
derived cytokines and the most common MetS-related 

diseases with a negative effect on bone quality (type 
2 diabetes mellitus: T2DM; cardiovascular diseases: 
CVDs; osteoporosis: OP), but also to provide new inter-
pretations of the relationships between osteokines and 
individual components of MetS, as well as between 
osteokines and MetS-related disorders, which are cur-
rently not available in such a form. In this context, par-
ticular emphasis was placed on available clinical studies. 
Such a review is much more comprehensive and provides 
up-to-date knowledge in this field.

The most common metabolic syndrome‑related 
diseases affecting bone quality
Individual components of MetS together raise the risk of 
several serious disorders [7]. The most common MetS-
related diseases associated with impaired bone quality 
and health include T2DM, CVDs, and OP, that will be 
further considered.

Generally, MetS is linked to T2DM, with hazard ratios 
ranging from 3.21 to 7.35 depending on the combination 
of the three different components of MetS [8]. Although 
T2DM is a multifactorial endocrine disease manifested 
by chronic hyperglycemia, the majority of affected indi-
viduals have insulin resistance, relative insulin deficiency 
and MetS before the onset of T2DM [9]. In response 
to hyperglycemia, insulin exerts its anabolic effects by 
inhibiting lipolysis and hepatic gluconeogenesis, whereas 
increasing glucose uptake in the liver, muscle, and adi-
pose tissue. When insulin resistance develops in adi-
pose tissue, insulin-mediated inhibition of lipolysis is 
impaired. The resulting high concentrations of free fatty 
acids elevate the synthesis of cholesterol esters and TGs 
and subsequently the production of very low density lipo-
proteins rich in TGs [10]. These alterations in lipoprotein 
concentrations may represent a hallmark of atherogenic 
dyslipidemia caused by insulin resistance in MetS [11]. 
Many of the most serious complications of T2DM are due 
to oxidative stress and can be classified as macrovascular 
and microvascular. Macrovascular complications include 
myocardial infarction, stroke, peripheral vascular disease, 
and diabetic foot. Microvascular complications mainly 
involve diabetic neuropathy, nephropathy, retinopathy, 
and diabetic bone disease. Diabetic bone disease is con-
sidered to be secondary OP caused by T2DM. Affected 
individuals have altered bone mineral density (BMD), 
worse bone quality, elevated risk of fragility fractures at 
specific sites, and prolonged fracture healing [12–14].

MetS can be a significant factor consistent with CVDs, 
a group of disorders of the heart and blood vessels that 
involve especially coronary heart disease, peripheral 
artery disease, cerebrovascular disease, aortic atheroscle-
rosis [15]. Many studies and meta-analyses noted a higher 
risk of developing CVD-related events in individuals with 
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MetS [16–18]. Guembe et al. [19] found that the risk of 
these events varied with combinations of individual MetS 
components and elevated with a higher number of com-
ponents. Several studies have demonstrated an associa-
tion between CVDs and OP. According to Park et al. [20], 
reduced BMD was associated with a greater risk of ather-
osclerotic CVD-related death, myocardial infarction, and 
ischemic stroke. A meta-analysis by Ge et al. [21] showed 
that heart failure was consistent with an increased risk of 
all fractures, especially hip fractures.

The relationship between MetS and OP has been 
known for a long time and is heterogeneous [22]. Gen-
erally, OP is characterized by decreased BMD, disrupted 
bone microarchitecture, and higher risk of fragility frac-
tures. Primary OP type 1 is associated with menopause, 
while primary OP type 2 occurs after the age of 75 and 
is diagnosed in a ratio of 1:2 in men and women [23, 24]. 
During menopause, osteoprotective effect of estrogen is 
weakened that leads to raising expression of pro-inflam-
matory cytokines, promoting osteoclastogenesis. In addi-
tion, estrogen deficiency not only directly influences the 
differentiation of precursor cells less toward osteoblasts 
and more toward active osteoclasts, but may also affect 
their cellular energy. Increased adiposity and inflamma-
tion after menopause may also be related to bone loss 
[25–27]. A gender-specific trend between MetS, BMD 
and osteoporotic fractures was noted, possibly due to 
factors consistent with body composition and hormonal 
status of individuals [28–30]. According to Yu et al. [31], 
women with MetS had higher rates of fracture risk com-
pared to those without MetS. On the contrary, men with 
MetS had a negative association with bone fractures. Liu 
et al. [32] found that the MetS was associated with higher 
risk of OP in women but not in men. In this context, it 
is important to mention that women and men have dif-
ferent bone metabolism in old age. In men with OP, the 
rate of bone formation relative to bone resorption did not 
increase compared to the rate in women with OP [33].

Associations between individual components 
of metabolic syndrome and bone health
In general, MetS can adversely affect multiple organs, 
including bones. Each component of MetS clearly influ-
ences bone mass as well as bone metabolism. Several 
mechanisms of action can be proposed for the effects of 
individual components of MetS on bone health (Fig. 1).

Abdominal obesity is a significant contributing fac-
tor to negative association with BMD, suggesting that fat 
(especially visceral fat) is detrimental to bone mass [34]. 
Moreover, visceral fat is also considered an endocrine 
organ that releases adipokines and cytokines, includ-
ing pro-inflammatory cytokines such as tumor necrosis 
factor α (TNF-α), interleukin 1β (IL-1β), interleukin 6 

(IL-6). They can stimulate osteoclast differentiation and 
bone resorption through activation of receptor activator 
of NF-κB ligand (RANKL)/receptor activator of NF-κB 
(RANK)/osteoprotegerin (OPG) pathway [35, 36]. Obe-
sity is also associated with bone marrow adipogenesis 
which depletes mesenchymal stem cells available to gen-
erate osteoblasts [37]. Visceral fat accumulation, altera-
tions in lipid profile and blood pressure are correlated 
with low levels of serum osteocalcin (a sensitive marker 
of bone formation) in adult population [38]. In addition, 
obesity induces the generation of oxidative stress which 
increases osteoclastogenesis and reduces osteoblas-
togenesis, resulting in altered bone microarchitecture 
and bone loss [39, 40]. Taking into account other factors 
with a negative impact on bone metabolism, elevated 
leptin concentrations accelerating bone resorption and 
decreasing bone formation were recorded, leading to 
raised risk of fractures [41]. Moreover, higher leptin pro-
duction and/or lower adiponectin secretion may con-
tribute to macrophage accumulation in adipose tissue 
[42]. Macrophages (another source of pro-inflammatory 
factors) further contribute to deleterious effects of pro-
inflammatory cytokines on bone metabolism [37]. Thus, 
low-grade chronic inflammation is a hallmark of obesity 
[43]. In general, obesity is linked to normal or increased 
BMD; however, it is associated with elevated risk of fra-
gility fractures at specific sites, which is termed “obesity 
paradox”. In fact, obese individuals are at increased risk 
of fractures of the humerus, ankle, upper leg, elbow, ver-
tebrae, and rib. On the contrary, obesity is a protective 
factor against hip, pelvic, and wrist fractures in elderly 
patients. Therefore, the relationship between obesity and 
fracture risk is more complex than previously thought. 
Implementation of better diagnostic tools to predict body 
fat percentage and assess comprehensive bone health 
including fragility fracture risk in obese subjects (e.g. 
waist circumference: WC, waist to hip ratio: WHR, high-
resolution peripheral quantitative computed tomog-
raphy: HR-pQCT, trabecular bone score: TBS; lumbar 
spine BMD/BMI ratio) can be considered an important 
clinical and future priority that could improve fracture 
prevention in this group of patients [44–49].

