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A B S T R A C T

Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic 
dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 
diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms 
of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the 
multifaceted pathways involved in this interplay and explores potential therapeutic implications.

The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease 
progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut 
microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and 
endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Di-
etary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Addi-
tionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver 
lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise 
in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment 
of MASH and fibrosis.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD), which has recently been 
renamed and redefined as metabolic dysfunction-associated steatotic 
liver disease (MASLD) [1], has become the most prevalent chronic liver 
disease globally [2]. Approximately one out of every three adults in the 
general population globally and one out of every four adolescents is 
affected by MASLD, rendering it one of the most common non- 
communicable diseases [3,4]. Its progressive form, nonalcoholic stea-
tohepatitis, now metabolic dysfunction-associated steatohepatitis 
(MASH) [1], is the second-leading cause of end-stage liver disease and 
liver transplantation in Europe and USA [3]. Although the new defini-
tion of MASLD requires the presence of one out of five cardiometabolic 
risk factors, components of the metabolic syndrome, which might lead to 
different phenotypes [5], recent data indicate that the prevalence of 
NAFLD and MASLD is generally comparable [6–8]. Overall, its onset and 

progression are intricately linked with metabolic imbalances and insulin 
resistance [9]. Consequently, it is not surprising that its occurrence is 
even more pronounced in individuals with type 2 diabetes (T2D), where 
it reaches a prevalence rate of 60–75 % [10]. The presence of MASLD 
increases the risk of developing T2D in individuals, who are not initially 
affected and increases the risk of complications in individuals with pre- 
existing T2D. On the other hand, individuals with T2D tend to progress 
more rapidly to MASH, advanced liver fibrosis, cirrhosis and hepato-
cellular carcinoma [11–13]. Of paramount importance, the severity of 
liver fibrosis emerges as the most crucial histological predictor for the 
future development of liver-related complications, as validated by 
numerous cohort studies and meta-analyses [14–16]. The increased 
prevalence of MASLD and its accelerated progression contribute to a 
roughly threefold elevated risk of mortality from liver-related conditions 
in individuals with T2D compared to age- and gender-matched in-
dividuals without T2D [17,18]. Nevertheless, awareness regarding 
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MASLD including MASH and its potential prognostic implications re-
mains limited, both among affected individuals [19] and within the 
healthcare professional community [20]. The global burden of MASLD 
[10,21], the associated morbidity and mortality [18] as well as available 
non-invasive screening approaches [22–24] have been extensively 
reviewed before. Here we focus on T2D as a risk factor for MASH pro-
gression along with the underlying mechanisms of T2D-related MASH 
and the respective therapeutic implications for people with diabetes. 
While we appreciate that extensive knowledge on MASH progression 
mechanisms has been obtained in preclinical animal models, the present 
work is primarily focused on data from human studies.

2. Risk factors for MASH progression

The driving factors for MASLD progression are not completely un-
derstood. In the context of diabetes, the data shows some inconsistencies 
for several factors such as male sex, older age and Caucasian ethnicity, 
which have been established in non-exclusively diabetic cohorts [25]. 
More evidence is available for genetic variation, obesity, diet, hyper-
glycemia and dyslipidemia (Fig. 1).

2.1. Genetic factors

Genetic evidence points at several single nucleotide polymorphisms 
related to increased MASLD development risk. Among these, the most 
prevalent ones include PNPLA3 rs738409 I148M [26], which has been 
linked to hepatic steatosis due to PNPLA3 accumulation on lipid droplets 
[27], TM6SF2 rs58542926 E167K [28], known to diminish hepatic 
VLDL release, and MBOAT7 rs641738 [29], an enzyme responsible for 
the modification of phospholipid acyl-chains. These genetic variations 
have respective minor (risk) allele frequencies of 24 %, 7 %, and 43 %, as 
determined from data provided by the CARDIoGRAMplusC4D con-
sortium [30]. They may also influence the development of 

hepatocellular carcinoma, irrespective of the activity level and extent of 
liver damage [31]. Although these variations were initially discovered 
in patients with hepatic steatosis detected by magnetic resonance 
spectroscopy (MRS), subsequent studies in biopsy-proven MASLD 
confirmed the impact of PNPLA3 and TM6SF2 variants for liver injury 
[32]. The role of rs641738C > T variant in MBOAT7 has also been 
demonstrated in a human biopsy MASLD cohort and deletion of 
MBOAT7 in hepatocytes in a mouse model of diet-induced MASH leads 
to increased fibrosis with no effect on inflammation [33]. In carriers of 
the PNPLA3 or the TM6SF2 polymorphisms with MASH the presence of 
T2D increases the risk of advanced fibrosis [34]. Still, the mechanism of 
the interplay between T2D and these gene variants for the progression of 
MASH remains unclear.

Of note, PNPLA3 stands out as a risk factor for the full histological 
spectrum of MASLD beyond a genome-wide critical threshold in the 
statistical testing [32]. However, it is important to note that, despite the 
prevailing understanding that steatosis in MASLD arises from increased 
flux of fatty acids derived from adipose tissue and higher lipogenesis, 
there is currently very limited data establishing a direct connection 
between these genetic variants and the above mentioned underlying 
biological pathways. In line, a recent case-control study showed some 
evidence that TM6SF2 rs58542926 dissociates hepatic lipid content 
from insulin resistance in T2D in the German Diabetes Study (GDS) [35], 
suggesting that the effect of this SNP is secondary to the diabetes-related 
metabolic alterations in MASLD [36]. Of note, in the same cohort of 
individuals with recent-onset T2D the PNPLA3 rs738409 has been 
linked to adipose tissue insulin resistance and excessive lipolysis, 
thereby demonstrating a possible contribution of this genetic variant to 
MASLD development in people with T2D and insulin resistance [37]. 
Decreased mitochondrial citrate synthase flux and increased ketogenesis 
has been recently implicated in the mechanism, by which steatosis 
induced by this variant, leads to progressive liver disease [38]. Hepatic 
activation of inflammatory pathways downstream from STAT3 via 

Fig. 1. Factors for metabolic dysfunction-associated steatohepatitis (MASH) progression in people with type 2 diabetes (T2D). Increase in the waist 
circumference and in the waist-to-hip ratio are risk factor for MASH and advanced fibrosis in people with T2D, while the role of genetic variants, known to accelerate 
MASH in non-exclusively diabetic populations, remains unclear in the context of T2D. On the other hand, dietary factors such as increased fat and alcohol intake as 
well as decreased fiber intake might trigger intestinal dysbiosis and contribute to diabetes-related MASH progression. Low HDL, but not increased LDL, has been 
described as a risk factor for advanced fibrosis in T2D. Figure created with biorender.com. MASH − metabolic dysfunction-associated steatohepatitis, T2D – type 2 
diabetes, HDL – high-density lipoproteins, LDL – low-density lipoproteins.
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ceramides has also been described as a potential mechanism in rodents 
[39]. Furthermore, an interaction between this SNP and visceral fat 
content has been suggested which increases the risk of hepatic fibrosis in 
histologically proven MASLD [40]. In summary, compelling evidence 
from multiethnic groups supports the notion that the PNPLA3 variant 
relates to progressive steatohepatitis, liver injury and higher risk of 
hepatocellular carcinoma in people with MASH [31,41,42], while with 
regard to T2D limited evidence suggests that it might further aggravate 
this link. Still, mechanistic studies linking common genetic variants in 
MASLD to the pathophysiological mechanisms of MASH progression in 
prospective human cohorts with and without T2D are missing.

