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How important are fatty acids in human health and can they be used in treating 
diseases?
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ABSTRACT
Most of the short-chain fatty acids (SCFAs) are produced by Bifidobacterium, Lactobacillus, 
Lachnospiraceae, Blautia, Coprococcus, Roseburia, Facealibacterium and Oscillospira. Butyrate (C4 
H7O2

−) supplies 70% of energy to intestinal epithelial cells (IECs), supports tight-junction protein 
formation, induces the production of inflammatory cytokines, and inhibits histone deacetylase 
(HDAC). Butyrate is also associated with the recovery of brain trauma, improvement of dementia, 
the alleviation of autoimmune encephalitis, and several intestinal disorders. Low levels of SCFAs 
are associated with hypertension, cardiovascular disease (CVD), strokes, obesity, and diabetes 
mellitus. Cis-palmitoleic acid (C16H30O2), a mono-unsaturated fatty acid (MUFA), increases insulin 
sensitivity and reduces the risk of developing CVD. Lipokine palmitoleic acid reduces the expres-
sion of pro-inflammatory cytokines IL-1β (pro-IL1β), tumor necrosis factor α (TNF-α), and isoleucine 
6 (IL-6). Polyunsaturated fatty acids (PUFAs), such as omega-3 and omega-6, are supplied through 
the diet. The conversion of PUFAs by cyclooxygenases (COX) and lipoxygenases (LOX) leads to the 
production of anti-inflammatory prostaglandins and leukotrienes. Oxidation of linoleic acid (LA, C18 
H32O2), an omega-6 essential fatty acid, leads to the formation of 13-hydroperoxy octadecadienoic 
acid (13-HPODE, C18H32O4), which induces pro-inflammatory cytokines. Omega-3 PUFAs, such as 
eicosapentaenoic acid (EPA, C20H30O2) and docosahexaenoic acid (DHA, C22H32O2), lower triglycer-
ide levels, lower the risk of developing some sort of cancers, Alzheimer’s disease and dementia. In 
this review, the importance of SCFAs, MUFAs, PUFAs, and saturated fatty acids (SFAs) on human 
health is discussed. The use of fatty acids in the treatment of diseases is investigated.
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Introduction

The adult human gut is host to approximately 3.8 ×  
1013 (0.2 kg) bacteria, more or less equivalent to the 
estimated 3.0 × 1013 cells in a person of 70 kg.1 Most 
gut bacteria belong to the phyla Bacillota (Firmicutes) 
and Bacteroidota (Bacteroidetes)2 but are also repre-
sented by Pseudomonadota (Proteobacteria), 
Fusobacteriota (Fusobacteria), Verrucomicrobiota 
(Verrucomicrobia), Cyanobacteria, and 
Actinomycetota (Actinobacteria) (Figure 1). To 
a large extent, gut microbiota regulates the uptake of 
macronutrients3,4 but their development is controlled 
by diet, age, hormonal changes, the host’s immune 
system,5 and external factors such as medication, and 
stress (Figure 1). Western-style diets high in animal 
proteins have been associated with cardiovascular 
diseases (CVDs) such as atherosclerosis and heart 
failure but also obesity, type 2 diabetes mellitus,6–8 

irritable bowel disease, IBD, and asthma 

(Figure 1). A low protein or Mediterranean diet 
(MD) with plant-based products such as fruit, 
nuts, oils, and seeds9 contains more unsaturated 
fatty acids and is considered healthier with fewer 
reports of CVDs, insulin resistance, and an 
imbalance in immune responses.10,11 The gut micro-
biome of humans on an MD is dominated 
by Bifidobacterium, Enterococcus, Prevotella, 
Bacteroides, Faecalibacterium prausnitzii, 
Roseburia, and Lachnospiraceae.12,13 However, 
low cell numbers of Ruthenibacterium lactatiformans, 
Flavonifractor plautii, Parabacteroides merdae, 
Ruminococcus torques, and Ruminococcus gnavus 
were reported.14 An increase in Lactobacillus 12 and 
Firmicutes was also noted15 (Figure 2).

Diets high in fiber support the growth of glycan- 
degrading gut microbiota and the production of 
short-chain fatty acids (SCFAs) such as butyrate 
(C4H7O2

−), propionate (C3H5O2
−), and acetate 

CONTACT Leon M. T. Dicks LMTD@sun.ac.za Department of Microbiology, Stellenbosch University, JC Smuts Building, Van der Bijl Avenue, 
Stellenbosch 7600, South Africa

GUT MICROBES                                              
2024, VOL. 16, NO. 1, 2420765 
https://doi.org/10.1080/19490976.2024.2420765

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted 
Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-5157-9046
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2024.2420765&domain=pdf&date_stamp=2024-10-26


(C2H3O2
−).16 Fructan and galactooligosaccharide 

(GOS)-rich diets stimulate the growth of 
Bifidobacterium and Lactobacillus.17 Some 
researchers claim that the consumption of grains 
stimulates the production of phenolic compounds 
that promote the growth of bifidobacteria.18 These 
findings were, however, not confirmed when oats 
were the staple diet, as shown by Kristek et al.19 

Neither beta-glucans nor polyphenols stimulated 
the growth of bifidobacteria. It is important to 
support the growth of bifidobacteria and lactic 
acid bacteria, as they produce several SCFAs that 
have probiotic properties.20,21 According to 
McDonald et al,22 the gut microbiome of indivi-
duals who consumed more than 30 plant types 
weekly is dominated by SCFA producers, including 
F. prausnitzii and Oscillospira spp. The growth of 
these species is stimulated by acetate-producing 
Bifidobacterium and Akkermansia.23

