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Summary

The rapid and widespread clinical adoption of highly effective incretin-mimetic drugs

(IMDs), particularly semaglutide and tirzepatide, for the treatment of obesity has out-

paced the updating of clinical practice guidelines. Consequently, many patients may

be at risk for adverse effects and uncertain long-term outcomes related to the use of

these drugs. Of emerging concern is the loss of skeletal muscle mass and function

that can accompany rapid substantial weight reduction; such losses can lead to

reduced functional and metabolic health, weight cycling, compromised quality of life,

and other adverse outcomes. Available evidence suggests that clinical trial partici-

pants receiving IMDs for the treatment of obesity lost 10% or more of their muscle

mass during the 68- to 72-week interventions, approximately equivalent to 20 years

of age-related muscle loss. The ability to maintain muscle mass during caloric

restriction-induced weight reduction is influenced by two key factors: nutrition and

physical exercise. Nutrition therapy should ensure adequate intake and absorption of

high-quality protein and micronutrients, which may require the use of oral nutritional

supplements. Additionally, concurrent physical activity, especially resistance training,

has been shown to effectively minimize loss of muscle mass and function during

weight reduction therapy. All patients receiving IMDs for obesity should participate

in comprehensive treatment programs emphasizing adequate protein and micronutri-

ent intakes, as well as resistance training, to preserve muscle mass and function, max-

imize the benefit of IMD therapy, and minimize potential risks.
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1 | INTRODUCTION

There has been a dramatic increase in the use of the GLP-1 (glucagon-

like peptide-1) receptor agonists semaglutide and liraglutide, and the

GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor

co-agonist tirzepatide to treat obesity after clinical trials showed that

semaglutide and tirzepatide were highly effective for weight reduction

and after FDA approval for obesity.1,2 The rapid clinical adoption of

these and other incretin-mimetic drugs (IMDs) for obesity treatment

has outpaced the ability of professional medical societies to update

clinical practice guidelines. Consequently, important considerations

for the use of IMDs, including management of side effects, may
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receive inadequate attention in the clinic, leaving patients exposed to

potential adverse effects and uncertain long-term outcomes. An

emerging concern is loss of skeletal muscle mass and function,

an effect that can lead to reduced functional and metabolic health,

weight regain or weight cycling, compromised quality of life, and other

adverse outcomes.3,4 Available evidence provides limited information

about preventing or reversing muscle loss associated with the use of

IMDs. The goal of this paper is to examine the issue of muscle loss

and outline clinical strategies for minimizing the loss of muscle mass

and function in people using IMDs for the treatment of obesity. The

paper is based on a 1-day scientific roundtable meeting in August

2023 attended by each of the authors.

2 | IS THE CONCERN JUSTIFIED?

2.1 | Muscle loss in people with obesity

Glucagon-like peptide-1 and GIP are hormones that exert an incretin

effect, in which an oral glucose load induces a stronger insulin

response than an isoglycemic intravenous glucose load.5 Similar to

endogenous incretin hormones, IMDs have pleiotropic effects on the

gastrointestinal tract, the central nervous system, and other organ sys-

tems. In general, IMDs have a significant effect on the regulation of

body weight by suppressing appetite and slowing gastric emptying.5 It

is widely recognized that restricted caloric intake leading to weight

reduction is usually accompanied by loss of muscle mass6 and that

such loss can be detrimental.3,4 Thus, steps to monitor and minimize

loss of muscle mass and function are essential components of a com-

prehensive obesity treatment program.