2.2. Diet as a risk factor

The development of MASLD is closely linked to lifestyle factors, 
namely high calorie intake together with reduced physical activity. 
Excess calorie consumption has been particularly implicated in the 
progression of MASH through mechanisms of increased oxidative stress 
and endoplasmic reticulum stress (for details see Chapter 3.3.2). When 
energy intake surpasses the body’s metabolic demands, substrate flux 
through the mitochondria increases, leading to higher reactive oxygen 
species (ROS) production. Oxidative stress can damage mitochondrial 
components, including proteins, lipids and DNA. As a response to this 
damage and oxidative stress, cells release proinflammatory cytokines, 
such as interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). 
The presence of proinflammatory cytokines triggers an inflammatory 
response, recruiting immune cells to the site of increased oxidative 
stress. As increased oxidative stress and inflammation are features of 
T2D per se [43], this might additionally favor MASH progression in the 
settings of overnutrition.

High dietary sugar, particularly fructose, can stimulate hepatic de 
novo lipogenesis (DNL) and promote hepatic lipid accumulation. 
Furthermore, excessive fructose consumption can lead to insulin resis-
tance and increased hepatic triglycerides synthesis, exacerbating MASH. 
Robust effects of fructose consumption on hepatic steatosis were re-
ported in healthy male individuals [44,45]. In a nonrandomized cross-
over study, a 7-day hypercaloric fructose diet increased intrahepatic 
TAG content and augmented hepatic steatosis more than an isocaloric 
diet did, with more potent stimulation of hepatic DNL in 16 healthy 
males with a family history of T2D than in 8 humans without family 
history of T2D [46]. This finding indicates that fructose induces its 
detrimental effects especially under hypercaloric conditions, which are 
an important driver of T2D. Furthermore, the specific combination of 
fructose with trans fatty acids but not saturated fatty acids induces he-
patic fibrosis in a long-term feeding experiment in rats [47]. The dele-
terious metabolic effects of fructose are likely mediated by the 
metabolism of fructose by fructokinase C, which results in ATP con-
sumption, nucleotide turnover and uric acid generation that mediate 
lipid accumulation [48].The contribution of fructose to MASH pro-
gression in the settings of T2D in particular remains unclear.

Saturated fatty acids (SFA) accumulation, but not unsaturated fatty 
acids, promote ER stress and apoptosis in hepatocytes, likely favoring 
MASH progression [49,50]. In line, clinical trials in humans demon-
strate, that while monounsaturated fat load does not alter hepatic 
steatosis [51], a single oral lipid challenge rich in SFA induces hepatic 
insulin resistance, augments hepatic lipid accumulation, gluconeogen-
esis and energy metabolism [52]. Complementing studies in rodents 
revealed upregulation of pathways such as LPS and NF-κB, possibly 
contributing to MASLD progression [52]. Whether these effects are 
augmented in T2D, however, remains unknown. Compelling evidence 
suggests that ER stress is of critical importance to SFA-induced cellular 
dysfunction, enhanced autophagy and lipoapoptosis [50]. Short-term 
overfeeding with SFA leads to hepatic steatosis and IR in overweight 
humans [53], but whether similar or more detrimental effects are pre-
sent in people with T2D is unclear.

Inadequate fiber intake can alter the gut microbiota, promoting the 

growth of proinflammatory bacteria. Dysbiosis is tightly linked to T2D 
[54] and leads to the release of inflammatory mediators and gut-derived 
endotoxins, which can trigger hepatic inflammation [54]. Gut-derived 
endotoxins, such as lipopolysaccharides (LPS), activate Toll-like re-
ceptors (TLRs) in the liver [55]. TLR signaling promotes inflammation 
and might contribute to MASH pathogenesis [56].

Alcohol consumption can also exacerbate liver injury in MASH. 
Ethanol metabolism leads to ROS production causing oxidative stress 
and hepatocellular damage. In addition, alcohol can disrupt the gut 
barrier, leading to increased permeability and the translocation of gut- 
derived proinflammatory factors into the liver, contributing to inflam-
mation and liver injury.

Metabolic toxins, especially alcohol abuse or high fat/low fiber diet 
in MASLD have been described to disrupt intestinal homeostasis by 
increasing intestinal permeability and altering microbiota [57] (also s. 
Chapter 4.2). Consequentially, the relative overgrowth of potentially 
pathogenic bacteria not only drives hepatic inflammatory immune re-
sponses and HSC activation due to portal delivery of pathogen- 
associated molecular patterns (PAMPs, as lipopolysaccharides, pepti-
doglycans, and flagellin), the altered microbiome also results in intes-
tinal deconjugation of bile acids and therefore production of so-called 
secondary bile acids that suppress Farnesoid-X Receptor (FXR) signaling 
[58]. The contribution of these mechanisms in the context of T2D re-
mains unclear.

2.3. Obesity as a risk factor

Of note, BMI and particularly central (visceral) adiposity have been 
suggested to play a key role. Higher waist circumference and waist-to- 
hip ratio have been described as risk factors for MASH and advanced 
fibrosis in people with T2D [59,60], while obesity per se has been 
associated with 2.5-fold increased risk of advanced fibrosis in a pro-
spective T2D cohort after multivariable adjustment for age and sex [61]. 
On the other hand, the presence of T2D in the settings of obesity has 
been found particularly detrimental for the risk of MASH and fibrosis, as 
demonstrated by odds ratio of 9.7 in people with BMI > 50 kg/m2 and 
metabolic disease such as T2D [62]. While this substantially com-
pounded effect is of high clinical relevance, the contribution of the 
presence of T2D to advanced liver disease across the BMI spectrum also 
warrants investigation. Interestingly, MASLD is also seen in normal 
weight people and, as expected, T2D is less common in this population in 
comparison to non-lean humans with MASLD [63,64]. Still, T2D likely 
does not influence MASLD progression in lean individuals [65,66], 
suggesting BMI dependent effect of T2D.

2.4. Hyperglycemia as a risk factor

Hyperglycemia in T2D per se represents a risk factor which contrib-
utes to MASH progression via different mechanisms, including 
compromising intestinal barrier function (s. Chapter 4.2), modulation of 
hepatic lipid metabolism gene expression (s. Chapter 4.3.1) or genera-
tion of advanced glycation end-products (AGEs) (s. Chapter 4.3.2). 
Recent studies with paired liver biopsies revealed a tight link between 
diabetes-related hyperglycemia and advanced MASH. Fibrosis progres-
sion is not only accelerated in T2D compared to nondiabetic individuals 
[11], but HbA1c in particular is related to hepatic fibrosis progression 
independent of BMI [67]. Gene expression analyses in the latter study 
also demonstrated that the hyperglycemia effect on hepatic fibrosis 
might be mediated by hypoxia, oxidative stress and inflammation [67]. 
Further details on the relation between fibrosis prevalence and pro-
gression in T2D are outlined in Chapter 3.

