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Abstract: Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical–pathological scenario that
occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause
of liver conditions and contributes to an increased risk of death worldwide. Even though the possible
causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and
sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise
many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore,
the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial
dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of
the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among
them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-
gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds
have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose
visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also
reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood
pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c,
adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in
the prevention and treatment of MAFLD.
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1. Introduction

Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical–pathological scenario
that occurs due to the accumulation of triglycerides in hepatocytes which is considered a
significant cause of liver conditions and contributes to an increased risk of death world-
wide [1–3]. It has different stages, starting with a simple accumulation of triglycerides
(non-alcoholic steatohepatitis—NASH), which can progress to inflammation and later to
fibrosis, cirrhosis, or hepatocarcinoma. The pathogenesis of MAFLD has not been fully
understood. Still, there is evidence that insulin resistance (IR) and associated subclinical
inflammation, obesity, and metabolic syndrome are recognized origins in the course of this
condition [4,5] and affect up to 30% of the world’s population [6–8].

Recently, the term non-alcoholic fatty liver disease (NAFLD) was changed to MAFLD,
since this one better identifies patients at a higher risk of liver fibrosis and progression of
the condition [9]. Moreover, other researchers proposed the term Metabolic Dysfunction-
associated Steatotic Liver Disease (MASLD) to include at least one of five cardiometabolic
risk factors. However, some authors investigated MAFLD and MASLD as predictors of an
augmented risk of atherosclerotic cardiovascular disease. The authors included more than
six thousand people that participated in the National Health and Nutrition Examination
Survey cohort. Their results showed that MAFLD and MASLD were related to different
risks for atherosclerotic cardiovascular disease. Notwithstanding, MAFLD predicted the
risk of this condition more than MASLD [9–12].

MAFLD is normally directly related to dyslipidemia, metabolic syndrome, obesity,
and diabetes [13]. This condition causes the dysregulation of the brain–intestine–liver axis,
and as a result, people with MAFLD tend to have greater cardiovascular risks and more
severe fatty liver disease [14–16]. Even though the possible causes of MAFLD can involve
the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle)
is the most influential factor in developing this condition. Furthermore, if body weight
decreases from 7% to 10%, MAFLD can be reversed in adults and children [17–20]. Figure 1
shows some aspects of MAFLD pathogenesis.

Diet can profoundly influence metabolic diseases. Food diets rich in fats, sugar, and
ultra-processed foods are related to inflammatory and oxidative processes. A diet abundant
in fruit and vegetables can reduce risk factors such as dyslipidemia, hyperglycemia, hy-
pertension, obesity, inflammation, and oxidative stress [5,21–27], which are essential in the
development and progression of MAFLD [28–31]. Phytocompounds comprise many natural
chemical compounds that are beneficial to counter metabolic diseases [32–42]. Polyphe-
nols are part of this group, and more than a thousand have been identified. Significant
components of this class are phenols, polyphenols, carotenoids, phytosterols, isoprenoids,
saponins, and dietary fibers [43].

Some polyphenols can reverse part of the liver damage related to inflammation,
oxidative stress, or mitochondrial dysfunction, acting directly on the functioning, synthesis,
and degradation of mitochondria and optimizing the functions of these cellular organelles.
Among these polyphenols are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid,
didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol,
and silymarin [44–55]. The incidence of liver disorders and associated conditions such
as overweight/obesity, diabetes, and metabolic syndrome has grown exponentially. For
these reasons, more research must be conducted to propose ways to mitigate risk factors
for these conditions [56]. Therefore, this review aims to investigate the impact of oxidative
stress, inflammation, mitochondrial dysfunction, and the role of phenolic compounds in
managing MAFLD.
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Figure 1. Factors related to the occurrence of Metabolic-Associated Fatty Liver Disease (MAFLD)
and the possibility of the inhibition of this condition. An unhealthy diet, sedentary lifestyle, obesity,
insulin resistance/diabetes, dyslipidemia, genetics, and excessive drug consumption are related to the
pathogenesis of MAFLD and its progression to fibrosis, cirrhosis, and cancer. A healthy diet, physical
exercise, and weight loss can improve metabolic conditions and can prevent or reduce MAFLD.

2. Discussion
2.1. Metabolic-Associated Fatty Liver Disease: General Aspects

As pointed out above, the modification of the term NAFLD to MAFLD was proposed
due to the augmented knowledge regarding the pathological disease scenario and new
therapeutic approaches for individuals, not only in non-alcoholic contexts but all patients
presenting fatty liver dysfunction, correlating this dysfunction with other conditions related
to metabolic deregulation [57]. Moreover, the definition of MAFLD can recognize hepatic
fibrosis better than NAFLD [58–60].
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MAFLD is profoundly linked to lipid metabolism which involves two pathways, start-
ing with the exogenous pathway, in which the body’s first contact with fat is ingested in
the diet [61,62]. Through chylomicrons produced by enterocytes, these lipids are trans-
ported through the lymphatic ducts until they reach the bloodstream and then continue
the endogenous route through the encountering of these lipoproteins with hepatocytes
and the deposition of lipoprotein content in these cells. Then, the triglycerides synthesized
in hepatocytes are secreted as VLDL (very-low-density lipoprotein). As it reaches extra-
hepatic tissues, it loses lipid content and is transformed into IDL (intermediate-density
lipoprotein) and LDL-c (low-density lipoprotein cholesterol) [63–66]. It is possible to better
understand the relationship between MAFLD and other diseases through understanding
various metabolic processes that occur in mitochondria, such as the tricarboxylic acid cycle
(TCA), the β-oxidation of fatty acids, urea synthesis, and respiratory chain [67,68]. When
using fuels such as glucose and fatty acids to obtain adenosine triphosphate (ATP), any
disturbance in one of these mechanisms can cause severe damage to the cell and, conse-
quently, to the tissue. Mitochondrial changes include a reduction in mitochondrial DNA
(mtDNA), structural lesion formation, reduced activity of respiratory chain complexes, and
damage to β-oxidation [69–71]; therefore, the metabolic repercussions of these changes can
be devastating for the body [72–76].

2.2. Metabolic-Associated Fatty Liver Disease and Lipid Metabolism

De novo lipogenesis (DNL) is an essential component of the lipid cross-talk between
the liver and adipose tissues, maintaining metabolic homeostasis. Imbalance between these
tissues is a common feature of conditions associated with obesity, metabolic syndrome,
and MAFLD, indicating how important it is to understand how this metabolic pathway
contributes to cellular function. In addition, targeting this pathway shows clinical promise
in MAFLD treatment [77–81].

On the other hand, excess triglycerides in the liver can decrease VLDL secretion
through negative feedback [82]. Increased liver fat accumulation also accelerates inflam-
matory processes contributing to oxidative stress so that the structure of cell membranes,
proteins, and mitochondria can be compromised, reducing the production of this VLDL
and balanced distribution of lipids throughout the body [83–86].

The result of the above-mentioned factors, associated with insulin resistance and
hyperglycemia, is liver steatosis. It is related to the abnormal accumulation of triglycerides
within parenchymal cells, mainly in the liver [87–90]. Steatosis occurs when there is
a dysfunction in the transport of lipids, with a consequent excessive accumulation of
fat in hepatocytes [91], a condition that has a direct link with dyslipidemia and type
2 diabetes mellitus (T2DM) [92], as adipose tissue releases pro-inflammatory cytokines
that can interfere with insulin signal transduction pathways. It is also possible to establish
a relationship between VLDL levels and DNL, proving that MAFLD is closely related
to eating habits [93–97]. The natural process of lipogenesis corresponds to the synthesis
and storage of lipids. At the same time, DNL generally occurs in response to excess
calories in the diet, synthesizing fatty acids and triglycerides from non-lipid sources such
as carbohydrates and proteins. When there is an excess of calories, the liver can increase
the production of fatty acids, which are then incorporated into VLDL for transport to other
tissues [43,82,97–103].

The deposit of fats in hepatocytes, the main characteristic of MAFLD, poses a risk of
developing NASH [104,105], leading to fibrosis and eventual liver cirrhosis. In this case,
normal tissue is replaced by scar tissue, interfering with liver functions, which can result
in liver failure and an increased risk of cancer [106]. This is a more advanced condition
of steatosis, characterized by the presence of inflammation and damage to liver cells, and
deserves attention, as in milder cases, this disease does not cause symptoms, and when
more advanced, the most common symptoms are ascites, encephalopathy, mental confusion,
bleeding, and a drop in the number of platelets [107,108]. Low levels of albumin, increased
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amounts of bilirubin, and changes in clotting factors may also indicate liver problems,
which can help diagnose steatosis [109–117].

In addition to the possible progression to fibrosis and its relation to metabolic syn-
drome, dyslipidemia, coronary artery disease, inflammation, and oxidative stress, MAFLD
may be related to mitochondrial dysfunction, as the pro-inflammatory state caused by an
augmented provision of lipids to the liver causes fatty infiltration in hepatocytes, which
induces lipid peroxidation and mitochondrial dysfunction [12,15,118–120].

Polyphenols such as anthocyanin, baicalin, catechin, chlorogenic acid, cichoric acid,
curcumin, didymin, ellagic acid, epigallocatechin-3-gallate, gallic acid, hydroxytirosol,
kaempferol, luteolin, mangiferin, puerarin, punigalin, quercetin, resveratrol, salviano-
lic acid, rosmarinic acid, and silymarin can target a variety of pathways related to the
physio-pathogenesis of MAFLD pathways and may work as therapeutically significant
compounds [41,54,119,121–125].

2.3. Metabolic-Associated Fatty Liver Disease, Insulin Resistance, and Oxidative Stress

Cellular respiration is a naturally oxidative process. It occurs through the respiratory
chain in mitochondria and is responsible for the transport of electrons and the oxidation
of coenzymes in order to produce ATP [126]. The metabolization of fatty acids conse-
quently also occurs through oxidation, in so-called β-oxidation, giving rise to Acetyl-CoA,
a molecule responsible for adding acetyl groups in biochemical reactions to metabolize
carbohydrates, lipids, and proteins in the production of ATP. When the oxidative process
occurs, reactive oxygen species (ROS) are produced [126]. The body has its own mechanism
to regulate the amount of ROS produced through compensation by antioxidant enzymes
(such as catalase, superoxide dismutase, and glutathione peroxidase) [127–131], in addition
to the use of antioxidants such as polyphenols. The mitochondria have an antioxidant sys-
tem, including enzymes that neutralize part of the ROS produced in respiration [132–135].
However, when free radicals accumulate, oxidative stress can occur. Fat accumulation is a
cause of oxidative stress, especially in visceral tissues [136–141].

In MAFLD, chronic inflammation and oxidative stress synergize the occurrence of
insulin resistance [142,143]. Liver inflammation caused by NASH, associated with the
presence of pro-inflammatory mediators such as leptin, resistin, IL-6, and tumor necrosis
factor-alpha (TNF-α) and intestinal lipopolysaccharides (bacterial endotoxins), creates an
obstacle to insulin signaling pathways, impairing the insulin uptake of glucose in periph-
eral tissues and the inhibition of liver glucose production. Furthermore, oxidative stress
resulting from the accumulation of free fatty acids and lipids in the liver contributes to
mitochondrial dysfunction and the activation of inflammatory signaling pathways, increas-
ing insulin resistance [144–146]. The elevated production of ROS leads to the oxidation
of nucleic acids, proteins, and lipids, compromising cellular function and inducing the
production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and TGF-β) [3,147,148].
This inflammatory and stressful environment interferes with the insulin signaling cas-
cade, resulting in an attenuated response of target tissues to insulin and, consequently, the
maintenance of hyperglycemia and hyperinsulinemia [149,150].

Insulin resistance can increase the production of advanced glycation ends (AGEs),
which aggravate oxidative stress and pro-inflammatory pathways [151–154]. These pro-
oxidant mechanisms also end up contributing to cardiovascular diseases as LDL-c under-
goes oxidation, becoming more prone to forming atheroma plaques [155,156]. The heart
muscle can also suffer from the dysfunctions mentioned above, which lead to failure and
heart tissue damage [154], as inflammatory responses have pathogenic importance by stim-
ulating the production and liberation of inflammatory biomarkers such as IL-6, monocyte
chemoattractant protein-1 (MCP-1), and matrix-9 metallopeptidase (MMP-9) [56,157–159].

2.4. Metabolic-Associated Fatty Liver Disease and Inflammation

The relationship between MAFLD and inflammation is of utmost importance in un-
derstanding this multifaceted liver condition. Chronic inflammation is essential in the
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progression of MAFLD, a crucial point of therapeutic intervention. The activation of inflam-
matory pathways, together with the imbalance of pro- and anti-inflammatory adipokines,
contributes to the pathogenesis and transition from simple hepatic steatosis to more severe
forms of the disease. Therefore, understanding these inflammatory mechanisms is essential
for developing targeted therapeutic strategies, thus mitigating the intensity and preventing
the progression of MAFLD [160–163].