Dyslipidemia manifests itself by low HDL choles-
terol and high TG levels. Disorders of lipid metabolism 
are consistent with increased levels of oxidized lipids. 
Lipid oxidation (as an index of oxidative stress corre-
lated with low HDL levels) stimulates adipocyte differ-
entiation while suppressing osteoblast differentiation 
through upregulation of peroxisome proliferator-acti-
vated receptor γ (PPARγ). PPARγ is a member of the 
nuclear hormone receptor subfamily of transcription 
factors expressed in adipocytes to improve and medi-
ate adipocyte differentiation [50]. Activated PPARγ 
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has been reported to enhance adipocyte differentiation 
and inhibit osteoblast formation in various mesenchy-
mal cell lines and bone marrow [51]. In general, HDL 
inhibits osteogenic activity in vascular cells by induc-
ing pro-inflammatory cytokines. Oxidation of HDL 
makes it pro-osteogenic, suggesting that HDL regulates 
osteoblast differentiation [52]. On the contrary, oxidized 
low-density lipoprotein (LDL) cholesterol particles and 
excess free fatty acids in dyslipidemia can uncouple bone 
remodeling, favoring bone resorption [53]. Overall, ele-
vated TG levels can be negatively correlated with femoral 

neck BMD in postmenopausal women [54]. In addition, 
high TGs were also negatively correlated with BMD at all 
sites in adolescent girls [55].

Arterial hypertension is known to be an important fac-
tor affecting bone loss. As a result of hypertension, there 
is an increased excretion of calcium (Ca) in the urine 
due to competition between sodium (Na) and Ca ions in 
the renal proximal tubule [56]. Urinary excretion of Ca 
reduces the level of circulating Ca, resulting in activation 
of parathyroid hormone (PTH), thereby increasing bone 
resorption [57, 58]. Therefore, it can be hypothesized that 

Fig. 1 Individual components of MetS including visceral obesity, low serum high-density lipoprotein (HDL) cholesterol, hyperglycemia, high serum 
triglycerides (TGs), and hypertension affect bone health through different mechanisms. Visceral fat releases adipokines and pro-inflammatory 
cytokines, including tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 1β (IL-1β), which stimulate osteoclast differentiation 
through activation of receptor activator of NF-κB ligand (RANKL)/receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) pathway. Obesity 
also depletes mesenchymal stem cells (MSC) for adipocyte formation at the expense of osteoblasts. Obese individuals exert elevated leptin 
and decreased adiponectin levels, and higher oxidative stress, which ultimately suppress osteoblastogenesis and stimulate osteoclastogenesis. Low 
HDL is correlated with increased levels of oxidative stress and oxidized lipids that stimulate adipocyte differentiation while suppressing osteoblast 
differentiation through upregulation of peroxisome proliferator-activated receptor γ (PPARγ). In addition, low HDL stimulates osteogenic activity 
in vascular cells. Elevated TGs, usually present with low HDL cholesterol, can induce endothelial cell dysfunction and potentiate atherogenic 
changes. Hyperglycemia causes enhanced inflammatory response, accumulation of advanced glycation end products (AGEs), and disturbances 
in calcium (Ca) metabolism, favoring bone resorption over bone formation. Arterial hypertension affects bone mainly through increased excretion 
of Ca in the urine, resulting in activation of parathyroid hormone (PTH), thereby raising bone resorption. Finally, multiple mechanisms involving 
visceral fat accumulation, alterations in lipid profile and blood pressure are correlated with lower serum osteocalcin levels, suggesting reduced 
bone formation (Created with BioRender.com)
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maintenance of Ca levels provides protective effects on 
bone strength and reduces the incidence of bone frac-
tures in hypertension by limiting urinary Ca loss [59]. 
Sympathetic tone, vascular perturbations, cytokines, 
renin/angiotensin/aldosterone system, and vitamin D 
were described as further aspects connecting OP, hyper-
tension, and related CVDs [60]. According to Li et  al. 
[61], the risk of fragility fractures was higher in subjects 
with hypertension compared to healthy individuals. A 
cross-sectional study by Li et  al. [62] revealed a posi-
tive association between hypertension and lumbar spine 
BMD in both postmenopausal women and older men. In 
general, thiazide diuretics (thiazides) are well-tolerated 
and effective antihypertensive drugs that are considered 
candidates for the prevention of postmenopausal bone 
loss due to their ability to reduce urinary Ca excretion 
[63]. Furthermore, they are known to have a positive 
effect on BMD [64–66] and their use is associated with 
a reduced risk of OP-related fractures [67–69]. A meta-
analysis of Cheng et al. [70] showed that patients treated 
with thiazides had significantly higher serum Ca levels, 
lower urinary Ca levels, and unchanged BMD. The recent 
findings by van der Burgh et  al. [71] suggest their posi-
tive impacts on lumbar spine BMD but not on lumbar 
spine TBS. Therefore, reduced fracture risk after thiazide 
therapy can be explained by elevated bone mass rather 
than improved bone microarchitecture. Other antihy-
pertensives such as angiotensin receptor blockers (ARBs) 
and selective β-adrenergic receptor blockers might also 
improve BMD. A recent meta-analysis by Langerhuizen 
et al. [72] revealed that, in addition to thiazide diuretics, 
ARBs and β-blockers can reduce the risk of hip fracture. 
Additionally, nonselective β-adrenergic receptor block-
ers and dihydropyridine Ca channel blockers were found 
to have no significant relationship with BMD or bone 
strength. Since negative results have been reported on 
the impact of loop diuretics and α-adrenergic receptor 
blockers on OP indicators, they are not recommended 
for patients who are at increased risk of OP or already 
have OP [57, 73–75].