2.5. Dyslipidemia as a risk factor

The production and/or clearance of all classes of lipoprotein parti-
cles involves the liver. Apart from its role in the metabolism of 
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lipoprotein particles, the liver participates in the metabolism of tri-
glycerides and especially cholesterol. Hypertriglyceridemia, increased 
small dense low-density lipoprotein cholesterol (LDL) and decreased 
high-density lipoprotein cholesterol (HDL) are hallmarks of atherogenic 
dyslipidemia, which is not uniformly present in people with MASLD 
[68–72]. Still, only in combined MASLD and T2D dyslipidemia is an 
independent risk factor for liver fibrosis, but not in MASLD alone [73]. 
The link between altered lipid metabolism in MASLD and increased 
cardiovascular disease (CVD) risk has been substantiated by a large 
amount of evidence [74] and dyslipidemia has been suggested as a 
driver of MASLD-related liver events [75,76]. In T2D population with 
MASLD higher prevalence of CVD in multiple sites (coronary, cerebro-
vascular, and peripheral vascular disease) has been observed and LDL 
levels did not substantially contribute to the tight link between MASLD 
and CVD [77]. Furthermore, increased systemic LDL levels per se have 
not been explicitly related to MASH progression in humans, while low 
HDL has been identified as a factor related to advanced fibrosis in T2D 
[60]. Of note, statin-therapy might be able to reduce hepatic steatosis 
[78], but does not lead to MASH remission [79–81]. Proprotein con-
vertase subtilisin/kexin type 9 (PCSK9), which is a key regulator of 
cholesterol homeostasis and intracellular lipogenesis, has been recog-
nized to play a dual role for hepatic and systemic cholesterol levels by 
decreasing hepatic cholesterol uptake thereby preventing excess 
cholesterol accumulation in the liver while increasing plasma LDL [82]. 
Still, its relevance for MASH progression in humans remains unclear 
[83]. In contrast to systemic cholesterol, intracellular cholesterol con-
tent has been found to induce liver injury and drive MASH progression 
through several mechanisms. First, via direct modulation of gene tran-
scription of SREBP2, a master regulator of sterol and fatty acid synthesis, 
as well as indirectly via activating liver and FXR by cholesterol-derived 
metabolites [84]. Second, through upregulation of TAZ (tafazzin), a 
transcriptional regulator promoting fibrosis [85], which increases he-
patocyte Indian hedgehog transcription and secretion, leading to HSC 
activation. Furthermore, mitochondrial cholesterol accumulation from 
in vitro LDL loading in murine hepatocyte culture results in hepatocyte 
apoptosis by activating JNK1 [86]. Thereby intracellular cholesterol 
homeostasis remains of paramount importance for MASH progression 
and represents a possible future treatment target.

Hypertriglyceridemia is a common finding in MASLD and T2D 
because of the impaired dynamic balance between hepatic very low- 
density lipoproteins (VLDL) – triglyceride secretion and plasma clear-
ance. In people with T2D hypertriglyceridemia has been related to 
increased MASH prevalence [60] and in nonobese MASLD hyper-
triglyceridemia is a key factor for advanced liver disease independent of 
T2D [65]. It has been suggested, that hepatic VLDL-TG secretion can 
compensate for increased intrahepatic triglyceride accumulation only to 
a certain level of 10 % liver fat content, after which VLDL production is 
not effective anymore and hypertriglyceridemia exacerbates further 
[87,88]. Still, the suggested association between hypertriglyceridemia 
and MASH progression [69] has not been substantiated with direct 
mechanistic evidence and Mendelian randomization points at no causal 
link between dyslipidemia and MASLD [89]. Circulating triglycerides 
seem far less important for MASH progression than the rates of hydro-
lysis of triglycerides in hepatocyte lipid droplets, non-esterified fatty 
acid (NEFA) flux, de novo lipogenesis (DNL) as well as intrahepatic fatty 
acid oxidation (see Chapter 4.3.1).

3. Prevalence and progression of liver fibrosis in MASH and T2D

People with T2D have been shown to have a higher prevalence of 
advanced fibrosis [90] and an exacerbated risk of developing MASH and 
advanced fibrosis or cirrhosis compared to the general population [12]. 
However, the real prevalence of advanced fibrosis in humans with T2D 
remains difficult to establish. Two recent meta-analyses in people with 
T2D and MASLD [10,90] suggested a prevalence of advanced fibrosis or 
cirrhosis between 14.9 % (11.0–19.9) and 17.0 % (7.2–34.8). It should 

be underlined that most studies included in these meta-analysis were 
based on the use non-invasive tests (NITs), such as vibration controlled- 
transient elastography (VCTE) or magnetic resonance-elastography 
(MRE), to assess liver fibrosis and not on liver biopsies (LB). Addition-
ally, in the most recent review of the literature [91], prevalence of 
advanced fibrosis or cirrhosis ranged from 3 % to 38 %, according to the 
setting (primary care or diabetes clinics), and the diagnostic tools used 
(NITs or LB). For instance, using the same NIT (liver stiffness > 9.7 kPa 
by VCTE), prevalence of advanced fibrosis was 15 % in 825 US in-
dividuals with T2D seen in primary care (NHANES cohort) [92] whereas 
it was 27 % in 1918 Chinese individuals with T2D seen in secondary/ 
tertiary care diabetes clinics [93]. Finally, in the largest cohort to date 
(713 T2D French outpatients systematically screened for MASLD in 
diabetes clinics using a low ALT threshold (>30 IU/L in male and > 20 
IU/L in female) of whom 330 underwent a LB, we found a prevalence of 
advanced fibrosis and cirrhosis of 28 % and 10 %, respectively [60]. 
Interestingly, our findings are in keeping with those of another Amer-
ican study in 134 people with T2D who underwent a LB [61]. When 
looking at risk factors, liver lesions were independently associated with 
components of the metabolic syndrome but not with T2D complications. 
For instance, simple clinical predictors (waist circumference (M > 102, 
F > 88 cm), OR = 2.24; GGT (IU/L), OR = 1.008; HDL cholesterol (M <
1.03, F < 1.29 mmol/L) OR = 2.57; and FIB-4, OR = 3.01) had good 
performance (AUROC 0.77) for predicting advanced fibrosis.

In a recent prospective multicenter US study in 447 people with 
MASLD and paired LB (median interval 3.3 years) from the NASH-CRN 
cohort, those with T2D had a significantly higher cumulative incidence 
of fibrosis progression (≥1 stage increase) than those without T2D, at 4 
years (24 % vs. 20 %), 8 years (60 % vs. 50 %), and 12 years (93 % vs. 76 
%) (p = 0.005) [11]. Interestingly, after adjusting for potential influ-
encing factors such as age, sex, BMI, ethnicity and baseline fibrosis stage, 
the presence of T2D was associated with a 69 % increase in the risk of 
fibrosis progression. Further studies in other settings and populations 
are needed. Altogether these results suggest that people with T2D should 
be systematically screened for MASLD and liver fibrosis as recom-
mended recently by several guidelines [94–97]. Additionally, MASH 
should be considered as a complication of T2D.

In people with T1D, increased liver stiffness is found in ca. 5 % of the 
individuals [98] and surprisingly, longitudinal liver related outcomes 
are similar in T1D when compared with respective cohorts with T2D 
[99]. However, this classical diabetes classification has been recently 
challenged and new approaches for diabetes classification have been 
proposed, which help determine key features contributing to risk of 
complications in diabetes, including MASLD. Analyses of the GDS study 
validated the concept of 5 subtypes (clusters) of diabetes using 
comprehensive metabolic phenotyping in patients with recently diag-
nosed diabetes mellitus [100]. Interestingly, the subtypes of participants 
with severe insulin-resistant diabetes (SIRD) exhibited increased hepatic 
lipid content compared to all other subgroups in the settings of high BMI 
and adipose tissue insulin resistance. The prospective analysis of these 
participants with SIRD revealed increased hepatic fibrosis at 5 years 
follow-up [100], supporting the notion of a tight link between insulin 
resistance and hepatic fibrosis progression in MASLD. Also, carriers of 
the rs738409 polymorphism in the PNPAL3 gene were more often found 
in this particular subgroup and this SNP related to severe adipose tissue 
insulin resistance [37], suggesting that this genetic variant might 
contribute to the progression of liver disease in insulin resistant humans 
with diabetes (see Chapter 2.1). Still, the high prevalence of liver related 
outcomes in T1D does not seem to be reflected in the mainly corre-
sponding to T1D severe autoimmune diabetes (SAID) cluster from the 
new classification, which is probably due to the short disease duration of 
5 years at follow up.
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4. Mechanisms of diabetes-related MASH progression

4.1. Timeline of diabetes-related MASH progression

Accumulating evidence suggests that early abnormalities in the 
development and progression of diabetes-related MASH entail diet- 
induced adipose tissue dysfunction and intestinal dysbiosis [101]. 
These early changes are followed by intrahepatic alterations including 
lipotoxicity and altered mitochondrial function [102]. Subsequently 
hepatic oxidative and ER stress as well as inflammation gain key roles as 
progressive drivers of hepatic injury. The mechanisms of MASH have 

extensively been studied in mouse models, even though a standard 
translationally relevant preclinical model which accurately reflects 
human physiology is currently missing [103]. While this review work 
focuses on data from human trials, the following mechanistic sections 
also include some key findings from mouse model studies. Of note, a 
rodent model of diabetes-related steatohepatitis has recently been pro-
posed, which showed diabetes related inflammation activation in a 
single cell RNA sequencing analysis and might represent a suitable 
model for future studies on diabetes-related MASH [104].