Oxidative stress, as previously mentioned, is closely linked to MAFLD since it triggers
pro-inflammatory pathways that can lead to liver diseases or are caused by the evolution of
this condition. ROS production can trigger inflammation by activating pro-inflammatory
signaling pathways as a homeostatic response to damage and modifications caused to
cellular structures in an attempt to repair what has been injured [164–166]. In this way,
transcription factors are activated, such as nuclear factor kappa B (NF-kB) and mitogen-
activated protein kinase (MAPK), responsible for regulating the expression of inflammatory
genes [167]. At the same time, hepatocytes and non-parenchymal cells of the liver express
Toll-like receptors (TLRs), which recognize molecular patterns associated with lipids and
fatty acids. The activation of these receptors start the release of pro-inflammatory cytokines
and chemokines, attracting immune system cells to the hepatic region [167–173].

Oxidative damage also induces the release of cytokines such as pro-inflammatory
interleukins, chemokines, and prostaglandins, along with the activation and migration
of immune cells to sites that have suffered damage [174]. TNF-α is responsible for the
induction of the synthesis of more cytokines, in addition to stimulating the expression of
adhesion molecules on endothelial cells. Therefore, the migration of immune system cells
to the site of inflammation is favored. IL-6 stimulates the immune response, promoting
the activation and differentiation of cells such as T and B lymphocytes and Natural Killer
(NK) cells, helping both the innate and acquired immune responses, which, depending
on the progression of the condition, can trigger chronic inflammation in the liver tissue,
characterized precisely by the presence of macrophages and T lymphocytes, responsible
for eliminating inflammatory agents and releasing cytokines [174–179].

Inflammation becomes chronic due to the persistence of the aggressor stimulus, which
can be ROS or growth factors such as transforming growth factor beta (TGF-β), which is
responsible for fibroblast proliferation and extracellular matrix deposition [176,180,181].
Fibroblasts produce large amounts of collagen and other proteins, leading to the progression
of fibrous tissue. The fibrosis resulting from this process reduces the organ’s original
functions due to the replacement of the original tissue with fibrous tissue, mostly composed
of collagen, which can thus reduce liver function and cause liver failure [182–185]. Figure 2
shows a scenario of liver ROS production, inflammation, and mitochondrial dysfunction.

It is also important to note that inflammation markers are critical in assessing and
monitoring MAFLD, as they can suggest both the presence and severity of the disease.
These include IL-6, as mentioned above, and the production of C-reactive protein (CRP),
which occurs through the binding of IL-6 to specific hepatocyte receptors, a process trig-
gering the stimulation of intracellular signaling pathways, so that the transcription of the
CRP gene is induced [186]. In addition to connecting to damaged cells and modulating the
immune response due to the activation of the complement system, CRP is an important
marker for inflammatory activity [187–190].

Ferritin also can be considered a marker of inflammation. This protein is related
to storing and releasing iron. It can interfere with oxygen transport, energy production,
and DNA synthesis. In patients with MAFLD, serum ferritin may be increased because
hepatocytes and hepatic macrophages, known as Kupffer cells, in this pro-inflammatory
scenario, increase the production of proteins, including ferritin, as an attempt to prevent
tissue injury [191,192]. At the same time, this protein helps protect cells from oxidative
damage, so its quantity is increased in the abnormal presence of ROS [193–196].
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Figure 2. The liver in the context of MAFLD. Lifestyle and metabolic alterations lead to an increased
lipolysis of visceral adipose tissue, stimulating de novo lipogenesis, and an increase in FFA and VLDL
(and a consequent efflux of this lipoprotein). Increased glucose intake results in increased pyruvate
and Acetyl-CoA production, leading to increased TCA activity. Furthermore, there is augmented
β-oxidation resulting in mitochondrial dysfunction. The consequences are mitochondrial dysfunction,
altered mtDNA, an imbalance in respiration (reduction in ATP production), and RE stress. All these
events are related to increased inflammation and ROS, which results in apoptosis and liver damage.
Systemic inflammation occurs due to Kupffer cell activation. DNL: de novo lipogenesis; FFA: free
fatty acid; IL: interleukin; JNK: c-Jun N-terminal kinase; M2: macrophage; mtDNA: mitochondrial
DNA; NF-KB: nuclear factor-KB, NO: nitric acid; NLRP3: NLR family pyrin domain-containing 3;
ROS: reactive oxygen species; VLDL: very-low-density lipoprotein; TG: triglyceride; TNF-α: tumor
necrosis factor-α; TCA: tricarboxylic acid cycle.

TNF-α is also important in this topic, and high levels are associated with chronic
inflammatory diseases. It can trigger insulin resistance by interfering with the correct
signaling of this hormone. As already discussed above, this condition is closely related to
MAFLD, as the liver’s glucose production through gluconeogenesis increases, contribut-
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ing to hyperglycemia [197–199]. This insulin resistance increases lipolysis in adipocytes,
causing an increase in fatty acids in the bloodstream. At the same time, the availabil-
ity of fatty acids is elevated in the liver, leading to greater hepatic lipogenesis and the
accumulation of more lipids. Furthermore, TNF-α can stimulate hepatic stellate cells,
responsible for excessive extracellular matrix production and TGF-β activation, leading to
liver fibrosis [200–203].

For all these reasons, treating MAFLD with therapeutic interventions should include
changes in diet, the intake of antioxidants and phytochemicals, physical exercise, and the
use of medications, which would help decrease inflammatory activity and improve the bad
clinical scenario [204–213].

2.5. Metabolic-Associated Fatty Liver Disease and Mitochondrial Dysfunction

Mitochondria are essential organelles for eukaryotic cells, performing the function
of energy production and various metabolic processes. Proper mitochondrial functioning
is necessary for cellular homeostasis, which is critical in cellular respiration and ATP
production [214–216]. Therefore, their structure or function can be related to several
consequences (metabolic dysfunction, oxidative stress, and cell death). Mitochondria can
have a critical role in the progression or regression of MAFLD [217–219].

Some authors have shown that in patients with MAFLD, mitochondria had an ab-
normally activated mitochondrial permeability transition pore, keeping the organelle
membranes open for longer due to the intracellular accumulation of free fatty acids [220].
The increase in membrane permeability causes the loss of Ca2+ ions, reducing the number
of protons that participate in the electron transport chain, resulting in an insufficient pro-
duction of ATP and an increase in the cytoplasmic concentration of Ca2+. This change in
gradient concentration inside and outside the organelle can cause changes in the structure
of mitochondria and even their destruction, in addition to causing the loss of cytochrome C
and coenzyme Q, participants in the respiratory chain [221–226].

The loss of membrane potential caused by free radicals also causes a greater quantity
of fatty acids to enter the mitochondria, decreasing the activity of proteins in oxidative
phosphorylation [227,228] and β-oxidation, resulting in lipotoxic accumulation associated
with MAFLD. One of the mechanisms of the self-regulation of metabolic activity is the
formation of new mitochondria through the fission and fusion of these organelles [229–231].
The first is the process by which mitochondria divide into two units (enabling the exchange
of genetic material and the restoration of damaged mitochondria), allowing for the re-
production and renewal of these organelles, an essential process for the production of
an adequate supply of mitochondria and sufficient production of energy for the body’s
metabolism, in addition to serving as a mechanism for regulating the size and shape of
mitochondria, to maintain homeostasis [232,233]. It is possible to observe that in hepatic
steatosis, there is an increase in fission and a decrease in fusion, which could be beneficial
in normal health conditions [234,235]. However, fission, affected by oxidative stress, ac-
celerates the fragmentation of mitochondrial DNA and stimulates the production of ROS,
further contributing to the evolution of MAFLD. Moreover, it has been observed that the
new mitochondria formed under these conditions are defective [236,237]. Therefore, it
is possible to diagnose and monitor hepatic steatosis through markers of mitochondrial
enzymatic activities, ATP production levels, and gene expression related to the fission of
new organelles and lipid metabolization capacity so that it is possible from the onset of the
disease, carrying out therapeutic interventions in order to reduce the progression of the
condition [220,238–243].

Another element in the mitochondrial dysfunction mechanism is nutrition overload,
which accelerates fatty acid oxidation through the TCA and causes ROS overproduction.
Excess ROS damages the mitochondrial electron transfer chain (ETC), promoting mitochon-
drial dysfunction and further cellular apoptosis, inflammation, and liver fibrosis. Beyond
that, increased inflammatory mediators, such as NF-κB, IL-6, and TNF-α (related to ROS
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and inflammation excess), increase the risk of atherosclerosis injuries and damage in the
liver vessels [76,244–246].

The mitophagy pathway, which is beneficial for removing problematic mitochon-
dria and oxidative toxic byproducts (mt-ROS), is inhibited in MAFLD. In this case, mt-
ROS probably increases its concentration inside the cell, promoting a higher level of
release of cytochrome C due to ETC activity, causing apoptosis and worsening oxidative
stress [247–251].

Excessive free radical production in mitochondria can also trigger a condition known
as mitochondrial permeability transition (MPT). In this process, several proteins from the
inner mitochondrial membrane, such as the phosphate carrier and the adenine nucleotide
translocator (ANT), along with the matrix chaperone cyclophilin D, form a supramolecular
structure that acts as a non-specific pore [252,253]. These MPT pores are responsible for
dissipating the mitochondrial membrane potential and losing ATP synthesis capacity. It
is not only MAFLD that can cause mitochondrial defects; mitochondrial defects can also
contribute to MAFLD. For instance, defects or polymorphisms in mitochondrial DNA,
like mutations in the gene encoding mitochondrial isobutyryl-coA dehydrogenase or
mitochondrial DNA depletion syndromes, can result in excessive lipid accumulation in
hepatocytes and the loss of the sirtuin 3 mediator, which can lead to reduced resistance to
oxidative stress, and these are some of the various mechanisms that can contribute to the
pathology [254–256].

In MAFLD, besides the dysfunction in mitochondrial metabolism during fat accumu-
lation, the endoplasmic reticulum (ER) also plays a role in metabolite exchange through
complex polymeric protein structures such as mitochondrial-associated membrane proteins
(MAM) [215,257–260]. When there is an imbalance in ER homeostasis or energy deficiency,
the ER is activated by the unfolded protein response (UPR), leading to a reduction in glu-
tathione (GSH). This imbalance in the distribution between GSH and oxidized glutathione
(GSSH) induces mitochondrial stress and results in an impaired regulation of mt-ROS
production, leading to an increase in its concentration, which is a crucial factor in the
enhancement in oxidative stress [261,262].

Figure 3 summarizes the mechanisms of mitochondrial dysfunction.

2.6. Polyphenols and Metabolic-Associated Fatty Liver Disease

Polyphenols are bioactive compounds of plant origin that, when ingested, act as nat-
ural antioxidants [54,55,263–275]. They are present in foods according to color and are
responsible for vegetables’ characteristic aromas and flavors. In plants, phytochemicals
have the role of resistance to infections by bacteria, fungi, and viruses, as well as the
consumption of insects and other animals. For humans, they are known for their antiox-
idant and anti-inflammatory actions. Among these plant biocompounds, some phenols
and polyphenols can also help prevent several health conditions related to oxidative or
inflammatory processes. Dietary polyphenols can include phenolic acids, flavonoids, and
non-flavonoids. The most known flavonoids are anthocyanins, flavones, flavanol, and
isoflavones. Among non-flavonoids are stilbenes and lignans (Figure 4). These compounds
are also known to strengthen immunity, regulate the body’s hormonal activity, and promote
mitochondrial health [273,276–282]. Table 1 shows the main polyphenols related to benefits
for liver conditions.

Polyphenols can protect mitochondria from oxidative stress due to the potential an-
tioxidant effects essential for the proper functioning of these organelles. Furthermore, some
interfere with metabolic processes related to energy production by regulating the activity
of enzymes involved in the formation of ATP and promoting the process of mitochondrial
renewal and biogenesis [283–289].

Natural or processed products, when added with polyphenols, can increase their
antioxidant and anti-inflammatory power, bringing benefits to the consumer in terms of
preventing health conditions of an oxidative or pro-inflammatory nature such as cardiovas-
cular diseases, inflammatory diseases, and cancer [290].
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Figure 3. The activation of DNL and an increase in FFAs lead to mitochondrial alterations and an 
increase in oxidative stress and inflammation. The stimulation of the mitochondrial membrane 
permeability transition pore is also observed by mitochondrial alterations and the deposit of fatty 
acids. There is stimulation in the activity of inner membrane proteins, leading to a reduction in ATP 
production. Mitochondrial gene mutation (mt-DNA) also activates uncoupling proteins. AMPK: 
AMP-activated protein kinase; CoQ: coenzyme Q; Cyt C: cytochrome C; DNL: de novo lipogenesis; 
FAO: fatty acid oxidation; FFA: free fatty acid; PGC1α: peroxisome proliferator-activated receptor-γ 
coactivator 1-α; IL: interleukin; JNK: c-Jun N-terminal kinase; NF-KB: nuclear factor kappa B; SIRT3: 
sirtuin 3; TCA: TCA: tricarboxylic acid cycle; TNF-α: tumor necrosis factor-α; UCP: uncoupling 
protein.  