High-molecular-weight beta-glucans stimulated the 
growth of Bacteriodetes and Prevotella, and repressed 

the growth of Firmicutes and Dorea.24 This was not 
observed with a diet of low-molecular-weight beta- 
glucans.24 In rats, beta-glucans from oats led to an 
increase in Lactobacillus and Bifidobacterium but 
a decrease in Enterobacteriaceae.25 In pigs, an oat 
diet led to an increase in Lactobacillus, Streptococcus, 
Enterococcus, Clostridium clusters I and XIVa, certain 
species of Bacteroides, Prevotella, Porphyromonas, and 
Enterobacteriaceae.26 Arabinoxylans have been asso-
ciated with an increase in Bifidobacterium animalis 
subsp. lactis, Prevotella, F. prausnitzii, and 
Lactobacillus, but a decrease in Escherichia. coli, 
Streptococcus, Staphylococcus, Lactobacillus, 
Clostridium histolyticum I and II, and Enterococcus .18 

Long-chain arabinoxylans also promoted the growth 
of Bifidobacterium longum with a concurrent increase 
in propionate levels.27

In this review, the importance of SCFAs, mono-
unsaturated fatty acids (MUFAs), polyunsaturated 
fatty acids (PUFAs), and saturated fatty acids (SFAs) 
on human health is discussed. The option of using 

Figure 1. Gut microbiota, intestinal epithelial cells (IECs), the autonomic nervous system (ANS) and the brain (central nervous system, 
CNS) are in constant contact via bidirectional communication channels driven by gut- and microbe-derived molecules that have 
a direct or indirect effect on the formation of neuronal, immune, and neuroendocrine signals. These interactions regulate the 
composition of the gut microbiome, bowel movement, and the migration of molecules across the gut wall. Some microbe-derived 
molecules reach the brain via the vagus nerve or enter the systemic circulation system (bloodstream). Neuroactive molecules released 
from the brain affect the behavior of gut microbiota and their gene expressions. An imbalanced diet, obesity, diabetes, cancer, mental 
disorders, and microbial infections are examples of abnormalities that alter the composition of the gut microbiome. Metabolites 
produced by gut microbiota have also been implicated in some disease processes, such as cardiovascular disease (CVD). Created using 
Biorender.com (1 July 2024).
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fatty acids in the treatment of diseases is also 
investigated.

Short-chain fatty acids (SCFAs)

Most SCFAs are produced in the colon by 
Bifidobacterium, Lactobacillus, Lachnospiraceae, 
Blautia, Coprococcus, Roseburia, Faecalibacterium, 
Clostridium, and Eubacterium.28,29 Of all SCFAs, 
butyrate is the best studied, as it supplies 70% of the 
energy requirements of the colonic epithelium,30 

plays a critical role in the expression of tight- 
junction proteins ZO-1, ZO-2, occludin, and junc-
tional adhesion molecule A,31 and has direct anti- 
inflammatory effects, inhibiting nuclear factor 
kappa-B (NFκB) activation (Figure 2). Butyrate 
also stimulates the differentiation of colonic regu-
latory T cells,32 and induces inflammatory cyto-
kines (Figure 2).

SCFAs affect at least two systems of molecular 
signaling that have widespread regulatory effects, 
i.e., the deacetylation of histones, regulated by 

histone deacetylase (HDAC), and the adherence 
to G-protein-coupled receptors (GPCRs), also 
called free fatty acid receptors (FFARs) (Figure 2). 
G-protein receptor 43 (GPR43/FFAR2) and GPR41 
(FFAR3) are located on the surface of intestinal 
epithelial cells (IECs),32 neurons of the enteric ner-
vous system (ENS), portal nerve, and sensory 
ganglia,33,34 as shown in Figure 2. GPR43, mostly 
expressed in subcutaneous fat, visceral fat, and 
bone marrow, regulates energy expenditure in ske-
letal muscles and in the liver.35 GPR 41, activated 
by propionic acid (C3H6O2),36 transfers signals 
directly to the central nervous system (CNS)37 

and induces the nuclear phosphoprotein Fos in 
the dorsal vagal complex of the brainstem, the 
hypothalamus, and the spinal cord.38 FFAR4 
(GPR120) is expressed in adipocytes, endothelial 
cells, and macrophage39 and assists in the regula-
tion of adipogenesis, insulin sensitivity, and 
inflammation. Dysfunction of FFAR4 is associated 
with insulin resistance, obesity, and eccentric 
remodeling.39 FFAR1 (GPR40) senses long-chain 

Figure 2. The role of short-chain fatty acids (SCFAs), especially butyrate, in inflammation, gene expressions, gut wall integrity, and 
disease. HDAC: histone deacetylase, HAT: histone acetyl transferase, MCFAs: medium-chain fatty acids, LCFAs: long-chain fatty acids, 
MCT1: monocarboxylate transporter-1, SMCT1: sodium-coupled monocarboxylate transporter-1, FFAR: free fatty acid receptor, GPR: 
G-protein receptor, IL: isoleucine, PGE2: prostaglandin E2, INFγ: interferon gamma, TNF: tumor necrosis factor, Th17: T-helper cell 17, 
nFƙB: nuclear factor kappa-B. Created using Biorender.com (1 July 2024).
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free fatty acids (FFAs) produced by lipolysis and 
endogenously synthesized triglycerides.40 The 
binding of FFAs to FFAR1 on pancreaticβ-cells 
and enteroendocrine cells activates signaling 
through the transducer protein Gq and β- 
arrestin.40 This releases Ca2+ into the cytosol that 
activates protein kinase C, which enhances the 
release of insulin and glucose uptake.40 Apart 
from regulating energy levels, FFAR1 also plays 
a role in regulating pain and inflammation in the 
brain.40 Most SCFAs are transported across the gut 
wall in dissociated form by an HCO3

− exchanger of 
unknown identity, a monocarboxylate transporter- 
1 (MCT1) or sodium-coupled monocarboxylate 
transporter-1 (SMCT1) (Figure 2). Some SCFAs, 
however, diffuse across IEC membranes and enter 
the bloodstream in a non-ionized form.41 It is also 
noteworthy that SCFAs stimulate antimicrobial 
peptides through the cathelicidin LL-37 pathway, 
as shown in the prevention of Shigella infections.42