Fig. 2. Interplay between extrahepatic and intrahepatic factors driving diabetes-related metabolic dysfunction-associated steatohepatitis (MASH) pro-
gression. Energy-rich high-fat diets trigger intestinal dysbiosis and favor visceral fat expansion. Altered intestinal permeability facilitates translocation of inflam-
matory endotoxin (LPS) in the liver. Excessive fat accumulation in adipose tissue leads to altered secretion of adipokines, unrestrained lipolysis due to insulin 
resistance and inflammation, which accelerates hepatic lipid accumulation in MASH, while in advanced fibrosis lipid transport via FATP5 and accumulation are 
reduced. In the settings of decreased mitochondrial respiratory capacity in T2D lipotoxic mediators and oxidative stress increase. Lipid overload and LPS also lead to 
ER stress, which further enhances insulin resistance and inflammation via JNK and NF-kB pathways activation. Kupffer cells and liver sinusoidal endothelial cells 
(LSEC) are stimulated. They release proinflammatory cytokines and activate hepatic stellate cells, which are key in hepatic fibrogenesis as they regulate extracellular 
matrix production. Figure created with biorender.com. CTGF – connective tissue growth factor (also known as cellular communication network factor 2, CCN2), ECM 
– extracellular matrix, MASH − metabolic dysfunction-associated steatohepatitis, T2D – type 2 diabetes, FATP – fatty acid transporter 5, TAG – triacylglycerols, NEFA 
– non-esterified fatty acids, TCA – tricarboxylic acid cycle.
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4.2. Extrahepatic mechanisms: overnutrition induced adipose tissue 
dysfunction and gut dysbiosis

Adipose tissue has been suggested as a key player both in T2D and 
MASLD development [43,87] (Fig. 2). In particular, the capacity of 
subcutaneous adipose tissue to expand is limited and once exceeded, 
visceral adipose tissue increases, mediating liver injury. In line, humans 
with newly diagnosed T2D and MASLD from the GDS exhibit an 
expansion in visceral adipose tissue in the early course of the disease 
which tightly relates to elevated liver lipid content [105]. Even though 
liver histology was not available in this study due to ethical consider-
ations, the higher AST at follow up might point towards simultaneously 
developing liver injury in people with T2D. Furthermore, the PNPLA3 
rs738409 variant has been shown to modulate the relationship between 
visceral adipose tissue and hepatic fibrosis as carriers with increased 
visceral fat had a higher risk of severe fibrosis [40].

Increased lipolysis and lower lipogenesis in visceral compared to 
subcutaneous adipose tissue facilitate hepatic delivery of lipid metabo-
lites with detrimental effect on hepatic substrate utilization and lip-
otoxicity [106]. Serum metabolomics in MASLD reveal an increase in the 
levels of most triacylglycerol species with progression of steatosis and 
fibrosis, while levels of several phosphatidylcholine and sphingomyelin 
species decrease [107]. As >90 % of the here included European NAFLD 
Registry participants also exhibited T2D, the reported metabolic signa-
ture is likely valid for diabetes-related MASLD progression. The 
diacylglycerol-induced PKCε activation leading to inhibition of hepatic 
insulin signaling has been recognized as a major lipotoxic mechanism 
implicated in the development of hepatic insulin resistance [108,109], 
but hepatic diacylglycerols have not been directly related to diabetes- 
related MASH progression. Indeed, not liver but adipose tissue dele-
tion of PKCε affects hepatic expression of genes involved in steatohe-
patitis development, indicating PKCε-dependent crosstalk between 
adipose tissue and the liver [110], that might contribute to MASH.

Of note, altered mitochondrial function in adipose tissue has been 
identified as an important player in the development of insulin resis-
tance and progression of MASLD [106]. In particular, lower expression 
of proteins involved in mitochondrial function and lower availability of 
mitochondria–derived energy sources for lipogenesis in adipose tissue 
compromise adipose tissue’s role as a principal sink of lipids. Moreover, 
mitochondrial function in visceral, but not subcutaneous adipose tissue 
is downregulated in humans with hepatic steatosis and MASH and is 
associated with decreased adipose tissue insulin sensitivity and elevated 
local inflammation, suggesting that impaired visceral adipose tissue 
energy metabolism might be implicated in MASLD progression [111]. 
This mechanism is likely diabetes-related, as VAT proteins related to key 
mitochondrial function features are also downregulated in T2D [112]. 
However, prospective data from biopsy-proven MASLD cohorts looking 
at the mechanistic link between adipose tissue dysfunction and diabetes- 
related MASH progression is lacking.

Well-known mediators of adipose tissue-liver crosstalk are the adi-
pokines leptin and adiponectin, which regulate glucose production, 
lipogenesis and fatty acid oxidation in the liver. Substantial amount of 
mechanistic evidence from rodents points at leptin as activator of he-
patic fibrosis via stimulation of hepatic stellate cells [113–115]. How-
ever, mechanistic studies in humans are scarce [116,117]. Leptin levels 
did not relate to fibrosis stage or fibrosis progression in human MASLD 
[118,119], while a correlation was found with the degree of steatosis 
[119,120]. On the contrary, adiponectin decreases with the progression 
from simple steatosis to MASH and later on increases with the devel-
opment of cirrhosis and hepatic fat loss [117]. Whether these adipokines 
specifically contribute to MASH progression in T2D remains unclear. On 
the other hand, several microRNAs are released from adipocytes, which 
might serve as novel mediators of inter-organ crosstalk impacting T2D 
and may regulate hepatic fibrosis progression via transforming growth 
factor β [121] and NFκB-TNFα pathway [122].

Altered gut microbiota is found not only in T2D, but is also 

considered a major contributor to the progression of MASLD [54,58]
(Fig. 2). It is known that both conditions are favored by metabolic 
endotoxemia, which is a low-grade inflammation state linked to intes-
tinal dysbiosis and increased intestinal permeability. Disruption of the 
intestinal epithelial and gut vascular integrity occurs early on in the 
MASH evolution and prevention of this disruption can protect against 
the development of MASH [57]. Similarly, increased intestinal perme-
ability is a characteristic of T2D and the resulting metabolic endotox-
emia can trigger body weight gain and insulin resistance [123]. Of note, 
hyperglycemia per se enhances intestinal barrier permeability leading to 
systemic influx of microbial products and correcting hyperglycemia can 
restore the barrier function [124]. Also, both metabolic and inflamma-
tory mechanisms are at play here, so that diabetes-related dysbiosis 
might modify the natural course of MASLD. Endotoxin, which is 
increased in serum of humans with T2D [125], binds to the CD14/TLR4 
complex on the macrophage’s surface and favors M1 macrophage pro-
liferation with subsequent production of TNFα, IL-1β, and IL-6, which 
contributes to insulin resistance, but can also promote MASH progres-
sion [126]. Still, a direct effect of endotoxin in the development of 
MASH and/or fibrosis has not been clearly demonstrated and among 
humans with MASH serum endotoxin is not correlated with disease 
severity, suggesting that endotoxemia is not required in the pathogen-
esis [127].