Figure 3. The activation of DNL and an increase in FFAs lead to mitochondrial alterations and
an increase in oxidative stress and inflammation. The stimulation of the mitochondrial membrane
permeability transition pore is also observed by mitochondrial alterations and the deposit of fatty
acids. There is stimulation in the activity of inner membrane proteins, leading to a reduction in ATP
production. Mitochondrial gene mutation (mt-DNA) also activates uncoupling proteins. AMPK:
AMP-activated protein kinase; CoQ: coenzyme Q; Cyt C: cytochrome C; DNL: de novo lipogenesis;
FAO: fatty acid oxidation; FFA: free fatty acid; PGC1α: peroxisome proliferator-activated receptor-γ
coactivator 1-α; JNK: c-Jun N-terminal kinase; NF-KB: nuclear factor kappa B; SIRT3: sirtuin 3; TCA:
tricarboxylic acid cycle; TNF-α: tumor necrosis factor-α; UCP: uncoupling protein.
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and anti-inflammatory characteristics. Studies indicate that silymarin improves liver 
function by reducing oxidative stress and inflammation through the formation of 
glutathione peroxidase, which reduces glutathione to hydrogen peroxide and water, 
providing the recovery of damaged liver cells [384]. 

In some animal models and clinical investigations, it was observed that silymarin can 
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Figure 4. Polyphenols: classification and origin. Polyphenols are found in many fruits and vegetables
and can be separated into phenolic acids, flavonoids, and non-flavonoids. Phenolic acids can be
found in onion, tea, and coffee; flavonoids in grapes, pepper, broccoli, green tea, lemon, and soy; and
non-flavonoids in grapes, peanut skin, and Curcuma longa. These compounds can protect the liver
since they can reduce the risks for MAFLD, such as oxidative stress, inflammation, and lipid deposits.
IL: interleukin; JNK: c-Jun N-terminal kinase; MAFLD: Metabolic-Associated Fatty Liver Disease;
NF-KB: nuclear factor kappa B; Nrf2: nuclear factor erythroid 2-related factor 2, PKC: protein kinase
C; ROS: reactive oxygen species; SREBP-1c: Sterol regulatory element-binding protein 1c.

However, the bioavailability of these polyphenols may be insufficiently low to reach
an effective plasma level to produce the desired effects. Therefore, new pharmaceutical
formulations have been developed, such as nanoparticles, nanoemulsions, nanomicelles,
and preparations that increase absorption [125,291,292].
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Table 1. Some polyphenols related to the improvement in MAFLD risk factors.

Bioactive Compound Molecular Structures Plant Rich in the
Biocompound Part of the Plant Effects References

Anthocyanin
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Punicalagin Punica galum Shells and seeds 
Decreases lipid accumulation and 
increases gene expression levels of 
fatty acid beta-oxidation pathways 

[330,331] 

Quercetin 

 

Evodiae fructus 
Bark, leaves, 
flowers, seeds, 

and shoots 

Improvement in insulin resistance, 
modulation of lipid metabolism, 

reduces inflammation and 
oxidative stress 

[332–334] 

Resveratrol 

 

Red grapes and 
peanuts 

Grape and 
peanut skin 

Mitochondrial biogenesis and 
synthesis; antioxidant and anti-

inflammatory 
[335–338] 

Punica galum Shells and seeds

Decreases lipid accumulation
and increases gene expression

levels of fatty acid
beta-oxidation pathways

[330,331]
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2.6.1. Anthocyanins

Anthocyanins are flavonoids responsible for the reddish color of foods such as red
fruits and vegetables such as red cabbage, purple potatoes, and eggplant. Studies carried
out on cells derived from hepatocellular carcinoma indicate that they can reduce the
accumulation of lipids in hepatocytes by inhibiting lipogenesis. At the same time, they
promote lipolysis and reduce oxidative stress through the activation of AMPK, being able
to act agonistically on peroxisome proliferator-activated receptors (PPARs) in liver cells.
PPARs act as transcription factors of lipid metabolism, especially PPAR-α, widely found
in the liver, which regulates mitochondrial and peroxisome β-oxidation and plays an
important role in lipoprotein synthesis [293–295].

2.6.2. Baicalin

By modifying signaling pathways, baicalin (a flavonoid derived from Scutellaria
baicalensis) can potentially reduce NAH, hepatic steatosis, and MAFLD. It acts on nu-
clear factor kappa B (NF-κB), thus reducing inflammation in the liver, a crucial factor in
the development of liver diseases. This polyphenol can also act on transforming growth
factor beta 1 (TGF-β1)/SMAD3, reducing liver fibrosis. Baicalin intensifies sirtuin 1 (SIRT1)
by upregulating lipid metabolism. In addition, it inhibits p38/MAPK and has the ability
to reduce oxidative stress and programmed hepatocyte death [296,298]. Baicalin regulates
MERTK +/hi M2c derived from mononuclear cells (MNCs), demonstrating a role in mod-
ulating the liver’s immune response and attenuating chronic hepatic inflammation. The
interaction of baicalin with the enzyme carnitine palmitoyltransferase 1 (CPT1) promotes
the oxidation of fatty acids, favoring the reduction in lipid accumulation in the liver [297].

2.6.3. Catechin

Catechins, largely found in Curcuma longa (saffron) and Camellia sinensis (green tea) [345],
act similarly to anthocyanins through an indirect activation of PPARα [299], as they inhibit
oxidative and inflammatory activity, responsible for decreasing the expression of this
receptor; they can also elevate the gene expression of proteins involved in lipid metabolism
and modulate signaling pathways, such as the AMPK pathway [346]. Their antioxidant
activity occurs through the neutralization of free radicals by donating electrons while at the
same time having the property of binding to metal ions, preventing Fenton reactions—the
decomposition of hydrogen peroxides catalyzed by FeII and the production of HO radicals
and the generation of FeIV, highly oxidizing products [347]. Catechin may also increase the
activity of antioxidant enzymes by interfering with nuclear factor erythroid 2-related factor
2 (Nrf-2) translocation [300].

2.6.4. Chlorogenic Acid

Chlorogenic acid, found in green tea, fruits, and green coffee [22,348,349], is capable
of acting on the intestine–liver axis; it has antilipogenic and anti-inflammatory action
and helps regulate the intestinal microbiota. It may be related to the degradation of fatty
acids through the activation of hepatic autophagy, binding to ALKBH5 (demethylase Alk
B homolog 5) and preventing its action of removing methyl groups from position 6 of
the adenine of messenger RNA (m6A). This process compromises the gene expression
of liver cells, promoting autophagy to reduce hepatic steatosis [303]. It is also related to
the improvement in the expression of carnitine palmitoyltransferase (CPT-1), responsible
for conjugating long-chain fatty acids to carnitine in the mitochondria so that β-oxidation
occurs [301,302].

2.6.5. Cichoric Acid

The chicory plant (Cichorium intybus), Astraceae family, is a source of vitamins, pheno-
lic acids, and cichoric acid) [350]. Cichoric acid plays an important role in reducing hepatic
steatosis, as it reduces the expression of lipogenic actors, such as SREBP-1c, DGAT1, FAS,
and SCD-1, and also of inflammatory factors such as IL-6, IL-1b, NF-κB, and TNF-α. It is
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known that advanced steatosis can cause fibrosis, and cichoric acid also prevents TGF-β
and the development of type I and type III collagen in the liver [351]. In a study where
HePG2 cells were treated with palmitate, it was observed that fish oil, together with cichoric
acid, significantly reduced lipid accumulation through the AMPK-mediated stimulation of
PPAR-α [319].

2.6.6. Curcumin

Curcumin is a polyphenol belonging to curcuminoids, which are compounds of the
ginger family. It is found in the rhizome of Curcuma longa. Curcumin is associated with
a reduction in body weight, improves insulin resistance, reduces lipid levels, reduces
inflammation and oxidative stress, and can improve liver disease (showing a decrease in
hepatic fat levels and a reduction in serum aspartate aminotransferase and alanine amino-
transferase levels) [125,311,316,352]. It can inhibit cytotoxins and cyclooxygenase (COX)
and lipoxygenase (LOX) enzymes [353,354], responsible for producing prostaglandins and
leukotrienes, respectively, which are mediators that contribute to the inflammatory process.
At the same time, curcumin also plays a role in reducing the production of free radicals
in some ways, such as donating electrons to these radicals to become stable or increasing
the activity of the body’s natural antioxidant enzymes, such as superoxide dismutase
and glutathione peroxidase. In this way, they can contribute to the treatment of MAFLD
along with lifestyle changes [355] and may also prevent the development of liver fibrosis,
resulting in a 3- to 5-fold higher chance of resolution in hepatic steatosis [356].

It has also been demonstrated that the association of curcumin with resveratrol has
led to a synergistic effect by attenuating MAFLD, and this result may be, at least in part,
associated with the modulation of the Hypoxia-inducible factor 1 (HIF-1) signaling pathway.
HIF can modulate lipid metabolism in a particular way in the liver tissue by sensing the
cellular microenvironment under different conditions. In a low-oxygen environment,
HIF-1 stimulates the uptake and utilization of fatty acids and can elevate lipogenic gene
expression, therefore augmenting lipid accumulation in the liver [357].

2.6.7. Didymin

Didymin, a flavonoid identified in citrus fruits, has antioxidant and anti-inflammatory
action, making it suitable for use in MAFLD as a therapeutic intervention. In experiments,
it was noted that didymin results in the activation of Sirt1, a sirtuin that regulates energy
metabolism and the inflammatory response. Sirt1 activation is linked to the inhibition
of the TLR4/NF-κB pathway (an inflammatory pathway that determines the progression
of MAFLD), showing that didymin can attenuate hepatic inflammation and oxidative
stress [358]. Furthermore, it can suppress the PI3K/Akt pathway, demonstrated by the
decrease in the phosphorylation levels of PI3K and Akt, which modulates insulin resistance
and lipid accumulation in hepatocytes correlated with MAFLD. Thus, its therapeutic role is
a natural intermediary one that adds to existing therapeutic strategies [318].

2.6.8. Epigallocatechin-Gallate (EGCG)

EGCG is the major active compound found in green tea and has been linked to a
reduction in obesity and an improvement in metabolic parameters. A study aiming to
evaluate the effects of this compound on lipolysis, obesity, and the browning of human
white adipocytes showed that EGCG can significantly reduce systolic and diastolic blood
pressure (p < 0.05), fasting plasma triglyceride levels (p < 0.05), and serum kisspeptin levels
(p < 0.05) after eight weeks of supplementation [359].

2.6.9. Kaempferol

Kaempferol, a flavonoid found in foods such as broccoli, kale, green tea, and apples,
has therapeutic properties in the fight against numerous liver diseases. This polyphenol
promotes antioxidant and anti-inflammatory results, which are essential for liver protec-
tion [324,360]. It intensifies the action of superoxide dismutase, an antioxidant enzyme, and
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catalase [361]. This compound acts on PI3K/AKT signaling, improving insulin receptivity.
Kaempferol can prevent H2O2-induced oxidative stress in the production of nitric oxide
(NO) coordinated by HepG2 and lipopolysaccharides (LPSs) in RAW264.7 cells. It also
acts by reducing the production of free oxygen radicals, rebuilding the redox balance, and
preventing the production of exaggerated NO, a mediator of inflammation caused by expo-
sure to LPSs [323]. Kaempferol intensifies the action of the activated protein kinase AMPK,
favoring beta-oxidation, which reduces the formation of lipids in the hepatic region [362].
These consequences are important to prevent the progression of MAFLD to NASH. The
compound has antiapoptotic and anti-necroptotic capabilities, protecting hepatocytes from
predisposed death. Additionally, kaempferol is related to the restriction of cyclooxygenase
and lipoxygenase enzymes [363].

2.6.10. Luteolin

Luteolin, a flavonoid identified in vegetables (celery, peppers, carrots, and some
medicinal herbs), has been highlighted for its therapeutic role in liver diseases. It exhibits
anti-inflammatory and antioxidant results, which are essential in protecting the liver
against oxidative and inflammatory damage related to fat accumulation [364]. Studies
show that luteolin can significantly reduce the infiltration of inflammatory cells in liver
tissue, in addition to attenuating the amount of liver enzymes and lipids in the liver,
conditions that influence the progression of MAFLD. Luteolin prevents oxidative damage
by neutralizing ROS and enhancing the functioning of endogenous antioxidant enzymes,
which detoxify free radicals [365]. Furthermore, luteolin improves insulin sensitivity by
regulating the PI3K/AKT/FoxO1 signaling pathway, which is necessary for glucose capture
by hepatocytes and muscle cells [366]. The intensification of this pathway exacerbates the
translocation of cell membrane proteins, helping the intake of glucose and thus reducing
blood glucose. Simultaneously, luteolin intensifies the oxidation of fatty acids by activating
AMP-activated protein kinase (AMPK), an enzyme that allows for the beta-oxidation of
fatty acids in mitochondria, improving mitochondrial functioning and decreasing hepatic
lipogenesis [367].