The acetylation and deacetylation of histones is 
a fundamental process in DNA coiling and the 
regulation of gene expression. Butyrate acts as an 
HDAC inhibitor (HADCi), thus preventing the 
deacylation of histones (Figure 2) and increasing 
the expression of repressed genes.43 This process is 
crucial in activating extrinsic and intrinsic apopto-
tic pathways, reactive oxygen species (ROS), and 
cell cycle arrest in cancer cells.44–46 The inhibition 
of HDAC also impacts several other diseases, such 
as brain trauma, dementia, and autoimmune 
encephalitis.47,48 By inhibiting HDAC, chromatin 
is exposed to aryl hydrocarbon receptor (AhR)- 
ligand complexes and binding sites in the promoter 
of AhR target genes. Butyrate thus modulates AhR 
activation.49 Binding to Ahr is important in several 
metabolic and immune processes (Figure 2), allow-
ing the co-existence of gut microbiota and their 
host.50 The activation (increase) of AhR downre-
gulates intestinal inflammation, alleviating inflam-
matory bowel diseases (IBD), including Crohn’s 
disease and ulcerative colitis (UC), but also celiac 
disease, metabolic syndrome, liver disease, and 
neurological disease, as summarized in Figure 2. 
Elevated levels of AhR lead to a decrease in IFNγ, 
IL-6, IL-12, TNF, IL-7, and IL-17, a decline in 
microbial translocation and fibrosis, an increase 
in regulatory mechanisms such as IL-10, IL-22, 
prostaglandin E2, and Foxp3 (scurfin), the 

production of antimicrobial peptides, and the res-
titution of damaged epithelial cells, as listed in 
Figure 2. An increase in deacetylated histones 
decreases the expression of pattern recognition 
receptors, kinases, transcription regulators, cyto-
kines, and chemokines. In mice, the inhibition of 
HDACi in the frontal cortex and hippocampus 
alleviated depressive behavior,51 dementia, and 
brain trauma.52 Patients suffering from neurologi-
cal disorders such as depression, Parkinson’s dis-
ease (PD), and schizophrenia, have higher than 
normal levels of HDAC.53 Parkinson’s disease is 
associated with increased cell numbers of entero-
bacteria and potentially harmful pro-inflammatory 
Proteobacteria, especially Ralstonia, and a decrease 
in Prevotella53,54 and butyrate-producing Blautia, 
Coprococcus, and Roseburia.55,56 In severe cases of 
PD, changes in the integrity of the blood-brain 
barrier (BBB), CNS functioning, and microglia 
maturation were observed.57,58 Studies conducted 
on germ-free (GF) mice have shown that defective 
microglia could be stimulated by supplementing 
the feed with butyrate, propionate, and acetate.59 

Acetate crosses the BBB and accumulates in the 
hypothalamus.60,61 This stimulates the production 
of gamma-aminobutyric acid (GABA) in the 
brain.62 GABA is the most abundant neurotrans-
mitter in the CNS of mammals and is co- 
transmitted with acetylcholine (ACH).63 An 
increase in ACH increases the expression of 
BDNF, encoding brain-derived neurotrophic factor 
(BDNF) in the frontal cortex and hippocampus.64 

This stimulates brain development.65 Low levels of 
BDNF are associated with depression and 
anxiety.66,67 Neurological disorders may, thus, be 
prevented by keeping SCFAs and HDAC at optimal 
levels.

SCFAs and tryptophan precursors interact with 
receptors on the gut wall, muscle layers surround-
ing the gut, liver, pancreas, adipose tissue, and 
immune cells.68 In entero-epithelial cells (EECs), 
SCFAs stimulate the release of gut hormones69 and 
modulate genes encoding the cyclic adenosine 
monophosphate (cAMP) response element- 
binding (CREB) protein. The latter regulates the 
synthesis of catecholamine neurotransmitters such 
as dopamine (DA).70,71 With an increase in the 
expression of tyrosine hydroxylase and a decrease 
in DA-β-hydroxylase (DBH; EC 1.14.17.1), DA is 
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converted to norepinephrine (NE).72,73 Elevated 
levels of DA caused by a deficiency in DBH may 
have a detrimental effect on the autonomic nervous 
system (ANS) that controls blood pressure and 
body temperature. In immune cells, SCFAs regu-
late T-regulatory cell differentiation59,74 and the 
maturation of microglial cells.75 Butyrate also acti-
vates ornithine decarboxylase, which results in the 
inhibition of polyamine metabolism and the acti-
vation of alkaline phosphatase.76

Low levels of SCFA have been associated with 
high blood pressure (hypertension), CVDs, strokes, 
obesity, and diabetes mellitus.77 In rats, hyperten-
sion could be prevented by restoring acetate levels 
in the cecum.33,76 Propionate administered to 
patients with obesity enhanced gut hormone secre-
tion while reducing adiposity and overall weight 
gain.77,78 Propionic acid also inhibits NFκB and 
may improve insulin sensitivity by activating per-
oxisome proliferator-activated receptor gamma.79 

However, despite the anti-inflammatory effects of 
propionic acid,79 it may have neurotoxic side 
effects, as reported for autism.80

SCFAs, produced by microorganisms, play a key 
role in microbiota-gut-brain axis (GBA) commu-
nication, protection of the intestinal barrier, and 
inflammatory responses. Levels of SCFAs, how-
ever, need to be carefully controlled, as several 
disadvantages have been reported. Acetate, for 
instance, promotes the production of intestinal 
IgA,81 stimulates the secretion of cytokine IL-6, 
and increases neutrophil recruitment.35

Monounsaturated fatty acids (MUFAs) and 
polyunsaturated fatty acids (PUFAs)