Trimethylamine N-oxide (TMAO), which is another gut-derived 
bacterial factor, has been related to MASH mainly in the presence of 
T2D [128]. Intestinal interleukine 33 has recently been shown as the 
link between enhanced intestine-derived TMAO and aggravated MASLD 
inflammation and fibrosis [129]. Still, abundant preclinical data points 
at a the complex nonlinear relation between TMAO and MASLD, which 
is incompletely understood also in the context of T2D [130]. A recent 
multiomics approach revealed that gut permeability is key in the path-
ophysiology of MASLD with fibrosis, and that the gut-liver axis is 
partially independent of T2D in liver disease progression [131]. While it 
has been suggested that Firmicutes to Bacteroidota ratio may distinguish 
individuals with MASH fibrosis from healthy ones [132], recent evi-
dence from this multiomics study suggests that Firmicutes abundance 
might be related to T2D and not to liver disease and that lower Butyr-
icicoccus is specifically linked to MASLD with fibrosis. On the other hand, 
in a biopsy-proven human cohort Bacteroides abundance is indepen-
dently associated with MASH, while Ruminococcus relates to advanced 
fibrosis [133]. Of note, the negative correlation between Bacteroides/ 
Prevotella and MASH is independent of diet and BMI, suggesting liver 
disease-specific effect of these genera of intestinal bacteria [134]. Still, 
Bacteroides abundance also plays a role in T2D as it is reduced in humans 
with T2D. Furthermore, it positively modulates inflammation and gut 
permeability as well as increases adipose tissue fatty acid oxidation 
[135]. Thereby common alterations in the intestinal flora might 
contribute to the accelerated progression of MASH in T2D.

Additionally, individuals with MASH present with higher levels of 
blood ethanol concentrations due to increased abundance of alcohol- 
producing bacteria in the MASH microbiomes [136]. Once in the liver 
via the portal circulation, this endogenous alcohol likely aggravates 
hepatic oxidative stress and inflammation. Notably, obesity has also 
been associated with increased intestinally derived ethanol [137], 
which might represent a common pathogenic mechanism between T2D 
and MASH.

Gut microbiota is also involved in the production of secondary bile 
acids, which control inflammation, glucose and lipid metabolism via the 
nuclear FXR [84]. FXR activation has been shown to inhibit lipogenesis, 
decrease intracellular lipid accumulation, hepatic inflammation and 
fibrosis [58]. Tissue-specific differences in the FXR action on lipid 
metabolism have been described comprising hepatic FXR control of 
lipogenic genes and intestinal FXR control of lipid absorption [138]. 
While hepatic FXR action remains of critical importance for the pro-
gression of MASLD, intestinal FXR has mainly been implicated in the 
regulation of the glucose homeostasis during obesity and diabetes 
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development [139]. Despite these tissue-specific differences, modula-
tion of FXR represents an important therapeutic target in both MASH 
and T2D.

4.3. Intrahepatic mechanisms

4.3.1. Lipotoxicity and mitochondrial function
Insulin resistance in both adipose tissue and skeletal muscle, which 

are hallmarks of T2D, favors hepatic lipid accumulation by providing 
precursors and substrates for de novo lipogenesis (DNL) and mitochon-
drial β-oxidation. Elevated NEFA and glycerol originating from insulin 
resistant adipose tissue serve as lipid sources for hepatic re-esterification 
in triglycerides and DNL, while hepatic triglycerides can be utilized 
through oxidation or export as VLDL particles. With the progression of 
MASH to fibrosis and cirrhosis hepatic lipid accumulation is usually lost, 
which relates to reduced hepatic fatty acid influx via fatty acid transport 
protein 5 (FATP5) [140]. FATP5 has also been implicated in body 
weight and energy homeostasis regulation [141], making it an impor-
tant player in diabetes-related MASH development. On the other hand, 
DNL contribution to hepatic triglyceride accumulation is ~2-4fold 
higher in individuals with MASLD compared to obese and lean non- 
MASLD [142], while hepatic insulin resistance as seen in T2D [143]
can further increase the relevance of DNL as a factor. Although modu-
lation of DNL represents an interesting treatment target for MASLD, 
studies particularly looking at the role of DNL for diabetes-related MASH 
progression in humans are missing. It is known that DNL is regulated by 
several transcription factors among which are the sterol regulatory 
element-binding protein 1c (SREBP1c) and the carbohydrate regulatory 
element-binding protein (ChREBP) [143]. SREBP1c overexpression in 
the liver associates with hepatic insulin resistance, but unrestrained 
adipose tissue lipolysis and oxidative stress are what drive hepatic 
inflammation [144] and could possibly favor MASH progression. In line, 
in humans SREBP1c is upregulated in hepatic steatosis [145], but not in 
MASH [146]. In addition, hyperglycemia can activate ChREBP, which in 
turn stimulates the expression of glycolytic genes, augmenting substrate 
availability for DNL, and induces the expression of stearoyl-CoA desa-
turase 1 (SCD1), the enzyme responsible for the conversion of saturated 
to monounsaturated FA, increasing hepatic lipid accumulation [147]. 
Elevated expression levels of ChREBP were found in human MASH 
[147], so that its role as a diabetes-specific factor in MASH development 
cannot be excluded.

The specific lipid metabolites and cellular compartments that 
mediate lipid-induced hepatic insulin resistance have intensively been 
studied in the last two decades [148]. Evidence points at plasma mem-
brane sn-1,2 DAGs that activate PKCε leading to inhibition of insulin 
receptor’s tyrosine kinase activity as a main pathway in mediating lipid- 
induced hepatic insulin resistance [108,109]. Still, unlike ceramides, 
hepatic DAG have not been particularly implicated in MASH in humans. 
Specific ceramides and other sphingolipids are elevated in the liver of 
individuals with obesity and MASH [149,150] and the correlation with 
hepatic inflammation and oxidative stress suggests a distinct role in 
MASH progression [149]. A link to T2D is substantiated by the findings 
of increased specific ceramide species in humans with T2D relating to 
higher TNFα [151]. Still, mechanistic evidence in human prospective 
T2D and MASLD cohorts is lacking.

Changes in lipid availability induce alterations in lipid oxidation in 
hepatic mitochondria [152]. Hepatic oxidative capacity is up to 5fold 
higher in humans with obesity with and without hepatic steatosis [153]. 
Recent data confirmed the elevated hepatic maximal coupled respiration 
in humans with steatosis and obesity compared to lean individuals 
without steatosis [154]. The hepatic adaptation to increased lipid 
availability (mitochondrial flexibility) is lost with the progression to 
MASH, as people with MASH exhibit decreased hepatic mitochondrial 
respiratory rates in the settings of higher proton leak as well as upre-
gulated oxidative stress and oxidative DNA damage [153]. Decreased 
hepatic mitochondrial respiratory chain complexes have also been 

described in MASH [155]. Of note, lower mitochondrial respiration and 
content were not confirmed in cohorts with T2D [156] and lean-to- 
overweight MASLD [157], suggesting metabolic condition-specific dif-
ferences in mitochondrial changes. Recently we reported, that hepatic 
oxidative capacity is also not uniformly downregulated in human MASH 
as people with MASH and T2D but not non-diabetic individuals show 
reduced hepatic mitochondrial respiration, which relates to higher lipid 
peroxidation and hyperglycemia [158]. Surprisingly, oxidative capacity 
was also reduced in humans with MASH and hepatic fibrosis, pointing at 
mitochondrial function decline as a common feature of MASH with T2D 
or with fibrosis which likely accelerates metabolic liver disease pro-
gression [158].

In vivo hepatic energy metabolism measured using 1H/31P MRS in 
humans with MASH confirmed lower ATP flux and replenishing 
[159,160]. Of note, hepatic ATP content and ATP synthase flux are also 
reduced in T2D [161,162], pointing at disturbed hepatic energy ho-
meostasis as a marker of metabolic liver disease, which could contribute 
to the accelerated progression of MASLD in T2D. In line, during the early 
time course of T2D impaired hepatic mitochondrial adaptation is par-
alleled by a substantial increase in liver lipid content [105], which likely 
sets the stage for the progression of liver injury.