2.6.11. Mangiferin

Mangiferin, found especially in mangoes and other plants, has antioxidant properties,
which is why it helps improve the condition of MAFLD [368]. This polyphenol can reverse
the translocation of GLUT4 in the membrane, consequently interfering in the modulation
of liver glucose and lipid metabolism, especially in MAFLD [326]. Mangiferin influences
the AMPK protein, causing the activation of AKT phosphorylation. This activation is
related to the regulation of pantothenate and CoA biosynthesis, which is essential for
hepatic lipid metabolism [368] and can also modulate the NLRP3 inflammasome (a protein
complex involved in chronic liver inflammation in MAFLD), suppressing its activation.
These findings show that mangiferin acts on dysfunctional metabolic aspects characteristic
of NASH and in the control of hepatic inflammation [48].

2.6.12. Puerarin

Puerarin, a bioactive compound found in Pueraria lobata roots, aroused interest as a
potential therapy for MAFLD [329]. Researchers suggest that puerarin has antioxidant
and anti-inflammatory properties that may help reduce fat accumulation in the liver and
mitigate liver inflammation, two crucial components of MAFLD [328,369]. Furthermore,
preclinical studies have indicated that puerarin can regulate lipid and glucose metabolism,
helping to improve insulin sensitivity and reduce triglyceride and cholesterol levels, factors
that are often dysregulated in patients with MAFLD [370].

In a Salmonella enterica-infected chick model, puerarin protected against infection and
improved liver morphology, inflammatory indices, and antioxidant capacity in chicks.
Moreover, it significantly decreased the levels of hepatocellular carcinoma markers in the
liver [371]. In rats, puerarin reduced liver fibrosis through the signaling pathway mediated



Pharmaceuticals 2024, 17, 1354 19 of 45

by TGF-β/extracellular signal-regulated kinase ½ (ERK1/2), inhibiting hepatic stellate cell
stimulation and excessive collagen deposition in liver fibrosis [372].

2.6.13. Punicalagin

Punicalagin is a flavonoid found mainly in Punica galum [373] and positively affects
the functioning of mitochondria. A study carried out on maturing adipocytes showed that
the presence of punicalagin decreased lipid accumulation and significantly increased
the gene expression levels of fatty acid beta-oxidation pathways such as peroxisome
proliferator-activated receptor γ (PPARγ)C1α, uncoupling protein-1 (UCP-1), and PR
domain-containing 16 (PRDM-16), increasing mitochondrial efficiency [330]. Thus, the
increase in lipolysis and the decrease in hypertrophic adipocytes reduce the secretion of
adipokines, associated with obesity and the inflammation of vascular cells [143].

2.6.14. Quercetin

Quercetin, found in the rhizome of Evodiae fructus, is a phytochemical that helps treat
MAFLD and reduce cancer [374]. This flavonoid acts in terms of AMPK, improving insulin
resistance and helping with lipid metabolism to reduce liver fat [375]. Quercetin may
also reduce inflammation caused by MAFLD by inhibiting the release of inflammatory
biomarkers such as TNF-α and IL-6 [375], along with antioxidant actions, neutralizing free
radicals and reducing oxidative stress [376].

There is a combination of different clinical and biochemical factors that lead to
metabolic dysregulation. Quercetin intake can significantly decrease fasting blood glucose
and systolic blood pressure [377].

2.6.15. Resveratrol

A well-known example is resveratrol, which comes from grapes, red fruits, peanuts,
and wine. It exhibits antioxidant properties associated with the production of mitochon-
dria. Resveratrol is a non-flavonoid polyphenol [378] capable of improving mitochondrial
biogenesis, acting on the main effectors of biogenesis, such as the peroxisome proliferator-
activated coactivator γ-1α (PGC-1α), sirtuin 1 (SIRT1), adenosine monophosphate protein
kinase (AMPK), α-related receptor estrogen (ERR-α), telomerase reverse transcriptase
(TERT), mitochondrial transcription factor A (TFAM), and nuclear respiration factors 1
and 2 (NRF-1, NRF-2) [379–381]. A study carried out in mice also revealed that resveratrol
supplementation significantly increased the activity of SIRT1 and PGC-1, improving the
efficiency of mitochondrial synthesis [335].

2.6.16. Rosmarinic Acid

Rosmarinic acid, found in Salvia rosmarinus (rosemary) and Prunella vulgaris [57,382],
has antioxidant effects through the modulation of signaling pathways. This polyphenol acts
on MAPKs, reducing oxidative stress and hepatic inflammation. It acts on the activation
of quinone acceptor oxidoreductase 1 (NQO1) and Nrf2. The increase in MAPKs and
Nrf2 reduces the effects related to liver disease. Rosmarinic acid acts on the negative
regulation of YAP1 and TAZ, related to the activation of PPARγ and PGC-1α, regulating
lipid metabolism and providing hepatic homeostasis [339,340,383].

2.6.17. Silymarin

Silymarin, a group of flavonolignans extracted from milk thistle (Silybum marianum),
has motivated scientific interest due to its therapeutic capacity in several liver diseases,
including MAFLD and NASH). Silymarin has beneficial effects through its antioxidant and
anti-inflammatory characteristics. Studies indicate that silymarin improves liver function
by reducing oxidative stress and inflammation through the formation of glutathione perox-
idase, which reduces glutathione to hydrogen peroxide and water, providing the recovery
of damaged liver cells [384].
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In some animal models and clinical investigations, it was observed that silymarin can
reduce the accumulation of lipids in the liver, improve insulin sensitivity, and modulate
metabolic pathways related to lipid and glucose metabolism [385]. These results are
important for treating MAFLD, in which insulin resistance and metabolic dysfunction play
central roles. By improving liver integrity and function, silymarin, in addition to delaying
the progression of steatosis to more severe forms, such as NASH, can also reverse initial
liver disorders, proving to be a promising treatment for controlling these chronic liver
diseases [103]. Figure 4 shows the main polyphenols that can be obtained from the diet,
and Figure 5 shows the primary mechanism of action of these compounds in the liver.
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SREBP-1c, elevating β-fatty acid oxidation through PPAR α upregulation, ameliorating insulin 
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Figure 5. The main mechanisms of action promoted by phenols in MAFLD. A salubrious diet
with an increased consumption of fruits and vegetables elevates the intake of polyphenols. These
phytochemicals can inhibit liver cellular damage associated with MAFLD through varied mechanisms
that may include a decrease in de novo lipogenesis due to the downregulation of SREBP-1c, elevating
β-fatty acid oxidation through PPAR α upregulation, ameliorating insulin sensitivity, and reducing
oxidative stress and inflammation processes. This scenario is related to a reduction in liver damage
and systemic inflammation. JNK: c-Jun N-terminal kinase; NF-KB: nuclear factor kappa B; Nrf2:
nuclear factor erythroid 2-related factor 2, PKC: protein kinase C; PPAR-α: peroxisome proliferator-
activated receptor gamma; SREBP-1c: Sterol regulatory element-binding protein 1c; TCA: tricarboxylic
acid cycle; TAG: triglyceride.

2.7. Effects of Polyphenols in MAFLD: Results of Clinical Trials

Table 2 shows some clinical trials that investigated the effects of polyphenols in
MAFLD. Although some results are controversial, in general, they showed that these
compounds can be effective in reducing or preventing risk factors for liver conditions.
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Table 2. Clinical trials showing the effects of some polyphenols in liver conditions (MAFLD).

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

Anthocyanin

[386]

Randomized,
double-blind,

placebo-controlled
pilot trial

33 patients (20 in
the anthocyanin
group, 13 in the
control group

320 mg/day or
placebo for 12 and

24 weeks

There was a higher reduction
in ALT in the anthocyanin
group than in the placebo
group (−19.1% vs. −3.1%,

p = 0.02).

NR

[387]

Case–control and a
randomized
controlled

intervention trial

312 MAFLD
patients

320 mg/day or
placebo for 12 weeks

The mRNA expression of
NLRP3 inflammasome

components (caspase-1, IL-1β,
and IL-18) in PBMCs and also
the plasma levels of IL-1β and

IL-18 were dramatically
decreased in treated NAFLD

patients compared
with controls.

NR

Catechin

[388] Randomized,
double-blind study

17 patients with
MAFLD

Participants consumed
green tea with

high-density catechins,
low-density catechins,

or a placebo for
12 weeks.

All participants in the
high-density catechin group
had a significantly improved

liver-to-spleen computed
tomography (CT) attenuation
ratio compared to the other

groups; they also had reduced
body fat, AST and ALT, and

urinary 8-isoprostane
excretion. In conclusion, the
use of 700 mL/d green tea

with >1 g catechin improved
liver fat content and

inflammation by decreasing
oxidative stress.

NR

Chlorogenic acid and luteolin

[389]

Randomized,
double-blind,

placebo-controlled.
Italy, Spain,

Poland, USA.

100 individuals
with MetS. (28♂,
22♀, 63 ± 11 y);
50 randomized

(26♂, 24♀,
63 ± 8 y)

50 subjects were
randomized to Altilix®

(supplement with
chlorogenic acid and
luteolin)/6 months

There was a significant
amelioration in the treated

group compared to placebo in
most parameters evaluated,

including body weight, waist
circumference, glycated

hemoglobin, lipid plasma
levels, liver transaminases,

flow-mediated dilation, and
carotid intima–media

thickness. Supplementation
with Altilix® improved

hepatic and cardiometabolic
parameters in individuals

with MS.

Transient gas-
trointestinal
symptoms
(n = 2 on

Altilix® and 3
on placebo)

Curcumin

[390]

Randomized,
double-blind,

placebo-controlled
clinical trial

50 patients with
MAFLD, 18 y or

more

25 patients were
assigned to receive

placebo or 500 mg of
curcumin or

placebo/3 times a
day/12 weeks

The intake of curcumin was
associated with a significant

decrease in liver fibrosis
(p < 0.001) and NF-kB activity

(p < 0.05). Hepatic steatosis
and liver enzymes and TNF-α
were significantly reduced in

both groups (p < 0.05).

NR
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Table 2. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

[391]

Randomized,
double-blind,

placebo-
controlled study

65 patients
allocated to
curcumin
or placebo

Curcumin and placebo
recipient groups using

a block randomized
design for 8 weeks

There was a significant
increase in HDL-c levels
in the curcumin group

(p = 0.01); serum adiponectin
increased significantly

(p < 0.001), and leptin reduced
significantly (p < 0.001)

(decrease in the
leptin–adiponectin ratio in the

curcumin group).

No AE

[392]
Double-blind

parallel design.
Iran

54 patients with
MAFLD

Phytosomal curcumin
(250 mg/day) or
placebo/8 weeks

There was a significant
reduction in methylation in
the promoter regions of the

MutL homolog 1 (MLH1) and
the MutS homolog 2 (MSH2).

A comparison between
groups did not indicate
significant changes in

anthropometric variables,
except for BMI. Liver

enzymes and 8-OHdG did not
change significantly at the end

of this study, and neither in
the curcumin group nor in the

placebo group did
they change.

NR

[393] Prospective,
randomized study

45♀obese women
with fatty liver

disease

Participants were
assigned to resistance

training (RT),
curcumin supplement,

resistance training
with curcumin (RTC),

and placebo

ALT and AST decreased
significantly in the RT and

RTC groups (p ≤ 0.05) but not
in the curcumin and placebo
groups (p > 0.05). Alkaline

phosphatase, total bilirubin,
platelet count, and liver
structure did not change

significantly in all groups.
Resistance training alone and

with curcumin
supplementation could

significantly improve liver
function, while taking
curcumin alone had no
significant effect on it.

NR

[394]

Randomized,
double-blind,

parallel-group,
placebo-controlled

clinical trial

80 individuals
18 y–70 y

(BMI:
25–30 kg/m2) and

glycemia
100–125 mg/dL

Participants received
2 capsules /day of

800 mg phytosomal
curcumin

After 56 days of treatment, the
curcumin-treated group

showed a significant
amelioration in fasting plasma
insulin, HOMA index, waist

circumference, blood pressure,
triglycerides, HDL-c, hepatic
transaminases, gamma-GT,
hepatic steatosis index, and
serum cortisol compared to
baseline. Triglycerides, liver

transaminases, fatty liver
index, and cortisol levels also

improved significantly
compared to the placebo.

NR
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Table 2. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

[395] Double-blind,
parallel-group trial

37 obese,
non-diabetic
individuals

Participants received
curcumin or

placebo/6 weeks

In comparison to placebo,
curcumin showed no

significant effects on liver fat
content in obese individuals

with mild steatosis.

Dyspnea
(n = 1)

[396] Double-blind,
randomized trial

80 patients with
non-alcoholic

simple fatty liver
disease

Participants received
500 mg/d curcumin or

placebo/24 weeks

There was a significant
reduction in the liver fat
content, free fatty acid,

triglycerides, fasting blood
glucose glycated hemoglobin,

and insulin

Epigallocatechin-gallate

[359]
Double-blind,

placebo-controlled
clinical trial

30 obese subjects
were allocated into

EGCG-
supplemented

group or placebo

Participants received
300 mg per day of
EGCG for 8 weeks

EGCG significantly reduced
systolic and diastolic blood
pressure (p < 0.05), fasting

plasma triglyceride (p < 0.05),
and serum kisspeptin levels
(p < 0.05) after the treatment.