Hyperglycemia can cause bone loss through increased 
inflammatory response and disturbances in Ca metabo-
lism. Impaired insulin secretion and/or insulin action due 
to T2DM elevates levels of TNF-α and IL-6 [59]. Accumu-
lation of advanced glycation end products (AGEs) induces 
apoptosis of mesenchymal stem cells and leads to higher 
bone resorption, resulting in poorer bone quality and 
strength [76]. The impact of hyperglycemia on bone metab-
olism is also dependent on insulin and insulin-like growth 
factor 1 (IGF-1) deficiency. As a humoral factor, IGF-1 acts 
as a vital anabolic signal to increase bone formation. There-
fore, IGF-1 deficiency is associated with low bone size, 
decreased BMD, growth retardation, and development of 

OP [77]. Glycosuria is an indirect consequence of hyper-
glycemia. According to Schneider et  al. [78], glycosuria 
caused defective reabsorption of both Ca and glucose in 
the renal proximal tubule, leading to hypercalciuria. Cor-
respondingly, circulating Ca levels were reduced, which 
was reflected by impaired bone quality and bone loss [79]. 
It is widely recognized that sodium-glucose cotransporter 
2 (SGLT2) inhibitors can also induce glycosuria [80]. How-
ever, due to its unique mechanism of glucose regulation 
through renal proximal tubules, SGLT2 inhibitors may also 
affect Ca and phosphate (P) homeostasis, potentially lead-
ing to reduced BMD. Furthermore, they demonstrated 
an indirect increase in bone turnover through weight loss 
[81]. Current data suggest that the effect of SGLT2 inhibi-
tors on bone turnover and BMD varies between drugs. 
Canagliflozin and ertugliflozin might elevate bone resorp-
tion [82], while dapagliflozin and empagliflozin might not 
have any effect on bone turnover [83–85]. Bilezikian et al. 
[86] revealed significant reduction in total hip BMD and an 
increase in markers of bone formation and bone resorption 
in T2DM subjects treated with canagliflozin. Conversely, 
dapagliflozin had no effect on BMD or bone formation and 
bone resorption markers in individuals with T2DM [83]. 
The impact of SGLT2 inhibitors on fracture risk remains 
controversial [81, 87, 88].

Bone cells are known to be able to secrete various bio-
active substances that can regulate bone remodeling. In 
addition, they can be released into systemic circulation and 
affect distant organs such as the pancreas, testes, brain, 
kidneys and regulate global energy homeostasis [89, 90]. 
In this review, bone-derived cytokines, namely fibroblast 
growth factor 23 (FGF23), lipocalin 2 (LCN2), and scle-
rostin (SCL) are further considered because they are inti-
mately involved in bone metabolism, metabolic functions, 
and may also act as biomarkers predicting the prevalence of 
multiple disorders, as well as the progression of their com-
plications. The present findings indicate clinical relevance 
of aforementioned cytokines as prognostic tumor biomark-
ers and potential therapeutic targets in bone metastases 
[91]. This review further focuses on aspects linking FGF23, 
LCN2, SCL to individual components of MetS, as well as 
to the most frequently occurring MetS-related disorders 
(T2DM, CVDs, OP) that affect bone quality. Such relation-
ships appear only sporadically in the scientific literature.

Links among fibroblast growth factor 23, 
metabolic syndrome, and the most common 
metabolic syndrome‑related diseases affecting 
bone quality
Fibroblast growth factor 23 (FGF23) is a bone-derived 
protein belonging to a subfamily of endocrine FGFs 
[92]. The FGF23 gene is located on human chromo-
some 12p13, containing 3 coding exons [93]. Product 
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of this gene is a 32-kDa glycoprotein, which consists of 
251 amino acid residues including a signal sequence (24 
amino acids), an N-terminal hydrophobic region (155 
amino acids), and a specific carboxy-terminal sequence 
(72 amino acids; Fig.  2) [94]. FGF23 is predominantly 
secreted by osteocytes and osteoblasts, and is able to tar-
get cells in distant organs (e.g. kidneys, heart) [92, 95]. 
Binding of FGF23 to target cells needs a receptor com-
plex containing of FGF tyrosine kinase receptors (FGFRs 
subtypes 1c,3c, or 4c) and the transmembrane protein 
α-Klotho, a co-receptor for FGF23 [96]. The secretion 
of FGF23 is stimulated by a plethora of humoral fac-
tors, such as vitamin D, Ca, P, PTH, and pro-inflamma-
tory cytokines [94]. FGF23 plays a key role as an auto-/
paracrine regulator of energy metabolism and mineral 
homeostasis [97]. According to Martin et al. [98], FGF23 
acts as a counterregulatory phosphaturic hormone to 

maintain P homeostasis in response to 1,25-dihydroxy-
vitamin D (1,25(OH)2D), which can promote FGF23 
expression [99]. FGF23 can inhibit the expression of renal 
1α- hydroxylase (CYP27B1), that converts 25-hydroxyvi-
tamin D into 1,25-dihydroxyvitamin D3 (the active form), 
subsequently interfering with Ca homeostasis [100].

Mirza et al. [101] pointed out the relationships between 
FGF23 and MetS incidence as well as between FGF23 
and individual components of MetS. According to Hu 
et  al. [102], FGF23 levels were significantly higher in 
overweight/obese individuals. Moreover, FGF23 levels 
were positively associated with body mass index (BMI), 
WC, and visceral fat area (VFA) in both postmenopau-
sal women and men. Positive correlations between VFA 
and FGF23, WC, and FGF23 were also identified by Xu 
et al. [103] and Mirza et al. [101]. Hanks et al. [104] found 
a positive association of FGF23 with BMI and WC in 

Fig. 2 Human FGF23 structure prediction according to AlphaFold Protein Structure Database (RRID: SCR_023662; [264, 265]). 3D visualization 
of FGF23 structure prediction with colored per-residue confidence metric (pLDDT) is shown. The structures of the signal sequence and N-terminal 
peptide demonstrate the highest confidence score. Positions of glycosylation, phosphorylation, and disulfide bond on FGF23 molecule are 
illustrated according to the database UniProt (RRID: SCR_002380). Binding regions for α-Klotho are labeled according to Suzuki et al. [266]
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subjects with normal renal function. A study of Streicher 
et al. [105] suggests that a vitamin D receptor-dependent 
mechanism underlies FGF23 regulation of fat accumu-
lation and distribution. In addition, a feedback effect of 
adipose tissue on FGF23 levels may also be present, as 
animal studies have shown stimulatory effects of adi-
pokines (such as leptin) on FGF23 expression in bone 
[106].

Higher TGs were also consistent with increased FGF23 
levels independently of age, BMI, hypertension, or dia-
betic state [101, 107]. On the other hand, several stud-
ies did not find any correlation between FGF23 and TGs 
[108, 109]. According to a cross-sectional study of Mont-
ford et al. [110], higher FGF23 levels were related to dys-
lipidemia (including lower HDL cholesterol) in patients 
with chronic hemodialysis. Similarly, raised FGF23 levels 
were associated with 7–22% lower HDL cholesterol [101]. 
However, cohort studies by Ebert et al. [108] and Yama-
moto et  al. [109] demonstrated no correlation between 
FGF23 and HDL cholesterol.