4.3.2. Oxidative stress, endoplasmic reticulum (ER) stress and 
inflammation as drivers of progression

Decline of mitochondrial flexibility as seen in T2D might be paral-
leled by oxidative stress favoring the progression from hepatic steatosis 
to MASH and fibrosis. Mitochondria are a major source of ROS gener-
ation. Dysfunction in the electron transport chain (ETC) results in 
overproduction of ROS, predominantly superoxide anion radicals (O2) 
and hydrogen peroxide (H2O2). Ineffective antioxidant defense mecha-
nisms also contribute to ROS accumulation. Elevated ROS levels can 
cause oxidative stress, damaging cellular components and promoting 
inflammation in the liver. Of note, hepatic mitochondrial H2O2 emission 
is increased in MASH and in MASH with T2D while hepatic oxidative 
capacity correlates with hepatic lipid content and insulin resistance 
[153] as well as with lipid peroxidation and hyperglycemia [158]. 
Thereby mitochondrial alterations in MASH and T2D might upregulate 
oxidative stress and lipid peroxidation resulting in accelerated pro-
gression of liver disease.

Persistent hyperglycemia in T2D enhances the generation of AGEs, 
which can increase oxidative stress and initiate hepatocyte damage and 
liver fibrosis [163]. Receptors for AGEs are mainly present on Kupffer 
and hepatic stellate cells, which are key to MASH progression. AGE- 
induced oxidative stress can accelerate the glycation reaction and in 
turn lead to generation of further reactive oxygen species forming a 
positive loop [164]. Hyperinsulinemia and hyperglycemia in prediabe-
tes and overt T2D might also drive fibrosis in MASH, as insulin and 
glucose might stimulate connective tissue growth factor upregulation in 
hepatic stellate cells in MASH [165].

Further support for this notion has been obtained from murine 
models of NASH and diabetes revealing operative hepatic mitochondrial 
plasticity in the development of diabetes with and without MASH, which 
is linked not only to systemic oxidative stress but also to hepatic 
unfolded protein response (UPR) dysfunction [166]. Abnormal mito-
chondrial function with depletion of ATP in the settings of hyperglyce-
mia and high lipid influx might activate the UPR, which is an adaptive 
response to maintain the balance of protein folding in the ER and to 
restore ER homeostasis [167]. Lipid overload in hepatocytes leads to 
augmented ApoB synthesis and accumulation in the ER which eventu-
ally compromises ER function and induces ER stress [168]. ER stress in 
hepatic stellate cells is known to promote hepatic fibrosis [169] while 
induction of ER stress in the liver increases insulin resistance in relation 
to lipin-2 overexpression and DAG/PKCε-axis activation [170]. Hepatic 
UPR might be triggered to alleviate ER protein load and reduce liver 
injury. Still, sustained UPR can activate pathways related to inflamma-
tion such as JNK and NF-kB [167]. Thereby chronic ER stress likely plays 
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a role for MASLD progression in diabetes, which is also evidenced by the 
tight contact between ER and mitochondria as well as the relation be-
tween UPR and mitochondrial respiration in MASH and diabetes [166]
suggesting a potential organelle cross-talk here.

Cellular cross-talk between hepatocytes, hepatic stellate cells (HSC), 
liver sinusoidal cells and macrophages promotes hepatic inflammation, 
which is key in the progression of metabolic liver disease. Hepatic 
stellate cells are crucial for hepatic fibrosis development, as they are the 
primary extracellular matrix-producing cells receiving signals from 
damaged hepatocytes or immune cells. The fibrogenic cytokine TGF-β 
has been shown to activate HSC upon exposure to high cholesterol levels 
[171] and further palmitate treatment of HSC leads to upregulation of 
several profibrogenic genes via inflammasome activation [172]. Hepa-
tocyte cholesterol has been implicated in the development of “crown- 
like-structures” by activated Kupffer cells in the liver, which is a specific 
phenomenon in MASH and has been suggested as a mechanism of MASH 
progression [173]. Of note, increased hepatic “crown-like-structures” 
have also been described in an ob/ob, but not in a db/db mouse model 
[174], suggesting that this inflammatory feature might be linked to 
obesity- but not to diabetes-related MASH. The involvement of other 
immune cells in MASLD progression, such as B, T and natural killer cells 
has been demonstrated in mouse models, which lack these mature 

immune cells and at the same time exhibit decrease in liver fibrosis 
[175]. B cells, natural killer T cells, platelets and type 2 innate lymphoid 
cells favor the development of liver fibrosis, steatosis and liver injury, 
while natural killer cells might alleviate fibrosis by neutralizing acti-
vated HCS [175,176]. Activation of the IKKβ-NF-κB pathway by proin-
flammatory cytokines has been closely related with the inhibition of 
insulin signal transduction and the development of hepatic insulin 
resistance in MASLD and T2D [177]. Furthermore, activation of Toll-like 
receptor 4 by LPS due to gut dysbiosis and impaired intestinal perme-
ability (see Chapter 4.2) also induces hepatic inflammation and insulin 
resistance [175]. In overall, inflammatory pathways promoting hepatic 
insulin resistance in T2D and MASLD might represent a driving force for 
accelerated metabolic liver disease in this population. This is supported 
by the notion that insulin resistant humans with diabetes are most likely 
to develop progressive metabolic liver disease and hepatic fibrosis 
[100], mechanistic evidence however is still lacking. Last, liver sinu-
soidal endothelial cells (LSEC) might represent an important link be-
tween hepatic insulin resistance and fibrosis. LSEC are fenestrated cells 
that represent the interface between hepatocytes and blood flow and 
communicate with hepatocytes, macrophages and HSCs. Under physi-
ological conditions LSEC regulate lipid transport, maintain the quies-
cence of Kupffer cells, resident liver macrophages, and HSCs [178]. 

Table 1 
Human randomized controlled clinical trials evaluating the effects of antihyperglycemic treatments on liver histology (MASH resolution and/or fibrosis improvement).

Study/Citation Drug/Dose Population Design/ 
Duration

Effect on liver histology 
(placebo corrected 
resolution of MASH)

Fibrosis 
improvement 
(placebo 
corrected)

Metabolic effect Side effects

Armstrong et al. Lancet 
2016 [227]

Liraglutide 1.8 mg/ 
d

MASH±T2D n =
52

RCT 48 
weeks

30 % MASH resolution 
without fibrosis 
worsening

↔ ↓ Body weight 4,8 
% 
↓ HbA1c and 
glucose

GI 
4 % trial 
disconti- 
nuation

Newsome et al. N Eng J 
Med 2021 [228]

Semaglutide 0.1/ 
0.2/0.4 mg /d

MASH±T2D n =
320

RCT 72 
weeks

19–42 % MASH 
resolution without 
fibrosis worsening

↔ ↓ Body weight 
4–12 % 
↓ HbA1c and 
glucose

GI 
2 % trial 
disconti- 
nuation

Loomba et al. N Eng J 
Med 2024 [233]

Tirzepatide 5/10/ 
15 mg/d

MASH±T2D 
n = 157

RCT 52 
weeks

34–53 % MASH 
resolution without 
fibrosis worsening

21–25 % with 
decrease of ≥ 1 
fibrosis stage

↓ Body weight 
↓ HbA1c

GItrial 
disconti- 
nuation equal 
to placebo  
(4 %)

Sanyal et al N Eng J 
Med 2024 [236]

Survodutide 2.4/ 
4.8/6 mg

MASH±T2D 
n = 293

RCT 48 
weeks

33–48 % MASH 
resolution without 
fibrosis worsening

12–14 % with 
decrease of ≥ 1 
fibrosis stage

↓ Body weight 
↓ HbA1c

GI 
17 % trial 
disconti- 
nualtion

Joy TR et al. World J 
Gastroenterol 2017 
[224]