The central goals of obesity treatment are long-term reduction of

excess and abnormal adiposity, as well as complications associated

with excess body weight, such as cardiovascular disease (Figure 1).8,9

Unfortunately, most patients who use anti-obesity medications,

including IMDs, for this purpose regain much of their former weight

after stopping therapy.10,11 Specifically, at the end of the weight

reduction phase, most patients will have lower energy expenditure

owing to various adaptations, including lower muscle mass, reduced

basal metabolic rate, and possibly improved muscle efficiency

(Figure 2).13 Because muscle is more metabolically active than adipose

tissue, reductions in muscle mass lead to reduced energy expenditure

and consequently reduced energy deficit, rendering weight mainte-

nance more difficult. Furthermore, it is likely the body weight regained

after stopping treatment is disproportionately composed of adipose

tissue, with little regain of lean mass and little increase in energy

expenditure.14,15 This process can lead to weight cycling, which is par-

ticularly common in young and middle-aged women (<60 years), who

are also the most common type of patients seeking obesity treat-

ment.16 Severe weight cycling is associated with an increased risk of

muscle loss and sarcopenic obesity,15,17 which has been reported in

as many as 20% of young women (≥18 years of age) seeking obesity

treatment.18

On average, people with obesity have a higher absolute skeletal

muscle mass and strength than those with a normal weight, especially

in weight-bearing muscles.9,19,20 However, a substantial percentage of

people with obesity have low muscle mass.21 Furthermore, when

muscle strength is normalized to body weight, it is lower in people liv-

ing with obesity.19 Another factor is that prediabetes and type 2 dia-

betes (T2D) are common in people with obesity, and T2D is

associated with lower muscle mass and more rapid age-related

F IGURE 1 Muscle-related goals
of obesity treatment and muscle-
related complications of suboptimal
treatment. Adapted from Prado et al.7
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declines in muscle mass.22–25 In addition, it is widely recognized that

excess and abnormal adiposity has detrimental effects on muscle

strength and structure, as well as cardiovascular disease, due to multi-

ple mechanisms, including myosteatosis.19,26,27

Low muscle mass is often unrecognized and is independently

associated with increased risk of mortality and morbidity, reduced

quality of life, increased risk of T2D, and other adverse health out-

comes.3,4,8,28,29 A recent study estimated that 15.9% of the US adult

population (≥20 years old) had obesity with low muscle mass,

representing almost 30 million people.21 These individuals—and espe-

cially women and those with T2D, prediabetes, or metabolic

dysfunction-associated steatotic liver disease (MASLD)—are already

at high risk of sarcopenia (age-related loss of skeletal muscle function

and mass),30,31 sarcopenic obesity (the co-existence of excess adipos-

ity and low muscle mass/function, which can occur at any age32), and

the serious negative health outcomes accompanying those conditions

(Figure 3).16,21,28,29,33

2.2 | Muscle loss in phase 3 trials of IMDs for
treatment of obesity

Interpretation of muscle loss in phase 3 trials of IMDs necessitates a

clear understanding of body composition terminology and its applica-

tion. According to precise definitions, lean mass includes lean soft tis-

sues, not bone mass (Figure 4).34 Fat-free mass, in contrast, includes

the sum of lean mass and bone mass. Unfortunately, the terms “lean
mass” and “fat-free mass” are often mistakenly used interchangeably,

which ignores these critical distinctions. Compounding this issue,

many studies fail to explain dual-energy X-ray absorptiometry (DXA)

methods in sufficient detail, making it challenging to determine which

body composition compartment is being assessed and whether the

terminology is used accurately.

In a pivotal trial of semaglutide for the treatment of obesity

(Semaglutide Treatment Effect in People with Obesity-1; STEP-1), a

subset of participants had body composition analyzed by DXA before

and at the end of the 68-week treatment period (see supplementary

appendix in Wilding et al.35). In the semaglutide-treated (2.4 mg once

weekly) group, body weight was reduced by an average of 17.32 kg

during the treatment period (vs. 2.65 kg in the placebo group); this

included a 6.92-kg mean reduction in total lean mass (vs. 1.48 kg in

the placebo group). Thus, in the semaglutide group, 40% of the reduc-

tion in body weight was due to a reduction in lean mass. Perhaps

more importantly, 6.92 kg represents 13.2% of the average total lean

mass at baseline (52.4 kg). Although muscle usually accounts for about

one-half of lean mass, it is not possible to determine from this publica-

tion the actual proportion of lean mass that was muscle versus other

non-fat tissues such as the liver, heart, and other organs and tissues.

F IGURE 3 Factors associated with muscle loss that may
contribute to, or compound, muscle loss during IMD therapy for
obesity. T2DM, type 2 diabetes mellitus.

F IGURE 4 Definitions of body composition terms. Notably, fat-
free mass and lean mass are not synonymous. In many body
composition studies, it is unclear whether the values reported as lean
mass are consistent with these definitions.