Elevated levels of FGF23 may also be linked to hyper-
tension. According to Andrukhova et  al. [111], FGF23 
can serve as a key regulator of renal Na reabsorption 
and plasma volume, and this fact can contribute to the 
association between FGF23 and cardiovascular risk in 
patients with chronic kidney disease (CKD). FGF23 
may also participate in the pathogenesis of hypertension 
through an activation of the renin-angiotensin‐aldoster-
one system [112]. Additionally, Drew et  al. [113] have 
shown that increased FGF23 levels were related to preva-
lent and incident hypertension, as well as higher systolic 
blood pressure in older adults. On the other hand, Ebert 
et al. [108] did not find a correlation between FGF23 and 
blood pressure. Table 1 shows the relationships between 
bone-derived cytokines, including FGF23, and individual 
components of MetS.

Most clinical researches revealed elevated levels of 
circulating FGF23 in patients with T2DM and CKD 
[114, 115]. However, a study by Tunon et  al. [116] did 
not confirm this association. Levels of FGF23 were 
found to be higher also in prediabetic state and in 
normal blood glucose patients with a family history 
of first-degree diabetes [117, 118]. Moreover, T2DM 
was closely associated with an increase in FGF23 from 
midlife to late life [119]. According to Hanks et al. [104] 
and Garland et  al. [120], FGF23 was positively related 
to insulin resistance. Conversely, Wojcik et  al. [121] 
and Holecki et al. [122] reported an inverse correlation 
or no association. A study of Bar et  al. [123] suggests 
that insulin suppresses the production of FGF23 and 
patients with hyperinsulinemia should have low levels 
of FGF23. However, a chronic inflammatory state, often 
present in T2DM patients, may overrule suppressive 

effect of hyperinsulinemia, resulting in higher FGF23 
levels [124]. There are no data supporting a direct 
role of FGF23 in glucose and lipid metabolism [125], 
although FGF23 may act indirectly by regulating the 
stability of P levels [126]. However, increased FGF23 
was strongly associated with a higher risk of cardiovas-
cular morbidity and mortality in T2DM patients, and a 
close relationship was found between FGF23 and dia-
betic complications [115, 125, 127].

CVD is the leading cause of death in patients with CKD 
[128]. As elevated FGF23 levels are commonly found in 
CKD patients, FGF23 has also gained a significant inter-
est due to its strong association with CVDs. Increased 
FGF23 concentrations were associated with prevalent 
CVDs in older women stratified by CKD, but also in all 
subjects and non-CKD patients [129]. Higher FGF23 lev-
els were related to total body atherosclerosis as well as 
vascular dysfunction [101, 130]. In patients with coronary 
artery disease and heart failure with reduced ejection 
fraction, FGF23 was consistent with CVD-related events 
[131, 132]. In addition, patients stabilized after acute cor-
onary syndrome with elevated FGF23 had an increased 
risk of death, hospitalization due to heart failure, myo-
cardial infarction, or stroke [133]. Raising levels of FGF23 
were also related to the severity of coronary artery calci-
fication; however, they were not associated with carotid 
artery atherosclerosis in hemodialysis patients [134, 135]. 
Considering stroke, higher FGF23 was found to be an 
independent risk factor for cardioembolic stroke but not 
other stroke subtypes in adults [136]. Several studies sug-
gest an association between higher FGF23 level and left 
ventricular hypertrophy (LVH) or left ventricular mass 
(LVM) in patients with CKD and hemodialysis, but also in 
general population [137–139]. It is known that LVH pre-
dicts CVD-related events. However, CKD patients had 
excessive cardiomyocyte production of FGF23 leading to 
upregulation of FGFR4 and activation of the calcineurin-
NFAT pathway [140]. A recent study by Watanabe et al. 
[141] showed that not serum but cardiac FGF23 levels 
were altered also in early stage of LVH without CKD, and 
the renin-angiotensin-aldosterone system may also play 
an important role. Moreover, several studies suggest that 
high FGF23 may follow, rather than induce, myocardial 
disease under certain conditions, and some beneficial 
cardiovascular effects of FGF23 in primary cardiomyo-
cytes have been described. Therefore, further research on 
FGF23 in relation to CVDs is needed [142].

Studies examining the association between FGF23 and 
BMD reported inconsistent findings. In CKD patients 
on dialysis, FGF23 was negatively correlated with lum-
bar spine BMD [143–145] and/or both lumbar spine and 
femoral neck BMD [146, 147]. On the other hand, Torres 
et al. [148], Desjardins et al. [149], Zheng et al. [150] did 
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Table 1 Relationships between bone-derived cytokines and individual components of MetS

 Cytokine  MetS component  Subjects (N)  Relationships between the cytokine and the 
MetS component

P value  Ref.

FGF23 Obesity Normoglycemic men (597) with normal renal 
function

0.71% increase in FGF23 levels at 10% increase 
in VFA

0.001  [102]

Postmenopausal normoglycemic women (591) 
with normal renal function

0.94% increase in FGF23 levels at 10% increase 
in VFA

0.001  [102]

Adult men and women (1040) FGF 23 positively associated with WC (β = 3.02) 0.004  [104]

Elderly men and women (946) 2% increase in WC at 10% increase in FGF23 level < 0.01  [101]

Middle aged men and women (1179) FGF23 positively correlated with VFA 
(β = 0.089); increase in FGF23 level (1 SD) associ-
ated with VFA (OR 1.326)

0.035,
< 0.001

 [103]

Triglycerides Middle aged men (1261) Differences in FGF23 levels from 1.6 to 7.2 RU/mL 
depending on triglycerides quartile

< 0.01  [107]

Elderly men (964) 3% increase in triglycerides at 10% increase 
in FGF23 level

< 0.001  [101]

Middle aged men and women (1046) No correlation between FGF23 and triglycerides 0.962  [108]

Elderly men and women (73) No correlation between FGF23 and triglycerides 0.29  [109]

HDL cholesterol Elderly men and women (73) No correlation between FGF23 and HDL 0.35  [109]

Middle aged men and women (1046) No correlation between FGF23 and HDL 0.054  [108]

Hemodialysis patients (654) Higher FGF23 levels associated with lower HDL 
(β = − 2.14)

0.03  [110]

Hypertension Middle aged men and women (1046) No correlation between FGF23 and blood pres-
sure

0.943  [108]

Older men and women (2496) 2-fold higher FGF23 associated with prevalent 
baseline hypertension (OR 1.46) and incident 
hypertension (HR 1.18)

< 0.05  [113]

Middle aged men (1261) Difference in FGF23 levels of 6.0 RU/ml 
in the presence of hypertension

< 0.01  [107]

Elderly men and women (73) No association between FGF23 and hyperten-
sion

0.087  [109]

LCN2 Obesity Older women (705) Women in the highest LCN2 quartile had higher 
BMI (28.9 ± 4.8) compared to women in the low-
est quartile (25.8 ± 4.0)