Monounsaturated fatty acids

Monounsaturated fatty acids (MUFAs) are found in 
several plants, including olives, macadamia nuts, 
canola seeds, avocados, pumpkin seeds, sesame 
seeds, almonds, cashews, peanuts, and pecans. 
MUFAs contain a single double bond, whereas 
PUFAs contain two or more double bonds. Typical 
examples of MUFAs are palmitoleic acid (C16H30O2) 
or palmitoleate, also referred to as cis-9-hexadecenoic 
acid and oleic- or 9-octadecanoic acid (C18H34O2). 
Palmitoleic acid is formed in the liver when stearoyl- 
CoA desaturase (SCD-1) removes two hydrogen 

atoms from palmitic acid (C16H32O2) at the C-9 and 
C-10 positions.82 Palmitoleate is present in the cis 
(16:1c9) or a trans (16:1t9) isomer. The cis isoform 
(cis-palmitoleate) is associated with increased insulin 
sensitivity and less lipid accumulation in the liver.83 

In animal models, cis-palmitoleate repressed the 
expression of proinflammatory markers and adipo-
kines, and increased carbohydrate intake and 
lipogenesis.84 Trans-palmitoleate, found in dairy pro-
ducts and partially hydrogenated oils, is not strongly 
associated with incident diabetes85 nor linked to 
blood clotting or strokes.86 Palmitoleate, converted 
from palmitic acid, increases insulin sensitivity 
(Figure 3), and reduces the risk of atherosclerosis 
and CVD.87,88 Lipokine palmitoleic acid has anti- 
inflammatory properties and reduces the expression 
of pro-inflammatory cytokines IL-1β (pro-IL1β), 
TNF-α, and IL-6 (Figure 3). In vitro studies showed 
that palmitoleic acid reduced lipopolysaccharide 
(LPS)-induced inflammation in macrophages via 
inflammasome and NFκB pathways.89 High concen-
trations of palmitoleic acid (more than 50 mm) are 
toxic and lower concentrations reduce human per-
ipheral blood lymphocyte proliferation, and T helper 
(Th1) and Th17 responses.90 Schirmer et al.,91 how-
ever, did not report a palmitoleic acid effect on lym-
phocyte-associated cytokines (IFNγ, IL-17, IL-22) 
when studied using human peripheral blood mono-
nuclear cells (PBMNCs). The discrepancy between 
these findings may be due to the use of different cell 
populations, i.e., isolated lymphocytes versus 
PBMNCs.90,91 More research is required to under-
stand the effect MUFA has on lymphocyte responses.

The effect of palmitic acid on reactive oxygen 
species (ROS) and apoptosis is schematically repre-
sented in Figure 3. Palmitic acid induces stress on 
mitochondria and the endoplasmic reticulum (ER), 
resulting in an increase in ROS and apoptosis.92,93 

Oleic acid, in turn, prevents an increase in ROS. 
Under normal conditions, the three critical trans-
membrane proteins PERK (ER-resident transmem-
brane protein kinase), IRE-1 (inositol-requiring 
enzyme type 1), and ATF6 (ER-membrane-bound 
transcription factor) are linked to the major ER 
chaperone Bip (GRP78). Under ER stress condi-
tions, Bip is released to interact with unfolded or 
misfolded proteins in the ER lumen.94 Triggering of 
PERK in the ER initiates the phosphorylation (acti-
vation) of the eukaryotic initiation factor 2α (eIF2α) 
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and the induction of transcription factor ATF4 as 
well as the CAAT/enhancer binding protein homo-
logous transcription factor (CHOP). The latter is 
involved in DNA damage, growth arrest, and the 
stimulation of apoptotic cell death. The autopho-
sphorylation of IRE1 leads to the splicing of 26 
nucleotides from the XBP1 mRNA. The XBP1 pro-
tein is a transcription factor that regulates gene 
expression in immunity and cellular stress response. 
The shorter spliced XBP1 (XBP-1s) also promotes 
the transcription of CHOP. When the ER is under 
stress, ATF6, released from Bip, is translocated to the 
Golgi and activated.95 ATF6 is an important signal 

transducer in cellular reprogramming that responds 
to protein misfolding in the endoplasmic reticulum. 
The mechanism by which ATF6 senses unfolded 
proteins and becomes activated is unknown.96 The 
alleviation of ER stress by oleic acid and regulation 
of unfolded protein responses are important in pre-
venting apoptotic cell death, especially in pancreatic 
β cells.97 Palmitic acid also stimulates pro- 
inflammatory responses in human immune cells 
via Toll-like receptor 4 (TLR4).98 The degradation 
of IKKB (IκB kinase) activates NFκB.99 NFκB 
induces the expression of various pro- 
inflammatory genes, including those encoding 

Figure 3. Visceral obesity and adipose lipolysis lead to the production of non-esterified fatty acids such as palmitic acid (C16H32O2). 
Stress induced on the mitochondrion and endoplasmic reticulum (ER) by palmitic acid results in fatty acid β (FAβ)-oxidation, an 
increase in reactive oxygen species (ROS), and apoptosis. Oleic acid (C18H34O2) represses the fatty acid translocase protein (FATP) FAT/ 
CD36 and prevents an increase in ROS. Palmitic acid also triggers the transmembrane kinase protein (PERK) in the ER, which dimerizes 
and autophosphorylates, leading to the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIf2α) and induction of 
transcription factor 4 (ATF4) plus the CAAT/enhancer binding protein homologous transcription factor (CHOP), also known as 
GADD153, in the nucleus. CHOP is involved in DNA damage, growth arrest, and the induction of apoptosis. Under normal conditions, 
the three critical transmembrane proteins PERK, IRE-1 (inositol-requiring enzyme type 1), and ATF6 (an er-membrane-bound 
transcription factor) are associated with the major ER chaperone bip (GRP78) of the heat shock protein 70 family. Bip interacts with 
nonglycosylated and glycosylated proteins and er-transmembrane signaling molecules. Under ER stress conditions, bip is released and 
interacts with unfolded or misfolded proteins in the ER lumen. The autophosphorylation of IRE1 leads to the splicing of 26 nucleotides 
from the XBP1 (a transcription factor) mRNA. The smaller spliced XBP1 (XBP-1s) also promotes the transcription of CHOP. During ER 
stress, ATF6 is released from bip and translocates to the Golgi where it is proteolytically activated. The perk-eIf2α-ATF4-chop pathway 
plays an essential role in palmitic acid-triggered apoptosis. The suppression of ER stress by oleic acid and regulation of unfolded 
protein responses is important in preventing apoptotic cell death, especially in pancreatic β cells. Palmitic acid stimulates pro- 
inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). The degradation of IKKβ (IκB kinase β) activates nf-κB 
(nuclear factor kappa B), which induces the expression of various pro-inflammatory genes, including those encoding cytokines and 
chemokines. Created using Biorender.com (1 July 2024).
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cytokines and chemokines (Figure 3), and also par-
ticipates in inflammasome regulation.100