F IGURE 2 Expected metabolic adaptations during IMD treatment
and their relationship with factors associated with increased risk of
weight regain after cessation of therapy. Decreased appetite and
caloric restriction result in decreased body weight and energy
expenditure. Upon cessation of IMD therapy, appetite and energy
expenditure often increase, as typically observed after caloric
restriction. These changes, along with residual lower energy
expenditure due to adaptations such as lower muscle mass, improved

muscle efficiency, and reduced basal metabolic rate, may contribute
to an increase in the risk of weight regain though more research is
needed to fully understand the causes of weight regain.12,13
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However, it is reasonable to conclude that muscle loss accounted for

at least half of the reduction in lean mass during the STEP-1 trial.36–38

On this basis, a conservative estimate is that participants in the sema-

glutide group lost at least 10% of their muscle mass during the

68-week treatment period.

In a pivotal trial of tirzepatide (Study of Tirzepatide in Participants

with Obesity of Overweight; SURMOUNT-1) for obesity, a subset of

participants also had body composition analyzed by DXA before and at

the end of the 72-week treatment period (see supplementary appendix

in Jastreboff et al.2). In the pooled tirzepatide-treated (5, 10, or 15 mg

once weekly) DXA subgroup, participants lost 10.9% of their lean mass

during the treatment period. However, in the overall trial, tirzepatide-

treated patients lost 15% to 20.9% of their body weight. On a percent-

age basis, the loss of lean mass was similar to that reported among the

semaglutide-treated participants in the STEP-1 trial. The estimated loss

of skeletal muscle in these two major trials (10% or more during 68–

72 weeks of treatment) approximates the average decline in muscle

mass during 20 years of aging-related muscle loss in adults older than

30 years, estimated at 3%–5% per decade (Figure 5).39

In earlier studies of modest weight reduction by non-

pharmacologic caloric restriction, declines in lean mass typically

accounted for 10%–30% of the total body weight reduction.6 How-

ever, this percentage is not a constant and is expected to trend higher

in people rapidly experiencing large weight reductions, as observed

after bariatric surgery.40 It can also vary by sex, race, ethnicity, physi-

cal activity level, and other variables.6,41 Although participants in the

active-treatment groups of the STEP-1 and SURMOUNT-1 trials

experienced proportionately large declines in lean mass, those

declines may be consistent with declines in lean mass expected in

people experiencing large weight reductions.40 Or they could be due

to characteristics of participants enrolled in the trials or other trial-

related factors. In the absence of additional studies or analyses, it is

premature to speculate that the observed declines in lean mass were

due to anything other than reduced caloric intake and possibly inade-

quate intake of specific macro- or micronutrients (in the context of

low levels of physical activity).

Available evidence suggests that IMD therapy has beneficial

effects on muscle structure and function in animal models and

humans.42–51 It is unclear whether those effects are sufficient to

counteract the loss of muscle mass seen in clinical trials. However,

there is evidence that exercise has beneficial effects when added to

IMD therapy52 or to weight reduction induced by caloric

restriction.53–55 It could be a decade or more before long-term follow-

up studies evaluate the long-term risk of sarcopenia or sarcopenic

obesity associated with IMD therapy. Given the existing elevated risk

in people with obesity,7 and taking into account current research gaps,

efforts to minimize that risk should be a routine part of current

obesity care.