< 0.05  [177]

Adult women and men (100 lean, 80 overweight, 
49 obese)

LCN2 was positively correlated with BMI 
(r = 0.394) and WC (r = 0.404)

< 0.001  [180]

Postmenopausal women with prediabetes (88) Strong positive correlation between LCN2 
and BMI (r = 0.30) and WC (r = 0.29)

0.004,
0.006

 [181]

Men (169) and postmenopausal women (92) 
who underwent coronary angiography

LCN2 was positively correlated with BMI 
(r = 0.195) and WC (r = 0.164)

0.011,
0.033

 [178]

Healthy women and men (53) LCN2 was positively correlated with BMI 
(r = 0.402)

0.02  [179]

Obese women (188) LCN2 was positively correlated with BMI 
(r = 0.205) but not with WC

0.005,
0.49

 [182]

Normal (101) and overweight/obese (136) T2DM 
patients

LCN2 was positively correlated with BMI 
(r = 0.546)

< 0.001  [183]

Patients with coronary heart disease (49) 
and controls (42)

No correlation between LCN2 and WC (r = 0.18) 0.161  [185]

Healthy men (100) No correlations between LCN2 and BMI and WC 0.88,
0.98

 [184]

Triglycerides Older women (705) Women in the highest LCN2 quartile had 
higher triglycerides (148.6 ± 57.1 mg/dL) 
compared to women in the lowest quartile 
(120.6 ± 52.2 mg/dL)

< 0.05  [177]

Men (169) and postmenopausal women (92) 
who underwent coronary angiography

LCN2 was positively correlated with triglycerides 
(r = 0.215)

0.005  [178]
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Table 1 (continued)

 Cytokine  MetS component  Subjects (N)  Relationships between the cytokine and the 
MetS component

P value  Ref.

Healthy women and men (53) LCN2 was positively correlated with triglycerides 
(r = 0.4811)

0.01  [179]

Obese women (188) LCN2 was positively correlated with triglycerides 
(r = 0.214)

0.003  [182]

Normal (101) and overweight/obese (136) T2DM 
patients

LCN2 was positively correlated with triglycerides 
(r = 0.325)

< 0.001  [183]

Patients with coronary heart disease (49) 
and controls (42)

No correlation between LCN2 and triglycerides 0.578  [185]

Healthy men (100) No correlation between LCN2 and triglycerides 0.21  [184]

HDL cholesterol Older women (705) Women in the highest LCN2 quartile had lower 
HDL cholesterol (54.2 ± 14.7 mg/dL) compared 
to women in the lowest quartile (60.4 ± 15.7 mg/
dL)

< 0.05  [177]

Adult women and men (100 lean, 80 overweight, 
49 obese)

LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.2)

0.002  [180]

Healthy women and men (53) LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.4034)

0.03  [179]

Obese women (188) LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.299)

< 0.001  [182]

Normal (101) and overweight/obese (136) T2DM 
patients

LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.237)

< 0.001  [183]

Patients with coronary heart disease (49) 
and controls (42)

LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.3)

0.016  [185]

Healthy men (100) LCN2 was negatively correlated with HDL cho-
lesterol (r = − 0.29)

0.004  [184]

Hypertension Older women (705) No differences in blood pressure between LCN2 
quartiles

NS  [177]

Adult women and men (100 lean, 80 overweight, 
49 obese)

LCN2 was positively correlated with systolic 
(r = 0.154) but not with diastolic blood pressure

0.017,
0.637

 [180]

Obese women (188) LCN2 was positively correlated with systolic 
(r = 0.325) but not with diastolic blood pressure

< 0.001,
0.13

 [182]

Normal (101) and overweight/obese (136) T2DM 
patients

LCN2 was positively correlated with systolic 
(r = 0.189) and diastolic (r = 0.201) blood pressure

0.003,
0.002

 [183]

Patients with coronary heart disease (49) 
and controls (42)

No correlations between LCN2 and systolic 
and diastolic blood pressures

0.057,
0.214

 [185]

Patients with essential hypertension (62) 
and controls (16)

LCN2 levels were higher in patients with essen-
tial hypertension than in controls (85.0 ± 37.6 ng/
mL vs. 43.8 ± 13.1 ng/mL)

< 0.001  [187]

Healthy men (100) No correlations between LCN2 and systolic 
and diastolic blood pressures

0.68,
0.92

 [184]

SCL Obesity Older men (694) Higher SCL was associated with severity of MetS 
(OR 1.24 per SD increase)

< 0.05  [220]

Older men (115) and postmenopausal women 
(134)

SCL was positively associated with vertebral 
bone marrow fat in older men (52.2% in the low-
est tertile of serum SCL, 56.3% in the highest 
tertile) but not women

< 0.01,
NS

 [221]

Postmenopausal women (352) SCL was positively correlated with abdominal fat 
(r = 0.18)

0.018  [222]

Children and adolescents (1325) SCL level in children with obesity increased 
with BMI standard deviation score (r = 0.035)

< 0.001  [223]

Adolescent females with increased physical 
activity (73)

SCL was positively correlated with body fat 
(r = 0.38)

< 0.05  [226]

Morbidly obese patients (94) SCL was positively associated with WC (β = 0.028) 
and positively correlated with WC (r = 0.238), 
waist-to-hip/waist-to-height ratios (r = 0.315; 
r = 0.234), VFA and subcutaneous fat area 
(r = 0.220; r = 0.228)

0.016,
< 0.05

 [224]
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not find any correlation between FGF23 and BMD. For 
non-CKD individuals, FGF23 showed negative relation-
ships with lumbar spine or proximal femur BMD [151] 
and/or with femoral neck BMD [152]. However, other 
studies did not reveal an association between FGF23 
and lumbar spine BMD [153] and/or hip BMD [154]. 
Accordingly, BMD was not correlated with FGF23 in pre-
menopausal women [155]. In men, elevated FGF23 levels 
were associated with higher total hip and lumbar spine 
BMD [154] or the correlation between FGF23 and BMD 
became nonsignificant after adjustment for established 
confounding variables [156]. Furthermore, higher FGF23 
levels were consistent with an increased fracture risk in 
men [157]. In a study of Isakova et al. [158], no associa-
tions were found between FGF23 levels and bone loss or 
fracture risk. Using a Mendelian randomization analysis, 
FGF23 was inversely related to femoral neck and heel 
BMD, but not to lumbar spine BMD and fracture risk 
[159, 160]. In addition to BMD, a relationship between 
C-terminal FGF23 and bone microarchitecture has been 
reported in patients with OP [161]. FGF23 negatively 
correlated with relative bone volume as well as trabecu-
lar number at the distal radius and tibia. No association 
between FGF23 and BMD (assessed by DXA) was noted 
in this study. The relationships between bone-derived 
cytokines, including FGF23, and T2DM, CVDs, OP are 
presented in Table 2.