Headache
(n = 1)

Puerarin

[397]

Randomized,
double-blind,

placebo-controlled,
2-way crossover

trial

217 Chinese ♂,
18–50 y without a

history of heart
disease

Participants were
randomized to receive

puerarin (90.2 mg
daily) or placebo,

followed by a 4-week
washout, and then
crossed over to the
other intervention

No significant modifications
were seen in lipid profile,

blood pressure, high-sensitive
C-reactive protein, liver or

renal function after the
treatment with puerarin.
There was a significant
decrease in glycemia.

NR

Quercetin

[398]
Double-blind,

placebo-controlled
crossover study

93 overweight or
obese subjects
aged 25–65 y

with MS

Participants received
150 mg quercetin a

day/six-week
treatment periods

separated by a
five-week

washout phase

Participants treated with
quercetin showed a significant

reduction in systolic blood
pressure, but lipid levels,

C-reactive protein, and TNF-α
were not altered. Quercetin

significantly reduced the
plasma concentrations of

atherogenic oxidized LDL-c.

NR

Resveratrol

[399]

Randomized,
double-blind,

controlled
clinical trial

50 MAFLD
patients

Participants received
500 mg resveratrol

capsule or a
placebo/12 weeks

The group treated with
resveratrol had a significantly

reduced hepatic steatosis
grade, ALT, AST, NFKB,

inflammatory cytokines, and
serum cytokeratin-18

compared with placebo.

NR

[400]

Double-blind,
randomized,

placebo-
controlled trial

60 participants
with MAFLD

Participants received
2150 mg resveratrol
capsules or placebo

2 times a
day/3 months

The group treated with
resveratrol had significantly

reduced ALT, AST LDL-c,
glycemia, HOMA, total

cholesterol TNF-α,
cytokeratin 18 fragment, and
fibroblast growth factor 21.
There was an increase in

adiponectin levels.

NR
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Table 2. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

[401]

Single-center,
randomized,
double-blind,

placebo-
controlled study

112 men and
women with

BMI > 27 kg/m2;
18–70 y

Participants received
resveratrol

150 mg/day or
placebo for 12 weeks

There was a change in liver fat
content after treatment as well

as in the visceral and
subcutaneous abdominal fat

mass and a reduction in
glycemia, HOMA index, and

other cardiovascular
risk factors.

NR

[402]
Randomized

controlled
clinical trial

90 patients with
MAFLD (both

genera); 20–60 y
with BMI 25 to

35 kg/m2.

Participants were
divided into 3

intervention groups:
one that received a
low-calorie diet, the

resveratrol group
received 600 mg pure

trans-resveratrol
(2 × 300 mg/day),

and the placebo
group/12 weeks

There was a significant
reduction in weight and BMI
observed in the resveratrol

group compared to the
placebo group. No

modifications were seen in the
lipid profile, ALT, AST,

hepatic steatosis grade, serum
glycemic parameters, and

lipid profiles in the resveratrol
group (all p > 0.05).

NR

[403]

Randomized,
double-blind,

placebo-controlled
clinical trial

50 patients with
MAFLD;

20–60 years

Participants received
600 mg resveratrol/

day or
placebo/12 weeks

The use of resveratrol
significantly reduced waist
circumference, body weight,
and BMI when compared to
the placebo. No significant

modifications were observed
in lipid profile (ApoA1, ApoB,

and ox-LDL), atherogenic
indices, AST, ALT, and γ-GT,

and blood pressure.

NR

[404]
Double-blind,
randomized

controlled trial

76 patients with
T2DM

Participants received
1000 mg/day
resveratrol or

placebo/8 weeks

The supplementation with
resveratrol did not produce
effects on hepatic steatosis
and cardiovascular indices.

NR

Silymarin

[405] Open preliminary
pilot study

85 participants
with MAFLD

Patients received
silybin + vitamin E +

phospholipids—
RealSIL

The use of silybin + vitamin
E+ phospholipids can

improve insulin resistance
and the plasma levels of
markers of liver fibrosis.

NR

[406] Preliminary study 59 were affected by
primitive MAFLD

Patients received
silybin + vitamin E +

phospholipids—
RealSIL, 4 pieces of
silybin (94 mg each

piece) /day/6 months
followed by more

6 months of follow up

The treated patients showed
improved liver enzyme levels,

reduced hyperinsulinemia,
and an improvement in all

liver fibrosis indices.

NR

[407]
Multicenter, phase
III, double-blind

clinical trial

179 patients with
MAFLD

Patients received
Realsil (silybin plus

phosphatidylcholine)
or placebo twice
daily/12 months

The treatment with Realsil
significantly reduced HOMA,
liver enzyme levels, and BMI.
There were improvements in

fibrogenesis markers.

Diarrhea,
dysgeusia,

and pruritus
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Table 2. Cont.

Reference Model/Country Population Intervention/Comparison Outcomes Side Effects

[408] Randomized
clinical pilot study

36 patients with
MAFLD

Patients received
2 tablets of silymarin

plus vitamin E (Eurosil
85®, MEDAS

SL)/day/3 months

Associated with lifestyle
modifications, silymarin
reduced anthropometric

parameters, γ-GT levels, and
MAFLD index.

NR

[409] Open-controlled
clinical trial

78 patients with
MS and liver

steatosis

One group received
Eurosil 85(®)

(silymarin + vitamin
E), and the other
received placebo

The participants who received
the silymarin supplement had

reduced BMI, abdominal
circumference, ultrasound

measurement of the right liver
lobe, and adipose
visceral indices.

NR

[410]

Randomized,
double-blind,

placebo-
controlled trial

99 adults with
NASH and

MAFLD activity
score of 4

Participants received
silymarin (700 mg) or

placebo
3 times/day/48 weeks

The group treated with
silymarin had a significantly

reduced
fibrosis-AST-to-platelet ratio
index, fibrosis-4 score, and

MAFLD fibrosis score.

NR

[411] Double-blind
randomized trial

Sedentary men
and women with

BMI ≤ 34.9 kg/m2

Participants were
divided into Novel

Nutraceutical
Supplement without

silymarin or with
silymarin extract (9%)

(4 capsules/day)

There was a reduction in the
waist circumference, as well

as in the waist-to-height ratio
and waist-to-hip ratio AST

and ALT, and endocrine
hormones cortisol and

thyroid-stimulating hormone
(TSH) at 90 and 180 days after

supplementation with or
without silymarin.

NR

Abbreviations: AE: adverse event; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body
mass index; γ-GT: Gamma-Glutamyltransferase; HDL-c: high-density lipoprotein cholesterol; HOMA: Homeo-
static Model Assessment; MAFLD: Metabolic-Associated Fatty Liver Disease; MS: metabolic syndrome; NF-kB:
nuclear factor kappa B; PBMCs: peripheral blood mononuclear cells; T2DM: type 2 diabetes mellitus.

Polyphenols are normally related to antioxidant and anti-inflammatory effects; thus,
they can be related to different actions in several metabolic and physiological pathways,
leading to characteristics that can improve liver tissue damage and function which are
observed in MAFLD and its complications.

Besides the suggestion that other clinical trials with a more homogeneous population
and a higher number of participants should be performed with the phytocompounds
considered in this review, we can say that these phytocompounds can act as preventive
compounds or can provide natural treatment and complement existing treatments for
MAFLD and other liver conditions such as steatosis. In summary, the results of the
included clinical trials show that these compounds, in comparison to placebo, can achieve
the following:

• Significantly reduce gamma-GT, AST, and ALT;
• Reduce body weight, BMI, waist circumference, adipose visceral indices, and visceral

and subcutaneous abdominal fat mass;
• Decrease plasma total cholesterol, triglycerides, and LDL-c;
• Reduce the plasma concentrations of atherogenic oxidized LDL-c;
• Reduce glycated hemoglobin, glycemia, insulin resistance, and the HOMA index;
• Reduce plasma leptin levels (as well as the leptin–adiponectin ratio);
• Reduce urinary 8-isoprostane excretion;
• Reduce the induction of NFKB;
• Reduce serum cytokeratin-18 and kisspeptin levels;
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• Reduce the levels of pro-inflammatory interleukins such as IL-1β, IL-6, IL-18, and TNF-α;
• Decrease the mRNA expression of NLRP3 inflammasome (caspase-1, IL-1β, and IL-18)

in peripheral blood mononuclear cells;
• Reduce systolic and diastolic blood pressure;
• Improve HDL-c and adiponectin levels;
• Improve the liver-to-spleen computed tomography attenuation ratio;
• Improve flow-mediated dilation and carotid intima–media thickness;
• Decrease liver fat content, the steatosis index, and the level of fibrosis;
• Improve fibrogenesis markers.

3. Conclusions and Future Directions

For MAFLD, the cornerstone of current treatment strategies involves significant
lifestyle modifications. These typically include dietary changes and increased physical
activity. While these approaches can be effective, the incorporation of polyphenols into
these strategies offers exciting potential for enhancing therapeutic outcomes. Polyphenols,
known for their antioxidant and anti-inflammatory properties, can complement traditional
interventions and provide additional benefits in managing MAFLD (In patients with hy-
percholesteremia, 70% of them do not respond adequately to statins. For these reasons,
using polyphenols in these conditions may bring to light a new direction [412,413]). How-
ever, to fully realize the potential of polyphenols in this context, future research needs to
explore their impact on various metabolic pathways and liver function biomarkers more
comprehensively. Understanding how polyphenols affect these processes could reveal
mechanisms through which they influence liver health, potentially leading to novel thera-
peutic strategies. Moreover, while the Phytochemical Index serves as a valuable tool for
assessing dietary polyphenol content, there is an opportunity to refine and enhance its
application in clinical settings. By developing more precise and clinically relevant measures
of polyphenol intake and their biological effects, we can better guide dietary interventions
and tailor recommendations for individuals with MAFLD.

Firstly, focusing on the bioavailability and metabolic conversion of polyphenols is
essential. Understanding how different polyphenols are absorbed, metabolized, and con-
verted into their active forms will provide a more accurate reflection of their potential
benefits for liver health. Since polyphenols vary significantly in these aspects, this refine-
ment will ensure that the index accounts for not just the quantity of polyphenols consumed
but also their efficacy within the body. Expanding the index to include a broader range
of polyphenol compounds is also crucial. By developing a detailed profile that encom-
passes a variety of polyphenols known to impact liver health, the index can offer a more
comprehensive measure of dietary intake. Employing advanced analytical techniques like
liquid chromatography–mass spectrometry (LC-MS) will enhance the accuracy of these
measurements and help identify which specific polyphenols are the most beneficial for
MAFLD management.

Additionally, personalizing the Phytochemical Index based on individual genetic and
microbiome profiles is another important step. Variations in genetic makeup and gut micro-
biota can significantly influence polyphenol metabolism and efficacy. By integrating these
personalized data into the index, dietary recommendations can be tailored to individual
needs, optimizing the benefits of polyphenols for managing MAFLD.

To ensure that the refined index is practical and reliable, it should also be validated
through rigorous clinical trials. These studies would assess how polyphenol intake, as
guided by the index, impacts liver biomarkers and clinical outcomes in MAFLD patients.
Clinical validation will provide the necessary evidence to support the index’s effectiveness
and its integration into standard clinical practice. Furthermore, developing practical
measurement tools will enhance the application of the Phytochemical Index in everyday
settings. For example, mobile health apps or digital platforms could be designed to track
polyphenol intake and provide real-time feedback. Such tools would help patients adhere
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to dietary recommendations and make informed choices about their diet, facilitating a
better management of MAFLD.

Several critical research areas also warrant exploration to fully harness the potential
of polyphenols. As an example, research into polyphenols and their effects on immune
system function could provide significant benefits for managing MAFLD. Understanding
how polyphenols influence immune cell markers in subjects with MAFLD could lead to
strategies for reducing liver inflammation in these patients, potentially slowing or reversing
liver damage. Studying how polyphenols affect immune cell activation in MAFLD could
reveal methods to prevent or reduce liver damage caused by immune responses. Genetic
research could also identify polymorphisms that affect individual responses to polyphenols,
potentially through genome-wide association studies (GWASs). This research would
facilitate personalized nutrition approaches by tailoring polyphenol interventions based on
genetic predispositions, optimizing therapeutic outcomes.

In this scenario, RNA-based assays, such as transcriptomic studies using RNA se-
quencing, could illuminate the molecular mechanisms by which polyphenols alter gene
expression in the MAFLD liver. This research could uncover specific genes and pathways
influenced by polyphenols, providing a clearer understanding of their role in cholesterol
metabolism and liver health. Advancements in nanotechnology also hold promise for
enhancing polyphenol delivery and effectiveness. Developing nanocarriers for controlled
release and targeted action could improve the bioavailability of polyphenols, maximize
their therapeutic benefits, and minimize potential side effects.

Moreover, exploring the synergistic effects of polyphenols in combination with estab-
lished medications could also lead to novel treatment strategies against MAFLD. Research
could focus on how polyphenols interact with statins, other lipid-lowering agents, or dia-
betes medications in the context of MAFLD to enhance efficacy or reduce adverse effects,
offering new insights into optimizing combination therapies.