Polyunsaturated fatty acids and their synthesis

Polyunsaturated fatty acids (PUFAs), such as 
omega-3 and omega-6, are not produced in the 
body but form an essential part of a diet.101 Fish oil 
is rich in omega-3 fatty acids such as eicosapentae-
noic acid (EPA) and docosapentaenoic acid (DPA), 
whereas α-linolenic acid (ALA; C18H30O2), an essen-
tial omega-3 fatty acid (Figure 4), is found in flax-
seed oils.102 Several bioactive mediators derived 
from omega-3 PUFAs are involved in the recovery 
of injured and infected tissue cells (summarized in 
Figure 4). Cell debris and bacterial cells are phago-
cytized by polymorphonuclear leukocytes (PMNs), 
which are subsequently removed by recruited 
monocyte-derived macrophages. These reactions 
are orchestrated by anti-inflammatory prostaglan-
dins and leukotrienes produced from the conversion 
of PUFAs by COX and LOX (Figure 4). 
Prostaglandins and leukotrienes are precursors of 

eicosanoids, i.e., signaling molecules regulating 
inflammation.102 Protectin, derived from DPA 
(Figure 4), represses the interactions between neu-
trophils and endothelial cells, neutrophil chemo-
taxis, and recruitment but increases macrophage 
phagocytosis.102,103 Protectins reduce the produc-
tion of inflammatory cytokines, including MCP-1/ 
chemokine C-X-C motif ligand-2 (CXCL-2).104 

Maresin 1, also derived from DPA (Figure 4), stimu-
lates macrophage phagocytosis and the clearance of 
human apoptotic neutrophils, similar to maresin-1 
derived from EPA.105 Concluded from these and 
other findings,106 the biological effects displayed by 
EPA and DHA also apply to DPA. DPA incorpo-
rates inflammatory cells more easily than EPA and 
DHA and displays stronger anti-inflammatory 
properties.107 Omega-3 PUFAs may thus control 
inflammation by mediating molecules with low or 
no inflammatory activity.108 Omega-3 PUFAs have 
also been used in treating dyslipidemic disorders, 
thrombosis, atherosclerosis, and myocarditis.108 An 
increase in the consumption of omega-3 PUFAs 
altered the composition of gut microbiota, led to 

Figure 4. Omega-3 polyunsaturated fatty acids (PUFAs) and omega-6 PUFAs play a role in inflammation, the activation of endothelial 
cells, apoptosis, cell repair, and cell regeneration. IL: interleukin, CXCL8: C-X-C motif chemokine ligand 8, NFκB: nuclear factor kappa B, 
Th: T-helper cell, TNFα: tumor necrosis factor-alpha, CPT1A: carnitine palmitoyltransferase 1A, COX: cyclooxygenases, LOX: lipox-
ygenase, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic acid, ALA: α-linolenic acid (C18H30O2). 
Created using Biorender.com (1 July 2024).
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lower levels of LPS produced, and decreased intest-
inal permeability.109 DHA favors the proliferation of 
alpha gut bacteria, especially Lachnospiraceae110 and 
Lactobacillus.111 PUFAs significantly increase cell 
numbers of Bifidobacterium, Lactobacillus, and 
Roseburia.111,112

Pregnant rodents fed high levels of omega-3 led to 
a decrease in numbers of Lachnospiraceae, 
Anaerotruncus, and Roseburia and an increase in 
Blautia, Oscillibacter, Clostridiales, Robinsoniella, 
Lactococcus, and Eubacterium in offspring.113 The off-
spring of mice fed high levels of omega-3 fatty acids 
had lower levels of Bacteroidetes and higher levels of 
Firmicutes.113 In animal and human studies, 
a deficiency in omega-3 fatty acids early in life leads 
to diminished cognitive abilities, weakened attention, 
loss of vision, and psychological disorders such as 
depression, schizophrenia, and dementia.109 These 
conditions may be prevented when breastfeeding 
mothers take omega-3 fatty acid supplements.109 

According to the authors, fatty acids in breast milk 
are only transferred to male infants. Omega-3 fatty 
acids are associated with improved metabolism and 
less weight gain in offspring.109 A reduction in mater-
nal omega-3 acids is associated with a significant 
reduction in epsilon proteobacteria, Bacteroides, and 
Akkermansia but an increase in clostridia.109 Trans- 
10, cis-12 conjugated LA (t10-c12 CLA) in dairy pro-
ducts and red meat, and produced by Lactobacillus 
plantarum PL62, have antiobesity properties but may 
induce hepatic steatosis and hyperinsulinemia, speci-
fically in diabetic or obese individuals.114 In mice, t10- 
c12 CLA reduced the Firmicutes:Bacteroidetes (F:B) 
ratio and decreased levels of Desulfovibrionaceae, 
Lachnospiraceae, Peptococcaceae, and Clostridiales 
Family XIII but increased Porphyromonadaceae.115 