Sitagliptin 100 mg/ 
d

MASH+T2D n =
12

RCT 24 
weeks

No improvement in 
NAFLD activity score or 
fibrosis

↔ No effect on HbA1c 
or body weight

Well tolerated

Ratziu et al. 
Gastroenterology 
2008 [195]

Rosiglitazone 8 
mg/d

MASH±T2D n =
63

RCT 52 
weeks

No change in NAFLD 
activity score 
↓ Steatosis and 
inflammatory score

↔ ↑ Body weight 
↓ HbA1c and 
glucose

Weight gain, 
swollen legs

Belfort et al. Lancet 
2006 [197]

Pioglitazone 45 
mg/d and 
hypocaloric diet

MASH+T2D/IGT 
n = 55

RCT 24 
weeks

↓ Steatosis and 
inflammatory score

↔ ↑ Body weight 
↓ HbA1c and 
glucose

Fatigue, 
swollen legs

Sanyal et al. N Eng J 
Med 2010 [198]

Pioglitazone 30 
mg/d Vitamin E 
800 IE/d

MASH±T2D n =
247

RCT 96 
weeks

24 % MASH resolution 
with Vitamin E 
↓ Steatosis and lobular 
inflammation with both 
Vitamin E and 
Pioglitazone

↔ ↑ Body weight with 
Pioglitazone 
↓ glucose with 
Pioglitazone 
No effect on body 
weight or glucose 
with Vitamin E

Weight gain

Cusi et al. Ann Intern 
Med 2016 [199]

Pioglitazone 45 
mg/d and 
hypocaloric diet

MASH+T2D/ 
prediabetes n =
101

RCT 72 
weeks

32 % MASH resolution − 0.5 in fibrosis 
score

↑ Body weight 
↓ glucose

Weight gain

Haukeland et al. Scand 
J Gastroent 2009 
[246]

Metformin 2.5–3 g/ 
d

MASLD±T2D n 
= 48

RCT 24 
weeks

No effect on NAFLD 
activity score 
No change in steatosis, 
inflammation or fibrosis

↔ Weight loss 4.3 kg 
↓ HbA1c and 
glucose

GI

GI – gastrointestinal, IGT – impaired glucose tolerance, NAFLD – non-alcoholic fatty liver disease, NASH – non-alcoholic steatohepatitis, RCT – randomized placebo- 
controlled trial, T2D – type 2 diabetes.
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During their interplay with immune cells LSEC lose their fenestrae and 
develop a basal membrane, which increases intrahepatic vascular 
resistance and could favor liver steatosis and initiate HSCs activation 
[178]. In the settings of MASH, LSEC display a pro-inflammatory 
phenotype that promotes steatohepatitis [178]. Insulin signaling in 
LSEC has been implicated in hepatic insulin resistance development 
indirectly through NO overproduction and tyrosine nitration of the in-
sulin receptor [179], which might represent a hyperinsulinemia-driven 
mechanism perpetuating further liver injury in T2D and MASH.

5. Therapeutic implications

MASLD and T2D treatment strategies not only aim at reducing dis-
ease progression but eventually target T2D complications, reducing 
morbidity, and mortality [94]. In particular, several GLP-1 receptor 
agonists and SGLT-2 inhibitors exhibit not only cardiorenal but also 
hepatoprotective effects alongside improved glucose control, contrib-
uting to holistic diabetes care and improved patient outcomes (Table 1). 
Of note, the first metabolic drug targeting thyroid hormone receptor β 
(THRβ) has recently been approved for the treatment of MASH with 
fibrosis by the FDA [180].

5.1. General diabetes management through lifestyle

Adherence to a healthy lifestyle incorporating diet and regular 
physical activity is the first step in the management of both T2D and 
MASLD. Strategies to reduce body weight have proven successful as a 
non-pharmacological approach here, but are difficult to implement. 
Caloric restriction and exercise training not only improve glycemia, but 
can also reduce hepatic steatosis and even lead to MASH resolution 
[181]. A weight reduction of 10 % or more induces a resolution of 
MASLD [181] and improvement in hepatic steatosis is seen with weight 
loss of at least 5 % [182]. In a meta-analysis of 78 studies a weight loss of 
at least 7 % has been found to be necessary for MASLD activity score 
improvement [183]. Still, less than half of the patients are able to meet 
the goal of 7–10 % body weight reduction through intensive lifestyle 
modification and gain back the lost weight [181]. Long-term results of 
the DiRECT study also point at comparable weight loss with diet inter-
vention and control at 5 years follow-up, suggesting that diet-induced 
weight loss is not a sustainable target on the long term in T2D [184].

The exclusion of dietary factors such as ultra-processed foods, satu-
rated fat and sugar-sweetened beverages represents a common dietary 
goal in both T2D and MASLD, while fructose has been recognized as a 
major mediator of MASLD [185]. Mediterranean diet has been suggested 
to be beneficial both in T2D [186] and MASLD [187], with its anti- 
inflammatory and antioxidant effects likely underlying this link. Still, 
interventional trials in humans have been limited to demonstrating 
reduction in liver lipid content along with insulin resistance [188,189], 
while no histological evaluation has been reported. In overall, although 
dietary composition does appear to influence hepatic fat deposition, no 
specific macronutrient diet has been shown to have a benefit for MASH 
in T2D.

Exercise has beneficial effect on glucose metabolism and hepatic 
lipid content independent of weight loss [190] and may modify de novo 
synthesis of non-esterified fatty acids. Vigorous exercise in particular 
appears to limit the progression of MASLD to MASH [191], but evidence 
in T2D populations is limited. Bariatric surgery has also been shown 
effectively to lead to MASH resolution, with T2D being the only baseline 
variable that negatively affects MASH resolution without progression of 
fibrosis [192]. On the other hand, recent evidence points at T2D 
remission induced by bariatric surgery in people with early stages of 
MASLD (simple steatosis), suggesting that liver injury plays an impor-
tant role for the metabolic changes after operation [193].

5.2. Anti-hyperglycemic drugs as therapy of MASH

Given the tight link between MASH and T2D various anti- 
hyperglycemic agents have been assessed as possible MASH treat-
ments (Table 1). Several clinical trials examining the effects of incretins 
and co-agonists, insulin-sensitizing thiazolidinediones, inhibitors of the 
sodium–glucose cotransporter 2 (SGLT2i) as well as one THRβ-agonist 
on NASH have provided promising results, which will be reviewed here. 
Metformin, which is the most widely used antihyperglycemig agent, has 
not shown efficacy in MASH [246], however, its anti-tumor effects 
might be relevant for advanced stages of liver disease. Emerging ther-
apies for MASH targeting the FXR, PPARα, PPARδ and PPARγ, inhibitors 
of DNL (acetyl-CoA carboxylase inhibitors, fatty acid synthase in-
hibitors, stearoyl-CoA desaturase 1 inhibitors, diacylglycerol acyl-
transferase inhibitors, ketohexokinase inhibitors, mitochondrial 
pyruvate carrier inhibitors) as well as fibroblast growth factors 19 and 
21 analogues have recently been extensively reviewed elsewhere [194]
and are outside the scope of this work.