However, since all novel interventions start with preclinical research, clinical trials are
essential to translate these findings into practical clinical applications. These trials should
include diverse populations and consider long-term outcomes to assess efficacy, safety,
and optimal dosages. Evaluating different forms of polyphenol intake—such as supple-
ments, functional foods, or fortified diets—will also be crucial. Integrating metabolomic
and proteomic analyses into research could provide a comprehensive understanding of
how polyphenols influence metabolic pathways and protein expression in the realm of
clinical research.

Research should also consider how environmental factors and lifestyle choices interact
with polyphenol consumption in MAFLD conditions. Cohort studies exploring the effects
of diet, microbiome composition, and exposure to environmental toxins on polyphenol
efficacy could provide additional insights into optimizing their use against MAFLD.

In summary, while current evidence supports the beneficial role of polyphenols in
managing cholesterol and metabolic diseases, advancing our understanding through tar-
geted research is essential. By employing advanced technologies, conducting rigorous
clinical trials, and exploring synergistic effects, we can unlock the full potential of polyphe-
nols. This comprehensive approach promises to enhance patient outcomes and contribute
significantly to advancements in public health.
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Polyphenols as Multi-Target-Directed Ligands in MASLD: A Preliminary Molecular Docking Study. Nutrients 2024, 16, 1226.
[CrossRef] [PubMed]

42. Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary Polyphenols and
Non-Alcoholic Fatty Liver Disease. Nutrients 2021, 13, 494. [CrossRef] [PubMed]

43. Goswami, C.; Pawase, P.A.; Shams, R.; Pandey, V.K.; Tripathi, A.; Rustagi, S.; Darshan, G. A Conceptual Review on Classification,
Extraction, Bioactive Potential and Role of Phytochemicals in Human Health. Future Foods 2024, 9, 100313.

https://doi.org/10.1080/10408398.2024.2372690
https://www.ncbi.nlm.nih.gov/pubmed/39049560
https://doi.org/10.3390/pharmaceutics16050577
https://www.ncbi.nlm.nih.gov/pubmed/38794239
https://doi.org/10.3390/ph17050658
https://www.ncbi.nlm.nih.gov/pubmed/38794228
https://doi.org/10.1016/j.jnutbio.2024.109670
https://www.ncbi.nlm.nih.gov/pubmed/38768871
https://doi.org/10.3390/ijms23010498
https://doi.org/10.3390/ijms20235920
https://doi.org/10.1016/j.phymed.2023.155170
https://doi.org/10.3390/nu16142280
https://doi.org/10.3390/nu16142220
https://doi.org/10.1007/s12072-024-10663-9
https://www.ncbi.nlm.nih.gov/pubmed/38717691
https://doi.org/10.3390/antiox13040393
https://doi.org/10.3390/life13122270
https://www.ncbi.nlm.nih.gov/pubmed/38137871
https://doi.org/10.1080/10408398.2023.2260474
https://doi.org/10.3390/metabo13060728
https://www.ncbi.nlm.nih.gov/pubmed/37367886
https://doi.org/10.3390/nu15040989
https://www.ncbi.nlm.nih.gov/pubmed/36839349
https://doi.org/10.1080/10408398.2019.1710692
https://www.ncbi.nlm.nih.gov/pubmed/31920107
https://doi.org/10.1080/87559129.2023.2168281
https://doi.org/10.1080/10408398.2021.1948817
https://doi.org/10.1089/jmf.2018.0162
https://doi.org/10.3390/nu16081226
https://www.ncbi.nlm.nih.gov/pubmed/38674916
https://doi.org/10.3390/nu13020494
https://www.ncbi.nlm.nih.gov/pubmed/33546130


Pharmaceuticals 2024, 17, 1354 30 of 45

44. Kung, H.C.; Lin, K.J.; Kung, C.T.; Lin, T.K. Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols
with Respect to Resveratrol in Parkinson’s Disease. Biomedicines 2021, 9, 918. [CrossRef] [PubMed]

45. Shafiq, M.; Lone, Z.R.; Bharati, P.; Mahapatra, S.; Rai, P.; Khandelwal, N.; Gaikwad, A.N.; Jagavelu, K.; Hanif, K. Pyrroloquinoline
quinone (PQQ) improves pulmonary hypertension by regulating mitochondrial and metabolic functions. Pulm. Pharmacol. Ther.
2022, 76, 102156. [CrossRef]

46. Zou, X.; Yan, C.; Shi, Y.; Cao, K.; Xu, J.; Wang, X.; Chen, C.; Luo, C.; Li, Y.; Gao, J.; et al. Mitochondrial dysfunction in obesity-
associated nonalcoholic fatty liver disease: The protective effects of pomegranate with its active component punicalagin. Antioxid
Redox Signal 2014, 21, 1557–1570. [CrossRef]

47. Dos Santos, S.M.; Romeiro, C.F.R.; Rodrigues, C.A.; Cerqueira, A.R.L.; Monteiro, M.C. Mitochondrial Dysfunction and Alpha-
Lipoic Acid: Beneficial or Harmful in Alzheimer’s Disease? Oxid Med. Cell Longev. 2019, 2019, 8409329. [CrossRef]

48. Yong, Z.; Ruiqi, W.; Hongji, Y.; Ning, M.; Chenzuo, J.; Yu, Z.; Zhixuan, X.; Qiang, L.; Qibing, L.; Weiying, L.; et al. Mangiferin
Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 Inflammasome Signal Pathways. J. Immunol.
Res. 2021, 2021, 4084566. [CrossRef]

49. Jinato, T.; Chayanupatkul, M.; Dissayabutra, T.; Chutaputti, A.; Tangkijvanich, P.; Chuaypen, N. Litchi-Derived Polyphenol
Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded,
Placebo-Controlled Study. Nutrients 2022, 14, 2921. [CrossRef]

50. Fang, X.; Cao, J.; Tao, Z.; Yang, Z.; Dai, Y.; Zhao, L. Hydroxytyrosol attenuates ethanol-induced liver injury by ameliorating
steatosis, oxidative stress and hepatic inflammation by interfering STAT3/iNOS pathway. Redox Rep. Commun. Free. Radic. Res.
2023, 28, 2187564. [CrossRef]

51. Wang, X.; Jin, Y.; Di, C.; Zeng, Y.; Zhou, Y.; Chen, Y.; Pan, Z.; Li, Z.; Ling, W. Supplementation of Silymarin Alone or in Combination
with Salvianolic Acids B and Puerarin Regulates Gut Microbiota and Its Metabolism to Improve High-Fat Diet-Induced NAFLD
in Mice. Nutrients 2024, 16, 1169. [CrossRef] [PubMed]

52. Zheng, Y.; Zhao, L.; Xiong, Z.; Huang, C.; Yong, Q.; Fang, D.; Fu, Y.; Gu, S.; Chen, C.; Li, J.; et al. Ursolic acid targets secreted
phosphoprotein 1 to regulate Th17 cells against non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 2024, 30, 449–467. [CrossRef]
[PubMed]

53. Xu, J.; Jia, W.; Zhang, G.; Liu, L.; Wang, L.; Wu, D.; Tao, J.; Yue, H.; Zhang, D.; Zhao, X. Extract of Silphium perfoliatum L. improve
lipid accumulation in NAFLD mice by regulating AMPK/FXR signaling pathway. J. Ethnopharmacol. 2024, 327, 118054. [CrossRef]
[PubMed]

54. Zhang, D.; Zhou, Q.; Yang, X.; Zhang, Z.; Wang, D.; Hu, D.; Huang, Y.; Sheng, J.; Wang, X. Gallic Acid Can Promote Low-Density
Lipoprotein Uptake in HepG2 Cells via Increasing Low-Density Lipoprotein Receptor Accumulation. Molecules 2024, 29, 1999.
[CrossRef] [PubMed]

55. Zuo, G.; Chen, M.; Zuo, Y.; Liu, F.; Yang, Y.; Li, J.; Zhou, X.; Li, M.; Huang, J.A.; Liu, Z.; et al. Tea Polyphenol Epigallocatechin
Gallate Protects Against Nonalcoholic Fatty Liver Disease and Associated Endotoxemia in Rats via Modulating Gut Microbiota
Dysbiosis and Alleviating Intestinal Barrier Dysfunction and Related Inflammation. J. Agric. Food Chem. 2024, 72, 9067–9086.
[CrossRef]

56. Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and
cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metab. Res. Rev. 2022, 38, e3502. [CrossRef]

57. Keramat, M.; Golmakani, M.T. Effects of rosmarinic acid esters on the oxidation kinetic of organogel and emulsion gel. Food Chem.
X 2024, 22, 101343. [CrossRef]

58. Yamamura, S.; Eslam, M.; Kawaguchi, T.; Tsutsumi, T.; Nakano, D.; Yoshinaga, S.; Takahashi, H.; Anzai, K.; George, J.; Torimura,
T. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020, 40, 3018–3030. [CrossRef]

59. Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; García, S.; Mateos, D.; Casares, M.; Gómez, C.; Ugarriza, L.;
Tur, J.A.; Sureda, A. Effects of a Two-Year Lifestyle Intervention on Intrahepatic Fat Reduction and Renal Health: Mitigation of
Inflammation and Oxidative Stress, a Randomized Trial. Antioxidants 2024, 13, 754. [CrossRef]

60. Zhou, X.D.; Cai, J.; Targher, G.; Byrne, C.D.; Shapiro, M.D.; Sung, K.C.; Somers, V.K.; Chahal, C.A.A.; George, J.; Chen, L.L.; et al.
Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc.
Diabetol. 2022, 21, 270. [CrossRef]

61. Koperska, A.; Moszak, M.; Seraszek-Jaros, A.; Bogdanski, P.; Szulinska, M. Does berberine impact anthropometric, hepatic,
and metabolic parameters in patients with metabolic dysfunction-associated fatty liver disease? Randomized, double-blind
placebo-controlled trial. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2024, 75, 291. [CrossRef]

62. Vaz, K.; Kemp, W.; Majeed, A.; Lubel, J.; Magliano, D.J.; Glenister, K.M.; Bourke, L.; Simmons, D.; Roberts, S.K. NAFLD and
MAFLD independently increase the risk of major adverse cardiovascular events (MACE): A 20-year longitudinal follow-up study
from regional Australia. Hepatol. Int. 2024, 18, 1135–1143. [CrossRef] [PubMed]

63. Wang, Y.; Chen, Y.; Xiao, X.; Deng, S.; Kuang, J.; Li, Y. HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated
autophagy and alleviates metabolic-associated fatty liver disease. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119765.
[CrossRef] [PubMed]

64. Feingold, K.R. Lipid and Lipoprotein Metabolism. Endocrinol. Metab. Clin. N. Am. 2022, 51, 437–458. [CrossRef] [PubMed]

https://doi.org/10.3390/biomedicines9080918
https://www.ncbi.nlm.nih.gov/pubmed/34440122
https://doi.org/10.1016/j.pupt.2022.102156
https://doi.org/10.1089/ars.2013.5538
https://doi.org/10.1155/2019/8409329
https://doi.org/10.1155/2021/4084566
https://doi.org/10.3390/nu14142921
https://doi.org/10.1080/13510002.2023.2187564
https://doi.org/10.3390/nu16081169
https://www.ncbi.nlm.nih.gov/pubmed/38674860
https://doi.org/10.3350/cmh.2024.0047
https://www.ncbi.nlm.nih.gov/pubmed/38623614
https://doi.org/10.1016/j.jep.2024.118054
https://www.ncbi.nlm.nih.gov/pubmed/38484950
https://doi.org/10.3390/molecules29091999
https://www.ncbi.nlm.nih.gov/pubmed/38731489
https://doi.org/10.1021/acs.jafc.3c04832
https://doi.org/10.1002/dmrr.3502
https://doi.org/10.1016/j.fochx.2024.101343
https://doi.org/10.1111/liv.14675
https://doi.org/10.3390/antiox13070754
https://doi.org/10.1186/s12933-022-01697-0
https://doi.org/10.26402/jpp.2024.3.06
https://doi.org/10.1007/s12072-024-10706-1
https://www.ncbi.nlm.nih.gov/pubmed/39008030
https://doi.org/10.1016/j.bbamcr.2024.119765
https://www.ncbi.nlm.nih.gov/pubmed/38815686
https://doi.org/10.1016/j.ecl.2022.02.008
https://www.ncbi.nlm.nih.gov/pubmed/35963623


Pharmaceuticals 2024, 17, 1354 31 of 45

65. Charbe, N.B.; Lagos, C.F.; Ortiz, C.A.V.; Tambuwala, M.; Palakurthi, S.S.; Zacconi, F.C. PCSK9 conjugated liposomes for targeted
delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed. Pharmacother. = Biomed. Pharmacother. 2022, 153, 113428.
[CrossRef] [PubMed]

66. Telle-Hansen, V.H.; Christensen, J.J.; Formo, G.A.; Holven, K.B.; Ulven, S.M. A comprehensive metabolic profiling of the
metabolically healthy obesity phenotype. Lipids Health Dis. 2020, 19, 90. [CrossRef]