3 | PRESERVING MUSCLE MASS AND
FUNCTION DURING IMD THERAPY FOR
OBESITY

Although IMDs have pleiotropic effects,5 studies have demonstrated

that reduced caloric intake accounts for much of their weight-

reducing effect when used for the treatment of obesity.56–58 It is

often unrecognized that many people living with obesity have inade-

quate intake of protein and essential micronutrients.59–61 Therefore,

the reduced caloric intake during IMD therapy may exacerbate pre-

existing nutritional deficits essential for the maintenance of muscle

mass and function. Indeed, reduced muscle mass is now recognized as

a phenotypic criterion for the diagnosis of malnutrition by the Global

Leadership Initiative on Malnutrition62 and is also a defining charac-

teristic of sarcopenia and frailty.4 If such nutritional deficits are

accompanied by low levels of physical activity or a history of weight

cycling, patients are at even greater risk of losing muscle mass and

strength during IMD treatment. Thus, in the setting of obesity treat-

ment with IMDs, preservation of muscle mass should be viewed as a

key goal that parallels the goals of reducing adiposity and weight-

related complications (Figure 6). This principle is affirmed in the

European consensus on the definition and diagnosis of

sarcopenia.28,32

3.1 | Nutrition

Adequate nutrition is essential for the maintenance of muscle mass.63

Comprehensive obesity guidelines provide clear recommendations

F IGURE 5 Estimated yearly age-related muscle loss in adults and

estimated declines in total lean mass during the first year of IMD
therapy in the STEP-1 and SURMOUNT-1 trials.1,2,39 Estimated
declines in total lean mass during the 68-week STEP-1 and 72-week
SURMOUNT-1 trials were normalized to 52 weeks based on the
simplifying assumption that the decline in lean mass was linear over
time. The estimated decline in muscle mass due to aging is based on
numerous studies as described by Mitchell et al.39
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regarding macronutrient intake, a personalized approach to nutrition,

and a comprehensive approach to management.53–55,64 As noted in

several guidelines, individualized nutrition education and medical

nutrition therapy from a registered dietitian (RD) should be offered as

core components of any obesity treatment plan.53–55,65 If an RD is

not accessible, the prescribing clinic should provide nutrition educa-

tion and support.

In the setting of caloric restriction associated with IMD therapy,

many patients may have inadequate protein intake. Thus, protein

intake should be monitored to ensure it is adequate. Currently, the

Institute of Medicine Recommended Dietary Allowance for protein in

healthy people is 0.8 g/kg body weight/day.66 Higher amounts have

been recommended for healthy people older than 65 years

(1.2–1.5 g/kg body weight).67 Guidelines for the management of

patients after bariatric surgery recommend a minimal protein intake of

60 g/day and up to 1.5 g/kg ideal body weight.68 Clinical nutrition

guidelines from the Joslin Diabetes Center recommend protein intake

of 1.0–1.5 g/kg of adjusted body weight, in which adjusted body

weight is ideal body weight plus 0.25 � excess body weight.69 Protein

intake should be adapted to meet the individual needs of each

patient.67,68,70,71 Furthermore, protein quality (as reflected by the

content of essential amino acids and protein digestibility) affects

the ability of dietary protein to support muscle protein synthesis.72

Thus, nutrition education and support should include individualized

guidance on how patients can incorporate high-quality protein

sources in their diet.

Still unclear is the role of protein supplementation beyond recom-

mended levels as a stand-alone intervention to preserve muscle mass

during caloric restriction or during maintenance of a reduced body

weight. Studies addressing this issue have had mixed results, and

many study designs make it difficult to apply the results to specific

patient types such as people living with obesity on calorie-restricted

diets.73,74 There are no current guidelines that recommend protein

supplementation for these purposes beyond ensuring adequate pro-

tein intake on an individual basis.