High-fat palm oil and high-fat olive oil diets led to 
obesity without a drastic change in gut microbiota 
composition. Diets rich in palm oil contain phyto-
chemicals, lauric acid, retinoids, tocotrienols, and car-
otenoids. β-carotene in palm oil enhances gut 
immune homeostasis by modulating the production 
of IgA.116 Hidalgo et al.117 did, however, report an 
increase in Bacteroidetes when mice were fed olive oil 
but not when fed palm oil. This is interesting, as 
Bacteroidetes are associated with obesity. A high-fat 
palm oil diet, however, increased the F:B ratio, espe-
cially Clostridium clusters XI, XVII, and XVIII.118

Omega-6 arachidonic acid (AA, C20H32O2) is 
converted by COX and LOX to potential inflam-
matory mediators (eicosanoids; Figure 4).102 

Omega-6 PUFAs are precursors of many pro- 
inflammatory signaling molecules that trigger 
inflammation.108 In the case of pulmonary infec-
tions, AA initiated the release of IL-6 and CXCL8. 
Cytokines produced by pulmonary fibroblasts are 
regulated by prostaglandin and p38 mitogen- 
activated protein (MAP) kinase signaling.102 

Elevated levels of omega-6, typically found in 
a Western-style diet, may lead to more severe 
inflammation.119 Lipoxins (LX), also produced by 
the interaction of LOX with AA, (Figure 4) present 
anti- and pro-inflammatory reactions.120 In vitro 
tests have shown that LX reduces neutrophil 
migration121 and reduces inflammation in septic 
cells.122 In vivo studies have shown that LX 
increases neutrophil clearance.121 Lipoxin A4 
(LXA4) regulates leukocyte tracking and 
responses,123 modulates the activation of vascular, 
smooth muscle, and epithelial cells,124 and reduces 
renal fibrosis.125 Binding of L×A4to the LX recep-
tor (ALX) modulates the expression of adhesion 
molecules through inhibition of the NFκB pathway 
in endothelial cells.126,127

Omega-3 fatty acids have anti-inflammatory 
properties, whereas omega-6 fatty acids (not pro-
duced by humans) are pro-inflammatory.128 

A balance between the two omega fatty acids is 
thus important to keep gut microbiota in 
a balanced state.128 The oxidation of linoleic acid 
(LA, C18H32O2), an omega-6 essential fatty acid, to 
13-hydroperoxy octadecadienoic acid (13- 
HPODE), stimulates the production of TNF-α, 
MCP-1, IL-6 (pro-inflammatory cytokines) and 
cellular apoptosis.128 At the same time, barrier- 
forming tight junction proteins (TJPs) such as 
Claudin-1 and Occludin are downregulated, and 
pore-forming Claudin-2 is upregulated.128 This 
process, called “claudin switching”,129 leads to 
changes in the barrier function of the gut wall 
(IEC) and is often associated with IBD.128,130 The 
“switching” of TJPs is due to cytokine-mediated 
dysregulation.129 An increase in cytokine levels 
and a decrease in gut permeability were noted 
after 4 h when mice were fed 13-HPODE.130 After 
28 days of 13-HPODE feeding, an increase in cho-
lesterol uptake by peritoneal macrophages was 
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noted, which was considered an indication of 
severe intestinal inflammation.130 PUFAs are meta-
bolized by cyclooxygenase, lipoxygenase, and cyto-
chrome P450 (CYP-450) to eicosanoids, 
lipoxygenases, and other essential metabolites 
(Figure 4). Linoleic 9,10-epoxy octadecenoic acid 
(9,10-EpOME or leukotoxin) and 12,13-epoxy 
octadecenoic acid (12,13-EpOME or iso- 
leukotoxin) are the main products derived from 
the metabolism of LA. Both variations of epoxy 
octadecenoic acids have immunomodulatory prop-
erties. Experiments with mice have shown 
a reduction in EpOMEs and dihydroxy octadece-
noic acids (DiHOMEs) when fed a high-fat diet 
supplemented with the omega-3 α-linolenic acid 
(ALA).131 This also led to a lowering in the 
omega-6:omega-3 ratio, a decline in NFκB activa-
tion, divergence of M1 macrophages, and insulin 
resistance.131 12,13-DiHOME increased Th2 cells, 
which increased the risk of developing asthma.132 

In children suffering from asthma, the cell num-
bers of Candida and Rhodotorula spp. increased 
and those of Bifidobacterium, Akkermansia, and 
Faecalibacterium spp. decreased. The role of ALA 
in the differentiation of M2 macrophages is poorly 
understood. A recent study133 has shown that 13- 
hydroxy9(Z),15(Z)-octadecadienoic acid (13-OH), 
and 13-oxo-9(Z),15(Z)-octadecadienoic acid (13- 
oxo) produced by lactic acid bacteria regulates 
M2 differentiation. This is orchestrated via the 
GPCR40-MAPK and PPARγ signaling pathways 
in the presence of IL-4 and IL-13. Mice fed ALA, 
13-OH, or 13-oxo for three days showed differen-
tiation of M2 macrophages but only in the lamina 
propria of the small intestinal tract. No additional 
formation of adipose tissue, gut-associated lym-
phoid tissue, and mesenteric lymph nodes was 
observed.133

Studies conducted by Valenzuela et al. 
(2023)134 on Balb/c mice have shown that the 
highest levels of PUFA, based on the levels and 
activity of desaturases Δ-6D and Δ-5D, and elon-
gases Elovl2 and Elovl5, were synthesized in the 
liver. Omega-3 and omega-6 PUFAs are desatu-
rated by Δ-6 desaturase (Δ-6D) and Δ-5D, respec-
tively, whereas the elongation of omega-3 and 
omega-6 PUFAs is regulated by elongases 2 
(Elovl2) and Elovl5, respectively.135 In mice, low 

levels of PUFA were synthesized in the brain, 
testicles, and kidney and no PUFA enzyme activ-
ity was reported in the heart and lung.134 The 
production of Δ-5D in the liver was 4.3- to 
22.9-fold higher (based on protein concentration 
and enzyme activity) compared to Δ-5D levels in 
the testicle.134 This compared to Elovl2 levels in 
the kidney.134 Furthermore, 4.0- to 85-fold higher 
levels of Δ-5D activity were observed in the liver 
compared to Δ-6D activity in the testicle and 
Elovl5 activity in the kidney.134 Higher levels of 
omega-3 PUFAs were produced compared to 
omega-6 PUFAs but levels may differ depending 
on the physiological or pathological condition of 
a patient. Both processes (desaturation and elon-
gation of PUFAs) are influenced by the availability 
of zinc, vitamin B, and magnesium, protein levels 
in the diet, and oxidative stress in the liver.135 