67. Wang, C.H.; Wei, Y.H. Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and
Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 5266. [CrossRef]

68. Yang, S.; Li, J.; Yan, L.; Wu, Y.; Zhang, L.; Li, B.; Tong, H.; Lin, X. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid
Deposition in Metabolic Associated Fatty Liver Disease. J. Agric. Food Chem. 2024, 72, 10391–10405. [CrossRef]

69. Jin, C.; Felli, E.; Lange, N.F.; Berzigotti, A.; Gracia-Sancho, J.; Dufour, J.F. Endoplasmic Reticulum and Mitochondria Contacts
Correlate with the Presence and Severity of NASH in Humans. Int. J. Mol. Sci. 2022, 23, 8348. [CrossRef]

70. Wang, S.; Zhang, W.; Wang, Z.; Liu, Z.; Yi, X.; Wu, J. Mettl3-m6A-YTHDF1 axis promotion of mitochondrial dysfunction in
metabolic dysfunction-associated steatotic liver disease. Cell. Signal. 2024, 121, 111303. [CrossRef]

71. Anwar, S.D.; Foster, C.; Ashraf, A. Lipid Disorders and Metabolic-Associated Fatty Liver Disease. Endocrinol. Metab. Clin. N. Am.
2023, 52, 445–457. [CrossRef] [PubMed]

72. Clare, K.; Dillon, J.F.; Brennan, P.N. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J. Clin. Transl.
Hepatol. 2022, 10, 939–946. [CrossRef] [PubMed]

73. Lint,a, A.V.; Lolescu, B.M.; Ilie, C.A.; Vlad, M.; Blidis, el, A.; Sturza, A.; Borza, C.; Muntean, D.M.; Cret,u, O.M. Liver and Pancreatic
Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int. J. Mol. Sci. 2024,
25, 7420. [CrossRef]

74. Chi, W.Y.; Lee, G.H.; Tang, M.J.; Chen, B.H.; Lin, W.L.; Fu, T.F. Disturbed intracellular folate homeostasis impairs autophagic flux
and increases hepatocytic lipid accumulation. BMC Biol. 2024, 22, 146. [CrossRef]

75. Mollet, I.G.; Macedo, M.P. Pre-Diabetes-Linked miRNA miR-193b-3p Targets PPARGC1A, Disrupts Metabolic Gene Expression
Profile and Increases Lipid Accumulation in Hepatocytes: Relevance for MAFLD. Int. J. Mol. Sci. 2023, 24, 3875. [CrossRef]
[PubMed]

76. Gao, Y.; Wang, P.; Lu, S.; Ma, W. METTL3 inhibitor STM2457 improves metabolic dysfunction-associated fatty liver disease by
regulating mitochondrial function in mice. Nan Fang Yi Ke Da Xue Xue Bao = J. South. Med. Univ. 2023, 43, 1689–1696. [CrossRef]

77. Wallace, M.; Metallo, C.M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin. Cell Dev. Biol. 2020, 108,
65–71. [CrossRef]

78. Song, Z.; Xiaoli, A.M.; Yang, F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 2018,
10, 1383. [CrossRef] [PubMed]

79. Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N. De novo lipogenesis in health and disease. Metab. Clin. Exp. 2014,
63, 895–902. [CrossRef]

80. Talari, N.K.; Mattam, U.; Kaminska, D.; Sotomayor-Rodriguez, I.; Rahman, A.P.; Péterfy, M.; Pajukanta, P.; Pihlajamäki, J.; Chella
Krishnan, K. Hepatokine ITIH3 protects against hepatic steatosis by downregulating mitochondrial bioenergetics and de novo
lipogenesis. iScience 2024, 27, 109709. [CrossRef]

81. Yao, W.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Quinoa Polyphenol Extract Alleviates Non-Alcoholic Fatty Liver Disease via Inhibiting
Lipid Accumulation, Inflammation and Oxidative Stress. Nutrients 2024, 16, 2276. [CrossRef] [PubMed]

82. Tian, T.; Zhang, J.; Xie, W.; Ni, Y.; Fang, X.; Liu, M.; Peng, X.; Wang, J.; Dai, Y.; Zhou, Y. Dietary Quality and Relationships with
Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) among United States Adults, Results from NHANES 2017–2018.
Nutrients 2022, 14, 4505. [CrossRef] [PubMed]

83. Reis-Costa, A.; Belew, G.D.; Viegas, I.; Tavares, L.C.; Meneses, M.J.; Patrício, B.; Gastaldelli, A.; Macedo, M.P.; Jones, J.G. The
Effects of Long-Term High Fat and/or High Sugar Feeding on Sources of Postprandial Hepatic Glycogen and Triglyceride
Synthesis in Mice. Nutrients 2024, 16, 2186. [CrossRef] [PubMed]

84. Parafati, M.; La Russa, D.; Lascala, A.; Crupi, F.; Riillo, C.; Fotschki, B.; Mollace, V.; Janda, E. Dramatic Suppression of Lipogenesis
and No Increase in Beta-Oxidation Gene Expression Are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease.
Antioxidants 2024, 13, 766. [CrossRef] [PubMed]

85. Perri, A.; Lofaro, D.; Lupinacci, S.; Toteda, G.; Curti, A.; Urso, A.; Bonofiglio, R.; Pellegrino, D.; Brunetti, A.; Greco, E.; et al.
Proinflammatory profile of visceral adipose tissue and oxidative stress in severe obese patients carrying the variant rs4612666 C
of NLRP3 gene. Minerva Endocrinol. 2021, 46, 309–316. [CrossRef]

86. Guo, H.; Zhang, Q.; Li, R.; Seshadri, V.D. Nigericin Abrogates Maternal and Embryonic Oxidative Stress in the Streptozotocin-
Induced Diabetic Pregnant Rats. Appl. Biochem. Biotechnol. 2023, 195, 801–815. [CrossRef]

87. Li, Y.; He, Q.; Chen, S.; Dli, H.; Zhao, J.; Sun, X.; Yang, P.; Mao, Q.; Xia, H. BI-7273, a BRD9 inhibitor, reduces lipid accumulation
by downregulating the AKT/mTOR/SREBP1 signaling pathway. Biochem. Pharmacol. 2024, 226, 116412. [CrossRef]

88. Zhang, Z.; TeSlaa, T.; Xu, X.; Zeng, X.; Yang, L.; Xing, G.; Tesz, G.J.; Clasquin, M.F.; Rabinowitz, J.D. Serine catabolism generates
liver NADPH and supports hepatic lipogenesis. Nat. Metab. 2021, 3, 1608–1620. [CrossRef]

89. Paternostro, R.; Trauner, M. Current treatment of non-alcoholic fatty liver disease. J. Intern. Med. 2022, 292, 190–204. [CrossRef]
90. Ding, L.; Sun, W.; Balaz, M.; He, A.; Klug, M.; Wieland, S.; Caiazzo, R.; Raverdy, V.; Pattou, F.; Lefebvre, P.; et al. Peroxisomal

β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat. Metab. 2021, 3, 1648–1661. [CrossRef]

https://doi.org/10.1016/j.biopha.2022.113428
https://www.ncbi.nlm.nih.gov/pubmed/36076548
https://doi.org/10.1186/s12944-020-01273-z
https://doi.org/10.3390/ijms21155266
https://doi.org/10.1021/acs.jafc.4c00590
https://doi.org/10.3390/ijms23158348
https://doi.org/10.1016/j.cellsig.2024.111303
https://doi.org/10.1016/j.ecl.2023.01.003
https://www.ncbi.nlm.nih.gov/pubmed/37495336
https://doi.org/10.14218/JCTH.2022.00067
https://www.ncbi.nlm.nih.gov/pubmed/36304513
https://doi.org/10.3390/ijms25137420
https://doi.org/10.1186/s12915-024-01946-6
https://doi.org/10.3390/ijms24043875
https://www.ncbi.nlm.nih.gov/pubmed/36835287
https://doi.org/10.12122/j.issn.1673-4254.2023.10.06
https://doi.org/10.1016/j.semcdb.2020.02.012
https://doi.org/10.3390/nu10101383
https://www.ncbi.nlm.nih.gov/pubmed/30274245
https://doi.org/10.1016/j.metabol.2014.04.003
https://doi.org/10.1016/j.isci.2024.109709
https://doi.org/10.3390/nu16142276
https://www.ncbi.nlm.nih.gov/pubmed/39064719
https://doi.org/10.3390/nu14214505
https://www.ncbi.nlm.nih.gov/pubmed/36364767
https://doi.org/10.3390/nu16142186
https://www.ncbi.nlm.nih.gov/pubmed/39064628
https://doi.org/10.3390/antiox13070766
https://www.ncbi.nlm.nih.gov/pubmed/39061835
https://doi.org/10.23736/S2724-6507.21.03460-X
https://doi.org/10.1007/s12010-022-04100-6
https://doi.org/10.1016/j.bcp.2024.116412
https://doi.org/10.1038/s42255-021-00487-4
https://doi.org/10.1111/joim.13531
https://doi.org/10.1038/s42255-021-00489-2


Pharmaceuticals 2024, 17, 1354 32 of 45

91. Badmus, O.O.; Hillhouse, S.A.; Anderson, C.D.; Hinds, T.D.; Stec, D.E. Molecular mechanisms of metabolic associated fatty liver
disease (MAFLD): Functional analysis of lipid metabolism pathways. Clin. Sci. 2022, 136, 1347–1366. [CrossRef] [PubMed]

92. Lu, F.; Meng, Y.; Song, X.; Li, X.; Liu, Z.; Gu, C.; Zheng, X.; Jing, Y.; Cai, W.; Pinyopornpanish, K.; et al. Artificial Intelligence in
Liver Diseases: Recent Advances. Adv. Ther. 2024, 41, 967–990. [CrossRef] [PubMed]

93. Huang, J.; Wu, Y.; Zheng, J.; Wang, M.; Goh, G.B.; Lin, S. The prognostic role of diet quality in patients with MAFLD and physical
activity: Data from NHANES. Nutr. Diabetes 2024, 14, 4. [CrossRef] [PubMed]

94. Niu, Z.; Liu, J.; Peng, H.; Wu, X.; Zheng, X.; Yao, S.; Xu, C. Dietary composition and its association with metabolic dysfunction-
associated fatty liver disease among Chinese adults: A cross-sectional study. Arab. J. Gastroenterol. Off. Publ. Pan-Arab. Assoc.
Gastroenterol. 2024, 25, 205–213. [CrossRef] [PubMed]

95. Ohene-Marfo, P.; Nguyen, H.V.M.; Mohammed, S.; Thadathil, N.; Tran, A.; Nicklas, E.H.; Wang, D.; Selvarani, R.; Farriester, J.;
Varshney, R.; et al. Non-Necroptotic Roles of MLKL in Diet-Induced Obesity, Liver Pathology, and Insulin Sensitivity: Insights
from a High Fat, High Fructose, High Cholesterol Diet Mouse Model. Int. J. Mol. Sci. 2024, 25, 2813. [CrossRef]

96. Xia, Q.; Lu, F.; Chen, Y.; Li, J.; Huang, Z.; Fang, K.; Hu, M.; Guo, Y.; Dong, H.; Xu, L.; et al. 6-Gingerol regulates triglyceride and
cholesterol biosynthesis to improve hepatic steatosis in MAFLD by activating the AMPK-SREBPs signaling pathway. Biomed.
Pharmacother. = Biomed. Pharmacother. 2024, 170, 116060. [CrossRef]

97. Zhu, X.; Qucuo, N.; Zhang, N.; Tang, D.; Hu, Y.; Xie, X.; Zhao, X.; Meng, Q.; Chen, L.; Jiang, X.; et al. Dietary patterns and
metabolic dysfunction-associated fatty liver disease in China’s multi-ethnic regions. J. Health Popul. Nutr. 2023, 42, 141. [CrossRef]

98. Yang, L.; Jiang, Z.; Yang, L.; Zheng, W.; Chen, Y.; Qu, F.; Crabbe, M.J.C.; Zhang, Y.; Andersen, M.E.; Zheng, Y.; et al. Disinfection
Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions.
Environ. Sci. Technol. 2024, 58, 12356–12367. [CrossRef]

99. Kim, N.H.; Lee, S.J.; Lee, K.J.; Song, A.R.; Park, H.J.; Kang, J.S.; Cha, J.Y.; Han, Y.H. The Root Extract of Rosa multiflora Ameliorates
Nonalcoholic Steatohepatitis Development via Blockade of De Novo Lipogenesis and Inflammation. Curr. Issues Mol. Biol. 2024,
46, 5881–5893. [CrossRef]

100. Boleti, A.P.D.A.; Cardoso, P.H.D.O.; Frihling, B.E.F.; e Silva, P.S.; de Moraes, L.F.R.; Migliolo, L. Adipose tissue, systematic
inflammation, and neurodegenerative diseases. Neural Regen. Res. 2023, 18, 38–46. [CrossRef]

101. Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of
Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [CrossRef] [PubMed]