Taking into account the information presented in 
this chapter, we can conclude that FGF23 levels are sig-
nificantly increased in patients suffering from obesity, 
T2DM, and CVDs. In obese individuals, FGF23 levels 
are positively associated with BMI, WC, and VFA. In 
patients with T2DM, raising FGF23 is strongly related 

to a higher risk of cardiovascular morbidity and mortal-
ity, and a close relationship between FGF23 and diabetic 
complications has been determined. Elevated FGF23 
levels are strongly linked to total body atherosclerosis, 
vascular dysfunction, acute coronary syndrome, cardi-
oembolic stroke, and LVH. Furthermore, increased circu-
lating FGF23 is commonly found in CKD patients, so it 
can be used as a predictive factor to evaluate the progres-
sion of this disease. On the contrary, studies investigating 
the association between FGF23 and BMD report incon-
sistent findings.

Links among lipocalin 2, metabolic 
syndrome, and the most common metabolic 
syndrome‑related diseases affecting bone quality
Lipocalin 2 (LCN2), a novel adipokine, is also termed 
as neutrophil gelatinase-associated lipocalin (NGAL) 
[95]. It belongs to lipocalin superfamily, a large group 
of transporters of hydrophobic ligands in circulation, 
including various steroids, hormones, prostaglandins, 
and retinoids [162]. Human LCN2 protein is encoded 
by the LCN2 gene located at the chromosome locus 
9q34.11 [163]. Product of this gene, a soluble secretory 
glycoprotein, circulates as a 25 kDa monomer, a 46 kDa 
disulphide-linked homodimer and a 135-kDa disulphide-
linked heterodimer [164]. The LCN2 structure is com-
prised of an eight stranded β-barrel that represents the 
internal ligand-binding site. This site is larger and more 
polar than in other lipocalin proteins and allows LCN2 to 
form large molecule complexes. At the N-terminal region 
of the human LCN2 protein, there is a 20-amino acid sig-
nal peptide, which is detached from the molecule before 
release [162] (Fig.  3). In humans, LCN2 is released by 

Table 1 (continued)

 Cytokine  MetS component  Subjects (N)  Relationships between the cytokine and the 
MetS component

P value  Ref.

Obese (31), overweight (23) and normal (21) 
subjects

SCL levels were lower in obese subjects ver-
sus controls (1.02 ± 0.45 vs. 1.58 ± 0.83 ng/mL)

0.014  [225]

Triglycerides Adult patients (2054) Positive association between SCL and triglycer-
ides (β = 0.05)

0.038  [231]

Adult patients (502617) Positive association between BMD-increasing 
SOST variants (rs7209826 and rs188810925) 
and triglycerides (9.58 mg/dL higher)

0.02  [232]

HDL cholesterol Adult patients (2054) SCL was inversely related to HDL cholesterol (β 
= − 0.08)

< 0.001  [231]

Hypertension Adult patients (3015) Positive association between SCL and hyperten-
sion (OR 1.19)

0.03  [231]

Adult patients (502617) Positive association between BMD-increasing 
SOST variants (rs7209826 and rs188810925) 
and hypertension (OR 1.12)

< 0.001  [232]

BMD  bone mineral density, BMI  body mass index, FGF23 fibroblast growth factor 23, HDL  high-density lipoprotein, HR  hazard ratio, LCN2 lipocalin 2, LDL low-density 
lipoprotein, MetS metabolic syndrome, OR odds ratio, r correlation coefficient, SCL sclerostin, SD standard deviation, T2DM type 2 diabetes mellitus, VFA  visceral fat 
area, WC waist circumference
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numerous cells, e.g. osteoblasts [95, 165], immune cells, 
adipocytes, hepatocytes, renal cells [162], chondrocytes 
[166]; as well as by bone marrow, thymus, small intestine 
[162], spleen, muscles [167].

LCN2 plays a key role in various biological processes, 
such as iron (Fe) and fatty acids delivery, metabolic 
homeostasis, apoptosis of hematopoietic cells [166], cell 
proliferation [168], organogenesis [169], and modulation 
of inflammation [170]. Interestingly, LCN2 expression is 
upregulated in numerous diseases, e.g. various cancers 
[171–173], cardiomyopathies [174], CKD [175], liver dis-
ease [176].

It was reported that higher circulating levels of LCN2 
were associated with an increased risk of MetS in older 
women. Women in the highest LCN2 quartile had 
approximately three times greater risk of MetS compared 
to those in the lowest quartile [177]. Elevated levels of 
LCN2 were observed in men versus women [178, 179]. 
In addition, LCN2 levels were higher in men with MetS 
compared to non-MetS subjects and showed a posi-
tive correlation with the number of MetS components 
[178]. Most studies demonstrated a close relationship 
between LCN2 levels and obesity. A positive correlation 
between circulating LCN2, BMI, and WC was found in 
lean as well as overweight/obese individuals [180], pre-
diabetic women [181], and men [178]. LCN2 was corre-
lated with BMI in healthy individuals [179], obese women 
[182], and T2DM patients [183]. On the other hand, no 
significant correlation between LCN2 levels and BMI 
or WC was reported in healthy men [184] and patients 
with coronary heart disease [185]. According to Mosialou 
et al. [181, 186], LCN2 suppresses appetite in a melano-
cortin 4 receptor-dependent manner. LCN2 upregulation 
may serve as a protective mechanism to combat obesity-
induced glucose intolerance by reducing food intake and 

promoting adaptive β-cell proliferation. The regulatory 
importance of LCN2 may be associated with the stimula-
tion of PPARγ, which mediates adipogenesis and lipogen-
esis in liver and adipose tissues.

Positive correlations between TGs and LCN2 levels 
were reported in obese women, healthy women and men, 
T2DM patients and those underwent coronary angiogra-
phy [177–180, 182, 183]. However, in healthy men [184] 
and patients with coronary heart disease [185], LCN2 
did not correlate with TGs. On the other hand, circu-
lating LCN2 was negatively correlated with HDL cho-
lesterol [177, 179, 180, 182–185]. In studies by Park and 
Choi [187] and Zhang et al. [183], LCN2 concentrations 
positively correlated with systolic and diastolic blood 
pressures. Some researches [180, 182] revealed a posi-
tive correlation between LCN2 and systolic blood pres-
sure but not diastolic blood pressure. Conversely, several 
studies [177, 184, 185] found no correlation between 
LCN2 levels and blood pressure.

In most clinical studies [181, 182, 188–191], signifi-
cantly higher LCN2 levels were determined in T2DM 
patients, as LCN2 expression is increased after the onset 
of hyperglycemia and is stimulated by insulin in the glu-
cose- and NFκB-dependent manner [192]. On the con-
trary, findings by De la Chesnaye et  al. [179] showed 
decreased LCN2 levels in patients suffering from T2DM. 
Al-Absi et al. [193] identified no significant differences in 
LCN2 between T2DM men and their controls.