Recent micronutrient guidelines emphasize that an adequate sup-

ply of all essential trace elements and vitamins (micronutrients) is

essential for the metabolism of foods supplying protein and energy.75

Unfortunately, an analysis of National Health and Nutrition Examina-

tion Survey (NHANES) data suggests that more than 40% of US adults

have inadequate intake of micronutrients.61 The recent micronutrient

guidelines provide detailed information about the signs of micronutri-

ent deficiency as well as how to assess and correct micronutrient

levels.75 Another set of guidelines addressing nutrition after bariatric

surgery also provides a reasonable template for a clinical approach to

this issue.68

IMD therapy for obesity is associated with reduced appetite, tem-

porary food aversion, and changes in taste preferences, especially dur-

ing the initial stages of therapy.76 If patients receiving IMD therapy

are unable to maintain a diet containing sufficient high-quality protein

and micronutrients, oral nutritional supplements (ONS) may be an

effective and scalable option. With guidance from the clinical team,

these products can be integrated into a comprehensive obesity treat-

ment plan without undermining weight reduction efforts.4,54 ONS

provide protein, energy, and micronutrients for people who are not

meeting their nutrition needs by food alone, and some are formulated

with ingredients intended to support muscle health, as discussed in

detail elsewhere.4 Use of ONS products is supported by extensive

research and clinical guidelines.77–79 Note that dietary supplements

are distinct from ONS and typically provide only specified types and

amounts of individual nutrients, and they often have less research

supporting their efficacy and safety.80–83 Several randomized con-

trolled trials have shown beneficial effects of ONS products on func-

tional outcomes in various clinical scenarios,84–86 including

significantly better leg strength in older (≥65 years), community-

dwelling adults at risk of malnutrition.87 Ongoing trials are evaluating

the role of ONS to support muscle health in people with obesity.88

3.2 | Physical activity

Both aerobic exercise and resistance training are widely recom-

mended as essential components of a comprehensive obesity care

plan.53–55,89 Some guidelines recognize that resistance training can

promote the maintenance of muscle mass and function during weight

reduction therapy and promote weight maintenance after cessation of

weight reduction therapy.53–55 In addition, several systematic reviews

and meta-analyses concluded that resistance training was effective

for maintaining muscle mass during caloric restriction in people with

overweight or obesity.90–93 Another systematic review found similar

F IGURE 6 Comprehensive obesity
management with incretin-mimetic
drugs. A comprehensive treatment
strategy utilizing an IMD aims to reduce
adiposity, mitigate obesity-related
complications, and preserve muscle mass.
Treatment plans for preserving muscle
mass should incorporate nutritional
therapy and education alongside physical

activity, with an emphasis on resistance
training.
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results after bariatric surgery.94 These results are also supported by a