102. Huang, Y.; Wang, Y.F.; Ruan, X.Z.; Lau, C.W.; Wang, L.; Huang, Y. The role of KLF2 in regulating hepatic lipogenesis and blood
cholesterol homeostasis via the SCAP/SREBP pathway. J. Lipid Res. 2024, 65, 100472. [CrossRef] [PubMed]

103. Angelico, F.; Baratta, F.; Coronati, M.; Ferro, D.; Del Ben, M. Diet and metabolic syndrome: A narrative review. Intern. Emerg. Med.
2023, 18, 1007–1017. [CrossRef] [PubMed]

104. Zhang, L.; El-Shabrawi, M.; Baur, L.A.; Byrne, C.D.; Targher, G.; Kehar, M.; Porta, G.; Lee, W.S.; Lefere, S.; Turan, S.; et al.
An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. Med 2024, 5,
797–815.E2. [CrossRef] [PubMed]

105. Medina-Julio, D.; Ramírez-Mejía, M.M.; Cordova-Gallardo, J.; Peniche-Luna, E.; Cantú-Brito, C.; Mendez-Sanchez, N. From Liver
to Brain: How MAFLD/MASLD Impacts Cognitive Function. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2024, 30, e943417.
[CrossRef]

106. Guo, W.; Ge, X.; Lu, J.; Xu, X.; Gao, J.; Wang, Q.; Song, C.; Zhang, Q.; Yu, C. Diet and Risk of Non-Alcoholic Fatty Liver Disease,
Cirrhosis, and Liver Cancer: A Large Prospective Cohort Study in UK Biobank. Nutrients 2022, 14, 5335. [CrossRef]

107. Tang, L.J.; Li, G.; Eslam, M.; Zhu, P.W.; Chen, S.D.; Leung, H.H.; Huang, O.Y.; Wong, G.L.; Zhou, Y.J.; Karsdal, M.; et al. N-terminal
propeptide of type 3 collagen-based sequential algorithm can identify high-risk steatohepatitis and fibrosis in MAFLD. Hepatol.
Int. 2023, 17, 190–201. [CrossRef]

108. Mózes, F.E.; Lee, J.A.; Vali, Y.; Alzoubi, O.; Staufer, K.; Trauner, M.; Paternostro, R.; Stauber, R.E.; Holleboom, A.G.; van Dijk, A.M.;
et al. Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty
liver disease: An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 704–713. [CrossRef]

109. Kumar, A.; Arora, A.; Choudhury, A.; Arora, V.; Rela, M.; Jothimani, D.K.; Mahtab, M.A.; Devarbhavi, H.; Eapen, C.E.; Goel, A.;
et al. Impact of Diabetes, Drug-Induced Liver Injury, and Sepsis on Outcomes in MAFLD-Related Acute-on-Chronic Liver Failure.
Am. J. Gastroenterol. 2024. [CrossRef]

110. Patel, V.S.; Mahmood, S.F.; Bhatt, K.H.; Khemkar, R.M.; Jariwala, D.R.; Harris, B.; George, M.M.; Kurudamannil, R.A.; Anyagwa,
O.E.; Tak, R.S.; et al. Ursodeoxycholic Acid’s Effectiveness in the Management of Nonalcoholic Fatty Liver Disease: A Systematic
Review and Meta-analysis. Euroasian J. Hepato-Gastroenterol. 2024, 14, 92–98. [CrossRef]

111. Naskar, A.; Mondal, A.; Chatterjee, R.; De, R.D.; Roy, S. Assessing Liver Fibrosis in Type 2 Diabetes Mellitus Patients with
Metabolic Dysfunction-Associated Steatotic Liver Disease: The Role of Non-invasive Scoring Systems and Associated Factors.
Cureus 2024, 16, e62405. [CrossRef] [PubMed]

112. Chen, I.C.; Chou, L.J.; Huang, S.C.; Chu, T.W.; Lee, S.S. Machine learning-based comparison of factors influencing estimated
glomerular filtration rate in Chinese women with or without non-alcoholic fatty liver. World J. Clin. Cases 2024, 12, 2506–2521.
[CrossRef] [PubMed]

113. Huby, T.; Gautier, E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 2022, 22, 429–443.
[CrossRef] [PubMed]

https://doi.org/10.1042/CS20220572
https://www.ncbi.nlm.nih.gov/pubmed/36148775
https://doi.org/10.1007/s12325-024-02781-5
https://www.ncbi.nlm.nih.gov/pubmed/38286960
https://doi.org/10.1038/s41387-024-00261-x
https://www.ncbi.nlm.nih.gov/pubmed/38395952
https://doi.org/10.1016/j.ajg.2024.02.003
https://www.ncbi.nlm.nih.gov/pubmed/38378357
https://doi.org/10.3390/ijms25052813
https://doi.org/10.1016/j.biopha.2023.116060
https://doi.org/10.1186/s41043-023-00485-0
https://doi.org/10.1021/acs.est.3c11009
https://doi.org/10.3390/cimb46060351
https://doi.org/10.4103/1673-5374.343891
https://doi.org/10.3390/ijms22126403
https://www.ncbi.nlm.nih.gov/pubmed/34203830
https://doi.org/10.1016/j.jlr.2023.100472
https://www.ncbi.nlm.nih.gov/pubmed/37949368
https://doi.org/10.1007/s11739-023-03226-7
https://www.ncbi.nlm.nih.gov/pubmed/36929350
https://doi.org/10.1016/j.medj.2024.03.017
https://www.ncbi.nlm.nih.gov/pubmed/38677287
https://doi.org/10.12659/MSM.943417
https://doi.org/10.3390/nu14245335
https://doi.org/10.1007/s12072-022-10420-w
https://doi.org/10.1016/S2468-1253(23)00141-3
https://doi.org/10.14309/ajg.0000000000002951
https://doi.org/10.5005/jp-journals-10018-1434
https://doi.org/10.7759/cureus.62405
https://www.ncbi.nlm.nih.gov/pubmed/39011198
https://doi.org/10.12998/wjcc.v12.i15.2506
https://www.ncbi.nlm.nih.gov/pubmed/38817230
https://doi.org/10.1038/s41577-021-00639-3
https://www.ncbi.nlm.nih.gov/pubmed/34741169


Pharmaceuticals 2024, 17, 1354 33 of 45

114. Bikbov, M.M.; Gilmanshin, T.R.; Zainullin, R.M.; Kazakbaeva, G.M.; Iakupova, E.M.; Fakhretdinova, A.A.; Tuliakova, A.M.;
Panda-Jonas, S.; Gilemzianova, L.I.; Khakimov, D.A.; et al. Prevalence of non-alcoholic fatty liver disease in the Russian Ural Eye
and Medical Study and the Ural Very Old Study. Sci. Rep. 2022, 12, 7842. [CrossRef] [PubMed]

115. Labayen, I.; Cadenas-Sánchez, C.; Idoate, F.; Medrano, M.; Tobalina, I.; Villanueva, A.; Rodríguez-Vigil, B.; Álvarez de Eulate, N.;
Osés, M.; Cabeza, R. Liver Fat, Bone Marrow Adipose Tissue, and Bone Mineral Density in Children with Overweight. J. Clin.
Endocrinol. Metab. 2023, 109, e253–e258. [CrossRef] [PubMed]

116. Gupta, U.; Ruli, T.; Buttar, D.; Shoreibah, M.; Gray, M. Metabolic dysfunction associated steatotic liver disease: Current practice,
screening guidelines and management in the primary care setting. Am. J. Med. Sci. 2024, 367, 77–88. [CrossRef]

117. Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al.
American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic
Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the
Study of Liver Diseases (AASLD). Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2022, 28, 528–562.
[CrossRef]

118. Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from
NAFLD to NASH. Transplantation 2019, 103, e1–e13. [CrossRef]

119. Bishayee, A.; Kavalakatt, J.; Sunkara, C.; Johnson, O.; Zinzuwadia, S.S.; Collignon, T.E.; Banerjee, S.; Barbalho, S.M. Litchi (Litchi
chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem. 2024, 457, 140142.
[CrossRef]

120. Matsubayashi, Y.; Fujihara, K.; Yamada-Harada, M.; Mitsuma, Y.; Sato, T.; Yaguchi, Y.; Osawa, T.; Yamamoto, M.; Kitazawa, M.;
Yamada, T.; et al. Impact of metabolic syndrome and metabolic dysfunction-associated fatty liver disease on cardiovascular risk
by the presence or absence of type 2 diabetes and according to sex. Cardiovasc. Diabetol. 2022, 21, 90. [CrossRef]

121. Banerjee, T.; Sarkar, A.; Ali, S.Z.; Bhowmik, R.; Karmakar, S.; Halder, A.K.; Ghosh, N. Bioprotective Role of Phytocompounds
Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular
Mechanisms. Planta Medica 2024, 90, 675–707. [CrossRef] [PubMed]

122. Heidari, N.; Sandeman, S.; Dymond, M.; Rogers, C.; Ostler, E.L.; Faragher, R.G. Resveralogues protect HepG2 cells against cellular
senescence induced by hepatotoxic metabolites. Mech. Ageing Dev. 2024, 219, 111938. [CrossRef] [PubMed]

123. Bueno, P.; Barbalho, S.M.; Guiguer, É.L.; Souza, M.; Medeiros, I.R.A.; Zattiti, I.V.; Bueno, M.D.S.; Nutels, G.S.; Goulart, R.A.;
Araújo, A.C. Effects of Green Wheat (Triticum turgidum) and Common Wheat (Triticum aestivum) on the Metabolic Profile of Wistar
Rats. J. Med. Food 2019, 22, 1222–1225. [CrossRef] [PubMed]

124. Bang, V.M.J.; Aranão, A.L.C.; Nogueira, B.Z.; Araújo, A.C.; Bueno, P.; Barbalho, S.M.; de Souza, M.; Guiguer, E.L. Effects of
Rhodiola rosea and Panax ginseng on the Metabolic Parameters of Rats Submitted to Swimming. J. Med. Food 2019, 22, 1087–1090.
[CrossRef] [PubMed]

125. Laurindo, L.F.; de Carvalho, G.M.; de Oliveira Zanuso, B.; Figueira, M.E.; Direito, R.; de Alvares Goulart, R.; Buglio, D.S.; Barbalho,
S.M. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based
Comprehensive Review. Pharmaceutics 2023, 15, 229. [CrossRef] [PubMed]

126. Luengo, A.; Li, Z.; Gui, D.Y.; Sullivan, L.B.; Zagorulya, M.; Do, B.T.; Ferreira, R.; Naamati, A.; Ali, A.; Lewis, C.A.; et al. Increased
demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol. Cell 2021, 81, 691–707.e696. [CrossRef]

127. Bar, S.; Kara, M. Linalool exerts antioxidant activity in a rat model of diabetes by increasing catalase activity without antihyper-
glycemic effect. Exp. Ther. Med. 2024, 28, 359. [CrossRef]

128. Thongrong, S.; Promsrisuk, T.; Sriraksa, N.; Surapinit, S.; Jittiwat, J.; Kongsui, R. Alleviative effect of scopolamine-induced
memory deficit via enhancing antioxidant and cholinergic function in rats by pinostrobin from Boesenbergia rotunda (L.). Biomed.
Rep. 2024, 21, 130. [CrossRef]

129. Saka, W.A.; Adeogun, A.E.; Adisa, V.I.; Olayioye, A.; Igbayilola, Y.D.; Akhigbe, R.E. L-arginine attenuates dichlorvos-induced
testicular toxicity in male Wistar rats by suppressing oxidative stress-dependent activation of caspase 3-mediated apoptosis.
Biomed. Pharmacother. = Biomed. Pharmacother. 2024, 178, 117136. [CrossRef]

130. Kobayashi, Y.; Kurokawa, H.; Tokinoya, K.; Matsui, H. Monascus pigment prevent the oxidative cytotoxicity in myotube derived
hydrogen peroxide. J. Clin. Biochem. Nutr. 2024, 75, 33–39. [CrossRef]

131. Fan, Y.; Ma, L.; Fang, X.; Du, S.; Mauck, J.; Loor, J.J.; Sun, X.; Jia, H.; Xu, C.; Xu, Q. Role of hypoxia-inducible-factor-1α (HIF-1α) in
ferroptosis of adipose tissue during ketosis. J. Dairy Sci. 2024, in press. [CrossRef] [PubMed]

132. Wang, X.; Dong, Y.; Du, H.; Lu, Y.; Jiang, Y.; Ding, M.; Sheng, X. Vascular endothelial cells of Mongolian gerbils are resistant to
cholesterol-induced mitochondrial dysfunction and oxidative damage. Exp. Ther. Med. 2024, 28, 356. [CrossRef] [PubMed]

133. Fujii, J.; Imai, H. Oxidative Metabolism as a Cause of Lipid Peroxidation in the Execution of Ferroptosis. Int. J. Mol. Sci. 2024, 25,
7544. [CrossRef] [PubMed]

134. Lin, H.; Wang, L.; Jiang, X.; Wang, J. Glutathione dynamics in subcellular compartments and implications for drug development.
Curr. Opin. Chem. Biol. 2024, 81, 102505. [CrossRef] [PubMed]
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