Regarding CVDs, LCN2 is highly expressed in cardio-
myocytes and atherosclerotic plaques [194, 195]. There-
fore, elevated LCN2 levels were recorded in patients 
with coronary heart disease [185], acute heart failure and 
acute coronary syndromes [196, 197]. According to Ni 
et al. [178], males with coronary artery disease had higher 
LCN2 levels versus controls, whereas females did not. 

Fig. 3 Human LCN2 structure prediction according to AlphaFold Protein Structure Database (RRID: SCR_023662; [264, 265]). 3D visualization 
of LCN2 structure prediction with colored per-residue confidence metric (pLDDT) is shown. Positions of glycosylation, modified residue, 
and disulfide bond on LCN2 molecule are illustrated according to the database UniProt (RRID: SCR_002380)
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Similarly, increased levels of LCN2 were found in men 
with CVD-related events but not in women [198]. These 
sex-dependent differences can be explained by the inter-
relationship between LCN2 levels, estrogens and their 
effects, as LCN2 influences estradiol biosynthesis and 
estrogen receptor signaling. Increased circulating LCN2 
levels were also determined in T2DM patients with sub-
clinical atherosclerosis and positive correlations were 
observed also between LCN2 and carotid and femoral 
intima-media thickness [199]. In addition, higher levels 
of LCN2 were recorded in T2DM patients with cardiac 
hypertrophy [200]. Some clinical observations and fol-
low-up studies suggest that LCN2 may have an impor-
tant prognostic value in survival assessment. Circulating 
LCN2 predicted cardiovascular mortality in patients after 
cerebrovascular ischemia [201], those with chronic heart 
failure [202], as well as in older adults [203, 204].

LCN2 is expressed by osteoblasts at ten-fold higher 
levels than in white adipose tissue or other organs [186]. 
Additionally, LCN2 has been identified as essential for 
normal osteogenic differentiation of mesenchymal stem 
cells, but its overexpression and oversecretion inhibited 
osteogenic differentiation of these cells [205]. Clinical 
studies found no association between LCN2 levels and 
BMD in postmenopausal women with OP [206–208]. 
No significant differences in LCN2 concentrations were 
noted between patients with and without fracture in 
postmenopausal as well as premenopausal women [209]. 
On the other hand, a prospective study in a cohort of 
elderly women demonstrated that high levels of circulat-
ing LCN2 predicted future risk of OP-related fractures 
[210]. These findings are consistent with observations in 
transgenic mice overexpressing LCN2, where changes 
in bone microarchitecture were linked to bone fragility 
[211]. Moreover, according to Rucci et  al. [212], LCN2 
could be involved in the onset of OP in the presence of 
mechanical constraints such as inactivity, bed rest, mus-
cle damage or aging. The mechanisms of LCN2 action 
could include a decrease in osteoblast differentiation and 
an increase in osteoblast-induced osteoclastogenesis. It 
could also affect osteoblasts through the modulation of 
energy metabolism [213].

Summarizing the aforementioned information, it can 
be stated that higher levels of LCN2 are positively cor-
related with the number of MetS components. In addi-
tion, LCN2 levels are higher in individuals with obesity, 
T2DM, and CVDs. In obese subjects, a positive correla-
tion was found between circulating LCN2, BMI, WC, and 
TGs. Conversely, circulating LCN2 was negatively corre-
lated with HDL cholesterol. Elevated levels of LCN2 have 
been found in T2DM patients, T2DM subjects with sub-
clinical atherosclerosis, patients with coronary heart dis-
ease, acute heart failure, and acute coronary syndromes. 

However, most clinical studies showed no association 
between LCN2 levels and BMD in individuals with OP. 
Circulating LCN2 can also be used as a promising pre-
dictor for cardiovascular mortality in patients after cer-
ebrovascular ischemia, those with chronic heart failure, 
as well as in older adults.

Links among sclerostin, metabolic 
syndrome, and the most common metabolic 
syndrome‑related diseases affecting bone quality
Sclerostin (SCL) is secreted by osteocytes and plays an 
important role in the development and maintenance of 
bone tissue [214]. It is primarily synthesized as a 24 kDa 
and 213 amino acid-long glycoprotein with a signal pep-
tide comprising the first 23 amino acids. The circulating 
form of SCL is a 190-residue glycoprotein with a molecu-
lar weight of 22 kDa, which is formed by cleavage of the 
signal peptide (Fig. 4). SCL is encoded by the SOST gene, 
which is located on the chromosomal region 17q12-21 
in humans [215]. Human SOST mRNA is expressed in 
the heart, aorta, liver, and kidneys [216]. SCL as a potent 
inhibitor of osteoblastogenesis, binds to the Wnt co-
receptors of the low-density lipoprotein receptor-related 
protein (LRP) family, LRP5 and LRP6, antagonizing 
downstream signaling. In addition, SCL via inhibition of 
Wnt signaling pathway has a potential to stimulate osteo-
clast differentiation and enhance bone resorption [217]. 
It has been reported that this bone-derived cytokine may 
have a potential role in extra-skeletal tissue as well [214]. 
Recent studies [218, 219] have highlighted an important 
role of SCL in myogenesis, where SCL inhibits myo-
blast differentiation, thereby modulating bone-muscle 
interaction.

Fig. 4 Human SCL structure prediction according to AlphaFold 
Protein Structure Database (RRID: SCR_023662; [264, 265]). 3D 
visualization of SCL structure prediction with colored per-residue 
confidence metric (pLDDT) is shown. Positions of glycosylation 
and disulfide bonds on the SCL molecule are illustrated according 
to the database UniProt (RRID: SCR_002380)
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In general, serum SCL was higher in older men with 
MetS and its level increased significantly across the 
elevating number of MetS components. A positive cor-
relation between SCL level and WC was recorded. 
However, this correlation lost significance after cor-
rection for whole-body bone mineral content (BMC) 
[220]. Accumulating evidence has revealed an associa-
tion between circulating SCL and obesity. According to 
Ma et al. [221], SCL levels were related to higher total fat 
mass (FM) and vertebral bone marrow fat in older men 
but not in women. On the contrary, Urano et  al. [222] 
stated that SCL levels were positively associated with 
FM and strongly correlated with LDL cholesterol and 
homocysteine in postmenopausal women. In addition, 
high SCL levels were determined in obese patients and 
they decreased significantly after laparoscopic sleeve gas-
trectomy [223, 224]. On the contrary, Azzam et al. [225] 
revealed lower SCL levels in obese individuals compared 
to overweight and control groups; however, these groups 
included low numbers of individuals. Furthermore, FM 
was one of the most important predictors of SCL level 
in adolescent females with increased physical activity 
[226]. Moreover, circulating SCL declined in response to 
moderate-intensity exercise training in older adults [227]. 
According to Kurgan et  al. [228], subcutaneous adipose 
tissue SCL was reduced and Wnt signaling was enhanced 
after four weeks of interval sprint training in young obese 
men, suggesting a role of SCL in regulating adipose tissue 
in response to exercise. Finally, mutations in LRP5, par-
ticularly those affecting the interaction of SCL with this 
Wnt coreceptor [229], were associated with altered fat 
distribution [230]. Frysz et al. [231] found that SCL was 
positively associated with TGs and hypertension. Con-
versely, higher SCL was linked to lower HDL cholesterol. 
Bovijn et  al. [232] examined BMD-increasing alleles in 
the SOST locus (as a proxy for SCL inhibition) and deter-
mined their association with higher risk of hypertension, 
systolic blood pressure, and TGs.