randomized clinical trial of older adults living with frailty or reduced

muscle mass induced by weight reduction.95 A study of maintenance

therapy after low-calorie weight reduction showed that exercise in

combination with IMD therapy is associated with greater loss of adi-

posity and improvements in glycemic parameters and cardiorespira-

tory fitness versus IMD therapy alone or exercise alone.96

Furthermore, a long-term follow-up study of people with obesity who

were treated with an IMD has shown that discontinuation of therapy

was accompanied by weight regain as well as the return of cardiome-

tabolic risk factors (e.g., high blood pressure and prediabetes).11 How-

ever, evidence suggests that when IMD therapy is accompanied by

supervised exercise, those adverse effects occurring after treatment

discontinuation can be attenuated.52

A program of physical activity that includes resistance training

should take into account numerous patient-specific factors including

age, baseline fitness level, nutritional status, existing cardiovascular

disease or risk factors, joint health and overall mobility, respiratory

health, other comorbidities, medications, patient preferences, access

to fitness equipment or resources, patient motivation, and psychologi-

cal factors.97,98 Guidance on the development of individualized goals

and physical activity programs can be found in guidelines from the

American College of Sports Medicine and the Physical Activity Guide-

lines for Americans.97,98 The latter guidelines recommend at least

150–300 min per week of moderate-intensity exercise or 75–150 min

of vigorous-intensity exercise as well as muscle-strengthening activi-

ties on two or more days per week. It also notes the importance of

working all the major muscle groups: legs, hips, back, abdomen, chest,

shoulders, and arms.97 A practical consideration for developing resis-

tance training plans is that muscle loss during weight reduction may

affect some muscles more than others, and this effect may depend on

the person's sex and age.99

A related question is whether a high-protein diet increases the

benefit of resistance training with respect to preserving muscle mass

during caloric restriction in people with obesity. Several trials, sys-

temic reviews, and meta-analyses have addressed this question, but

most of them studied older adults or people without obesity.100–103

Because physical activity increases muscle protein synthesis, it is

likely to increase protein needs. At the least, available studies rein-

force the importance of maintaining adequate protein intake during

caloric restriction in people with obesity.32 Other advantages of

higher protein intake in this setting include increased satiety and

energy expenditure, both of which contribute to weight reduction

and maintenance of lower weight.104 Fortuitously, the two key strat-

egies for preserving muscle mass and function during caloric

restriction—nutrition and physical exercise—also have beneficial

effects on bone,105–107 potentially reducing the risk for osteosarco-

penic obesity.108

Skeletal muscle also functions as an endocrine organ. Muscle con-

traction during exercise triggers the release of numerous autocrine,

paracrine, and endocrine mediators collectively known as myo-

kines.109 These humoral factors have been shown to have beneficial

effects on cognition, lipid and glucose metabolism, adipocyte function,

bone structure, endothelial function, immune function, and skin struc-

ture.109 Though human research on this topic is limited,

preclinical studies suggest that loss of muscle mass or function can

detrimentally affect numerous physiological systems.109

4 | ASSESSING MUSCLE MASS AND
FUNCTION

Assessment of body composition (lean/muscle mass and fat mass) and

muscle function can provide useful information to guide the clinical

TABLE 1 Characteristics of selected methods for assessing body composition in outpatient settings.a

Availability Accuracy Diagnostic performance Longitudinal performance Cost

MRI

Ct

DXa

ADP

Ultrasound

BiA

Anthropometryb

Abbreviations: ADP (BodPod), air displacement plethysmography; BIA, bioimpedance analysis; CT, computerized axial tomography; MRI, magnetic

resonance imaging. Adapted from Prado et al.4

aDiagnostic performance is limited by the availability of cutoff values. Longitudinal performance depends on test–retest reliability and follow-up feasibility.

Performance ratings are poor (red), moderate (yellow), or sufficient (green).
bFor example, mid-upper arm circumference and calf circumference.4,110,113,114 The latter is becoming more relevant for patients with obesity due to the

availability of BMI-adjusted measurements.115

6 of 11 MECHANICK ET AL.



management of obesity.110–112 A summary of currently available

methods is shown in Table 1. The most accurate and reliable methods

for assessing body composition (magnetic resonance imaging [MRI],

computed tomography [CT], and DXA) have limited availability in out-

patient settings and relatively high costs.62 Although they should not

replace the measurement of muscle mass, muscle function tests can

be used as part of initial screening for suspected sarcopenic obesity

(Figure 7).28 Declines in muscle function may be more evident than

declines in muscle mass.62,116 Currently, there is a critical need for

studies exploring and validating how the results of body composition

tests should guide clinical decision-making during IMD therapy. For

example, diagnostic cutoffs for many muscle function tests were

developed and validated in older people and may not be applicable or

accurate in younger populations.16

5 | PROSPECTS FOR THE FUTURE

Low muscle mass is a common and adverse feature of numerous dis-

eases and conditions including obesity, sarcopenia, sarcopenic obesity,

malnutrition, frailty, cardiovascular disease, T2D, and cachexia.3 Thus,

there is considerable research interest in developing treatments to

prevent muscle loss or wasting, including efforts focusing on adults

with overweight or obesity. A recent study, for example, supports the

concept of combining liraglutide therapy for obesity with exercise to

improve the maintenance of weight reduction and metabolic parame-

ters.96,117 Effects on muscle mass remain to be explored, especially

when exercise is combined with the greater weight reduction induced

by more effective anti-obesity IMDs. Other studies are exploring

selective androgen receptor modulators118 or specific nutritional

strategies intended to support muscle preservation including ingredi-

ents such as protein, amino acids, or β-hydroxy-β-methylbutyrate

(HMB), often as part of more complete ONS.88 Finally, recent studies

and ongoing research support the promise of targeting alternative sig-

naling pathways for treating obesity. For example, recent evidence

suggests that agents targeting myostatin/activin signaling pathways

may be able to effect reductions in adiposity while preserving or even

increasing muscle mass.119,120

6 | CONCLUSIONS

During IMD therapy for obesity, preserving muscle mass and func-

tion is an essential treatment goal alongside reducing excess and

abnormal adiposity. Two key principles for preserving muscle mass

are (1) ensuring adequate intake of protein and other nutrients and

(2) incorporating physical activity—specifically resistance training—

into a comprehensive obesity treatment plan. ONS can counteract

or prevent nutrient deficiencies and help patients maintain a bal-

anced diet, especially in patients experiencing reduced appetite or

food aversion. These nutritional strategies should be designed to

provide patients with a targeted nutritional intervention without

contributing to excessive caloric intake. These goals and principles

reinforce the importance of patients having access to healthcare

professionals who can offer evidence-based guidance on nutrition

and physical activity.
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