Obese individuals and those suffering from non-
alcoholic fatty liver disease (NAFLD) produce less 
PUFAs.136

The intermediates formed as a result of Elovl5 
activity were similar in omega-3 and omega-6 pro-
duction. The activity of Elovl2 was higher with 
omega-3 substrates (EPA and stearidonic acid, 
SDA) compared with omega-6 substrates (ARA and 
adrenic acid, ADA), as observed with recombinant 
Saccharomyces cerevisiae cells that expressed 
Elovl2.137,138 A possible explanation for this is that 
the fatty acid (FA) transport protein 2a/very long 
chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) 
enhances the transfer, activation, and metabolism of 
omega-3 PUFAs.139 This may lead to an increase in 
dietary DHA but depends on the availability of ALA, 
the elongation and/or desaturation of DHA precur-
sors, and a range of other physiological and enzy-
matic conditions (summarized by Valenzuela et al.134

The synthesis of PUFA is initiated by the con-
version of ALA and LA to an acyl-CoA derivative 
by acyl-CoA synthases 3 and 4, the desaturation 
of acyl-CoA by Δ6D and Δ5D to form a double 
bond, elongation (the addition of two carbon 
atoms) of PUFA acyl-CoA by elongase 2/5, and 
the oxidation of fatty acids (FAs) by peroxisomal 
FA oxidase (FAO).135 The end products EPA, 
DHA, and AA are important in cell growth, 
membrane formation, and the functioning of 
organs. The transcription of desaturases and 
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elongases in mammals is regulated by insulin via 
the sterol regulatory element binding protein 1c 
(SREBP-1c), under control (suppression) by 
omega-3 PUFAs. For further information on the 
synthesis of omega-3 and omega-6 PUFAs, and 
the influence of nutritional status on the desa-
turation and elongation of these fatty acids, the 
reader is referred to Videla et al.135

Saturated fatty acids (SFAs)

Saturated fatty acids (SFAs) are distinguished 
from unsaturated fatty acids by having single 
C – C bonds. Short-chain SFAs (C8 to C12) are 
found in vegetable oils, whilst SFAs with more 
than 12 carbons, e.g., palmitic acid and stearic 
acid (C18H36O2) are predominantly in eggs, ani-
mal fats, and butter87 SFAs are generally pro- 
inflammatory.128 The interaction of palmitic acid 
and other dietary SFAs with the nucleotide- 
binding oligomerization domain-leucine-rich 
repeat-pyrin domain-containing 3 (NLRP3) 
inflammasome leads to an increase in 
adiposity.128 Macrophages in adipose tissue have 
higher levels of the NLRP3 inflammasome, as 
observed in obese mice and humans. A decrease 
in NLRP3 inflammasome was noted when calorie 
intake was restricted or with an increase in 
exercise.140 In vitro studies have shown that diets 
rich in SFAs can activate TLR4 in dendritic cells 
and lead to an increase in NLRP3 
inflammasome.140 Studies with human monocytes 
have shown that palmitate, myristate, and stea-
rate, but not unsaturated fatty acids such as pal-
mitoleate and oleate, activates TNFα and IL-1β, 
which promote death and increases 
inflammation.128 Palmitate stimulates the produc-
tion of the inflammatory caspase proteins cas-
pase-1, caspase-4, and caspase-5.87 These 
proteins play an important role in the production 
of IL-1β and the initiation of cell death.141 

Palmitic acid, stearate, and lauric acid are known 
to regulate inflammatory responses via TLR4 and 
NFκB signaling in immune cells.87 The myeloid 
differentiation primary response 88 protein 
(Myd88) transduces signals from all TLRs, except 
TLR3.87 The toll/interleukin-1 receptor (TIR) 
domain contains the TIR adaptor-inducing beta 
interferon (TRIF) that sends signals from TLR3 

and TLR4.87 TRIF protects cells from metabolic 
disorders and inflammation.142

Palmitic acid targets the receptor-interacting 
protein kinase 1 (RIPK1) in liver macrophages, 
leading to increased production of inflammatory 
cytokines (IL-1β, TNFα, and IL-6) and cell death. 
The condition is known as nonalcoholic steatohe-
patitis (NASH).143 Obese individuals and those 
suffering from type 2 diabetes are especially vulner-
able to developing NASH. An increase in palmitic 
acid leads to autophagy and cellular accumulation 
of autophagosomes.144 Mice lacking the ability to 
produce the mixed lineage kinase domain-like pro-
tein (MLKL) were protected from autophagy when 
they were on a Westernized diet. They showed 
a reduction in liver injury, inflammation, and cell 
death.138 Palmitic acid induces the hypoxia- 
inducible factor-1α (hif-1 α), responsible for 
inflammation regulated via the NFκB pathway 
and the production of pro-inflammatory cytokines 
TNF, IL-1β, and IL-6.145,146

SFAs and a high-fat diet influence cellular pro-
cesses in IECs, Paneth cells, and stem cells.147,148 

Disruption of Paneth cells affects the production of 
antimicrobial peptides and growth factors that 
maintain stem cells. Previous studies have shown 
dysfunction in these cells in patients with IBD.149 

In mice fed a high-fat diet, the dysfunction of 
Paneth cells led to the activation of type 
I interferons (IFNs) associated with nuclear farne-
soid X receptor (FXR).149

Palmitic acid is converted to palmitoleic acid, 
oleic acid, stearic acid, and sphingolipids.128 

Sphingolipids are also produced by bacteria, e.g., 
Bacteroides fragilis.150 Palmitic acid stimulates IgA 
responses, which may lead to the forming of muco-
sal adjuvants.151 Hepatocytes treated with palmitic 
acid release lipotoxic extracellular vesicles filled 
with sphingosine 1-phosphate (S1P). This stimu-
lates the infiltration of macrophages and induces 
hepatic lipotoxicity associated with NASH.152

Can fatty acids be used in the treatment of 
diseases?