Considering T2DM, most studies reported higher SCL 
levels in T2DM patients and showed their positive cor-
relations with BMI and age in both diabetic and healthy 
subjects [233–238]. Interestingly, if gender was taken 
into account, men with T2DM had increased SCL levels 
than women with T2DM [235, 236, 239], and this fact 
was associated with elevated risk of vertebral fractures 
[239]. On the other hand, findings from a cohort study by 
Yu et al. [240] showed that SCL levels were not strongly 
linked to T2DM risk, despite higher SCL levels in T2DM 
patients. Consistent with several studies, SCL levels were 
higher in individuals with impaired glucose regulation 
than in subjects with normal glucose tolerance. Further-
more, SCL levels positively correlated with fasting blood 
glucose and insulin resistance [241–243].

Recent studies have shown the importance of SCL in 
CVD-related events. Higher SCL levels were consistent 
with prevalence and extent of coronary artery calcifica-
tion in older men [244]. According to Frysz et al. [231], 
SCL levels appear to be positively associated with coro-
nary artery disease severity and mortality, which can be 
partially explained by the relationship between higher 
SCL levels and major CVD risk factors. Inhibition of SCL 
may be a therapeutic approach to reduce fracture risk in 
patients with OP. However, in this context, SCL lowering 
can increase the risk of myocardial infarction, the extent 
of coronary artery calcification, hypertension, and T2DM 
[245, 246]. Therefore, the use of romosozumab, a human-
ized anti-SCL monoclonal antibody, is not recommended 
for women at high risk of CVDs, particularly those who 
have had recent heart attacks or strokes [247]. Similarly, 
Bovijn et  al. [232] reported an increased risk of CVD-
related events after SCL inhibition. In their study, the 
SOST genetic variants were associated with a lower risk 
of fractures and OP, but with a higher risk of myocardial 
infarction and/or coronary revascularization, central adi-
posity, elevated systolic blood pressure, and T2DM.

In the majority of studies, lower SCL levels were deter-
mined in patients with OP [248–254]. Only Suarjana 
et al. [255] identified higher SCL levels in postmenopau-
sal women with OP. The positive association between 
SCL and BMD suggests that serum SCL may reflect the 
number of SCL-secreting osteocytes, being reduced in 
patients with OP [256]. Moreover, higher mechanical 
strains in bones with lower BMD are also associated with 
decreased SCL levels [257]. Regarding SCL levels and the 
occurrence of OP fractures, Lim et al. [257] and Gorter 
et  al. [258] found that patients with OP fractures had 
lower SCL levels than those without or non-OP fractures. 
Wanby et al. [259] did not find any difference in SCL level 
between patients with hip fracture and control group; 
however, much older individuals (over 75 years) were 
included in this study. On the other hand, considering the 
risk for OP-related fractures, two large prospective stud-
ies [260, 261] revealed that high levels of SCL may serve 
as a strong and independent risk factor for OP-related 
fractures in postmenopausal women. In this case, asso-
ciations between SCL levels and fracture risk were inde-
pendent of BMD and/or hip fracture risk was enhanced 
when high SCL levels were combined with lower BMD. 
However, these findings were strongly supported by the 
application of the SCL inhibitor romosozumab, which 
demonstrated that lowering SCL resulted in a reduction 
in fracture risk (by 73% and 36% for vertebral and clini-
cal fractures, respectively) and an increase in BMD (by 
13.3% in lumbar spine BMD) after one year of the ther-
apy [262, 263]. The exact mechanism linking SCL levels 
and OP-related fracture risk is not clear, but it appears 
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to be related to SCL-induced inhibition of Wnt signaling 
pathway and subsequent decreased bone formation and 
increased bone resorption [260].

The information presented in this chapter shows that 
higher levels of SCL are reported in individuals with 
obesity, T2DM, and CVDs. In obese subjects, SCL lev-
els are positively associated with FM, TGs, hypertension 
and show a decreasing trend in response to moderate or 
increased physical activity. In addition, circulating SCL 
appears to be positively related to coronary artery disease 
severity and mortality. On the other hand, higher SCL 
is associated with lower HDL cholesterol. Considering 
T2DM, SCL levels are elevated in patients with impaired 
glucose regulation and positively correlate with fasting 
blood glucose and insulin resistance. In patients with OP, 
reduced SCL levels are recorded.

Conclusion
Recent research demonstrates diverse functions of 
bone-derived cytokines and suggests their involve-
ment in MetS. In fact, each component of MetS clearly 
affects bone mass and bone metabolism. In addition, 
MetS is associated with other serious disorders, includ-
ing T2DM, CVDs, OP, which have an unfavorable impact 
on bone quality. Based on current studies, FGF23 may 
become useful biomarker for obesity, T2DM, and CVDs, 
as FGF23 levels were elevated in patients suffering from 
these diseases. In addition, FGF23 can be used as a pre-
dictive factor to evaluate the progression of CKD. LCN2 
could serve as an indicator of obesity, dyslipidemia, 
T2DM, and CVDs. The levels of LCN2 positively cor-
related with obesity indicators, TGs, and negatively cor-
related with HDL cholesterol. Moreover, patients with 
T2DM and CVDs had increased LCN2 levels. Circulating 
LCN2 can also be used as a promising predictor related 
to cardiovascular mortality. SCL may act as a potential 
biomarker predicting the occurence of MetS including 
all its components, T2DM, CVDs, and OP. In contrast 
to LCN2, a positive association with hypertension was 
recorded for SCL. Higher levels of SCL were noted in 
subjects with T2DM, CVDs and lower in patients with 
OP. In conclusion, we can state that aforementioned 
bone-derived cytokines are involved in the outcomes 
of MetS, T2DM, CVDs, and OP. Therefore, they have 
the potential to serve as hopeful predictors and possi-
ble treatment targets in these diseases. However, further 
research on the endocrine system through bone-derived 
cytokines is needed, which may reveal new insights into 
the prediction, prevention, and treatment of MetS and 
MetS-related diseases negatively affecting bone quality.
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