Fewer cases of CVDs were reported for patients 
following a MD.153 A low-fat diet supplemented 
with PUFAs reduced waist circumference, blood 
pressure, triglyceride levels, and the prevalence of 
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metabolic syndrome.154 The relative abundance of 
Lachnospiraceae associated with an MD was inver-
sely correlated with blood pressure and lipid 
profiles.155 Oleic acid was associated with an 
increase in the Clostridiales vadin BB60 group.155 

Tryptophan, an essential amino acid found in 
a variety of foods, including poultry, fish, dairy 
products, and grains,156 typical of an MD, is meta-
bolized by gut microbiota into small molecules that 
serve as ligands for AhR. This stimulates the secre-
tion of glucagon-like peptide 1 (GLP-1) from 
EECs.156,157 Intestinal barrier functions are 
impaired with reduced AhR and less GLP-1 being 
released.157 Tryptophan produced by gut micro-
biota promotes the differentiation of neural pro-
genitor cells into mature neurons158 and reduces 
inflammation of the CNS.159 Although the con-
sumption of seafood reduces the risk for CVD,160 

the production of TMA by gut microbiota and the 
conversion to TMAO accelerates CVD, as shown in 
mice.145,161 A vegetarian diet, on the other hand, 
favors alpha bacteria,162 especially SCFA- 
producing taxa such as Akkermansia,163 

F. prausnitzii, Eubacterium rectale and 
Eubacterium biforme. 164

Lauric acid, retinoids, tocotrienols, and carotenoids 
in palm oil enhance gut immune homeostasis by mod-
ulating the production of IgA.116 Retinoic acid (vitamin 
A) triggers the production of IgA in B cells.165 Food 
rich in biotin (vitamin B7), such as Yam (orange sweet 
potato) supports the proliferation and maintenance of 
gut microbiota that prevents the activation of NFκB 
and stimulates the generation of pro-inflammatory 
cytokines such as tumor necrosis factor α (TNFV), 
IL-8, IL-6, and IL-1.166 The antioxidative, immunomo-
dulatory, and anti-inflammatory properties of vegeta-
ble flavonoids protect the host against chronic 
inflammatory diseases.167,168 Innate immunity and 
the constant production of neutrophils are important 
in sustaining a balanced gut microbiome166 and fight 
off invading microorganisms.169

Inulin-type fructans (ITFs), typically found in 
wheat, onion, and chicory,170 repress appetite170 

and prevent constipation.171,172 Inulin stimulates 
the growth of Bifidobacterium, Anaerostipes, 
Bacteroides, and Faecalibacterium but represses 
the growth of Coprococcus, Dorea, 
Ruminococcus, Bilophila, Blautia, Oscillibacter, 
and Ruminococcus.172–174 Although inulin does 

not affect the production of SCFAs,167,168 changes 
were noted in the plasma levels of tyrosine and 
glycine.174 Inulin propionate ester (IPE) reduced 
the production of IL-8, increased the secretion of 
insulin,174,175 and stimulated the growth of 
Bacteroides uniformis and Bacteroides xylanisol-
vens but repressed the growth of Eubacterium 
ruminantium and Blautia obeum. 174

Conclusions

Fatty acids are major constituents of cell mem-
branes but are often overlooked as intracellular 
signaling molecules and gene expression modu-
lators. In the past, most research on fatty acids 
focused on human health, especially CVDs, can-
cer, type 2 diabetes, and inflammatory diseases. 
Extensive research has been done on PUFAs, 
especially butyrate, and its role in IBD and 
CRC. Research on SCFA transports has shown 
that the dysregulation of monocarboxylate trans-
porters such as MCT1, MCT4, and SMCT1 may 
be the answer to some gastrointestinal disorders. 
Acetate and propionate have similar notable 
effects on the GIT, with the latter demonstrating 
a pivotal role in weight management and the 
regulation of inflammation. The supplementation 
of a fiber-rich diet with SCFAs helps to maintain 
a healthy intestinal barrier and support diverse 
gut microbiota. More research is, however, 
required to explore the role intestinal microbiota 
play in the metabolism of SCFAs, including the 
mechanisms involved in the lowering of LDL- 
cholesterol by PUFAs such as omega-6, and the 
lowering of triglycerides by omega-3 PUFAs EPA 
and DHA. We need to understand the role of 
SCFAs in regulating blood flow, thrombosis, 
and neurological disorders. The relationship 
between omega-6 and omega-3 PUFAs in inflam-
mation regulation is not fully understood. Even- 
numbered saturated fatty acids, such as palmitic 
acid, raise total and LDL cholesterol levels. 
Reports of saturated fatty acids that increase coa-
gulation, inflammation, and insulin resistance 
necessitate in-depth research. The replacement 
of saturated fatty acids in a diet by cis MUFAs, 
such as palmitoleic and oleic acids, and ω-6 
PUFA (LA) lower LDL cholesterol levels and are 
associated with fewer incidences of CVDs. 
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Arachidonic acid, also a ω-6 PUFA, mainly acts 
as an eicosanoid precursor involved in inflamma-
tory reactions but EPA and DHA are important 
mediators in signal transduction and gene 
expressions. Trans SCFAs raise LDL and lower 
HDL cholesterol levels, thus increasing the risk of 
CVD. Trans SCFAs also promote inflammation 
and are prone to play a role in metabolic diseases.
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