5.2.1. Thiazolidinediones
Pioglitazone and rosiglitazone are potent activators of the nuclear 

receptor PPARɣ, which plays a critical role for adipocyte function as well 
as glucose and lipid metabolism. As effective insulin sensitizers thiazo-
lidinediones promote adipose tissue triglyceride storage, enhance insu-
lin suppression of lipolysis and improve peripheral insulin sensitivity. 
Rosiglitazone has proven efficient in reducing liver lipid content in two 
RCTs [195,196], while treatment with pioglitazone effectively improves 
hepatic steatosis and inflammation [197–199] (Table 1). With regard to 
reduction of fibrosis, pioglitazone demonstrated efficacy in some [199]
but not all trials [197,198]. The beneficial histological effects of thia-
zolidinediones have been confirmed in a meta-analysis including 8 RCTs 
[200] and a concentration-dependent as well as genetic-dependent 
response to pioglitazone has been suggested [201,202]. However, 
adverse effects of these PPARɣ agonists including weight gain, oedema 
and risk of bone fracture have rendered them obsolete in the antidiabetic 
treatment currently. Still, other molecular targets of thiazolidinediones 
such as the mitochondrial pyruvate carrier (MPC) have been identified 
[203], which has led to the development of MPC inhibitors as a possible 
future MASH treatment option. While preclinical trials revealed allevi-
ation of liver injury and fibrosis via limiting HSC activation [204], a 
human clinical trial with the MPC inhibitor MSDC-0602K did not 
demonstrate effects on primary and secondary liver histology endpoints, 
but showed improved hepatic steatosis as well as insulin sensitivity 
[205]. Thereby these so called PPARɣ-sparing thiazolidinediones might 
hold promise as modulators of various metabolic risk factors while 
causing fewer adverse effects than traditional PPARɣ agonists.

5.2.2. SGLT2 inhibitors
SGLT2 inhibitors are approved antihyperglycemic agents in T2D 

which increase the urinary excretion of glucose. In addition to weight 
loss their positive effects also include the reduction of cardiovascular 
and renal events [206]. Mechanistic preclinical studies revealed pro-
tective effects of empagliflozin on insulin resistance and hepatic lipid 
accumulation in parallel to improved muscle mitochondrial function 
[207] as well as miRNA-34a-5p-mediated inactivation of HSCs resulting 
in reduction of fibrosis [208]. The metabolic effects of SGLT2 inhibitors 
likely are linked to the energy deficit due to enhanced glucosuria which 
might elevate ketogenesis, NEFA oxidation and autophagic flux as well 
as reduce inflammation and oxidative stress [209]. Human RCTs 
confirmed the lowering of liver lipid content with SGLT2 inhibitor 
treatment [210–213], which in the case of empagliflozin was paralleled 
by an increase in circulating adiponectin [212] and in the case of can-
agliflozin related tightly to weight loss [211]. Of note, dapagliflozin and 
empagliflozin have also been shown to decrease liver stiffness as 
measured using transient elastography [213,214]. However, studies 
involving histologically proven MASH have been limited to two small 
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uncontrolled open label trials [215,216] and no placebo-controlled 
RCTs have been reported so far. Ipragliflozin has shown benefits in 
terms of improved fibrosis and MASH resolution in a liver biopsy study 
in humans with MASLD and T2D [217]. Of note, a comparative study of 
the SGLT2 inhibitor tofogliflozin with glimepiride did not find differ-
ences in the histological features between the groups, but tofogliflozin 
treatment was related to changes in hepatic expression of genes involved 
in energy metabolism, inflammation and fibrosis [218]. In overall, 
SGLT2 inhibitors have proven useful in the management of glycemia, 
cardiorenal risk and lowering liver lipid content, but further RCTs 
involving histological analyses are necessary to determine their effec-
tiveness in MASH.

5.2.3. Dipeptidyl peptidase-4 (DPP4) inhibitors (DPP4i)
DPP4i are antihyperglycemic agents which enhance glucagon like 

peptide 1 (GLP1) activity and are approved for T2D treatment, even 
though they do not induce weight loss or improve cardiovascular out-
comes [219]. Levels of DPP4 are increased in MASLD, obesity and T2D, 
which relates to fibrosis and hepatocyte apoptosis [220]. Also, adipose 
tissue derived DPP4 has been linked to hepatic insulin resistance in a 
diet-induced obesity model [221]. Again in preclinical models DPP4i 
prevent the progression of hepatic steatosis to MASH and HCC and 
inhibit inflammatory responses [222,223]. However, placebo-controlled 
trials revealed no beneficial effects on hepatic histology [224] or liver 
stiffness, using MR-elastography [225]. Thereby this class might not 
represent an effective treatment option for MASH in T2D.

5.2.4. Incretin mimetics and co-agonists
Incretin mimetics such as GLP1 receptor agonists (GLP1RA) act 

through G-protein coupled receptor to stimulate the production and 
release of insulin and suppress glucagon secretion while also delaying 
gastric emptying, inhibiting appetite and reducing food intake. In 
addition to their potent glucose lowering effect GLP1RA reduce body 
weight and improve cardiorenal outcomes [226] In humans, MASH 
resolution without worsening of fibrosis was achieved with liraglutide 
[227] and semaglutide [228] treatment in randomized placebo- 
controlled trials, while exenatide did not lead to histological improve-
ments in a case series study [229]. Liraglutide effects on MASH have 
been related to improvements in adipose tissue and hepatic insulin 
resistance as well as de novo lipogenesis, so that a disease modifying 
potential has been suggested [230]. However, in humans with MASH 
and compensated cirrhosis no effect of semaglutide on hepatic fibrosis 
has been observed [231]. Notably, the beneficial effects of GLP1RA in 
MASH are likely related to their substantial action on body weight 
among other extrahepatic metabolic effects, as GLP1 receptor is not 
expressed in the liver at appreciable levels [232].

Double or triple incretin-receptor agonists might hold promise as 
future treatment of MASH in T2D as they demonstrate superiority 
compared to GLP1RA regarding weight loss and glycemic control. The 
dual glucose dependent insulinotropic polypeptide (GIP)/GLP1 receptor 
agonist tirzepatide effectively induces MASH resolution in humans with 
MASH and fibrosis [233], while the triple GIP/GLP1/glucagon receptor 
agonist retatrutide substantially reduces liver lipid content in humans 
with MASLD [234]. The dual GLP1/glucagon receptor cotadutide 
demonstrated improvements in transaminases, propeptide of type III 
collagen level and fibrosis-4 (FIB-4) score in a 54 week RCT [235], while 
survodutide improved MASH without worsening of fibrosis in 43–62 % 
of the participants in a 48 week phase 2 trial [236]. The additive effect of 
glucagon receptor agonism in MASLD is incompletely understood and 
several aspects such as glucagon resistance and direct glucagon action 
on hepatic energy metabolism remain of high interest for further 
investigation [237]. Although these initial clinical trial results are 
promising, longer and larger trials are still missing currently.

5.2.5. Thyroid hormone receptor β agonists
Resmetirom, a THRβ agonist, has recently been approved as first 

agent for pharmacological treatment of MASH and MASH-related 
fibrosis by the FDA. In the MAESTRO-NASH trial both primary histo-
logical endpoints MASH resolution and fibrosis improvement were 
achieved after 52 weeks of treatment [180]. As more than 60 % of the 
participants presented with T2D it is likely that resmetirom is effective 
in T2D populations as well, while no effect was seen on body weight or 
glycemia. Recent systematic analysis demonstrated that it is well- 
tolerated and does not generally affect thyroid function [238]. Clinical 
trials with further two THRβ-selective agonists (VK2809 and ASC41) are 
currently ongoing.

5.2.6. Combination of antihyperglycemic drugs for the therapy of MASH
While monotherapy with antihyperglycemic agents induces 19–53 % 

MASH resolution (Table 1), combined antihyperglycemic treatment 
might hold promise as more effective therapeutic option. The combi-
nation of GLP1RA and SGLT2i is safe and highly effective in terms of 
improving glycated hemoglobin, body weight and blood pressure 
compared with each class alone in T2D [239]. In addition, reduced 
cardiovascular events with the addition of GLP1RA to SGL2i therapy has 
been suggested [240], increasing the interest in further combined 
treatment trials. In a MASH mouse model a distinct anti-inflammatory 
effect of a combination treatment of dulaglutide and empagliflozin has 
been observed [241]. A retrospective study in 6 humans with T2D and 
MASLD showed that a 5-year treatment with SGLT-2 inhibitors resulted 
in an improvement in liver steatosis and fibrosis, and that the addition of 
a GLP1RA was safe [242]. Furthermore, an improvement in FIB-4 was 
seen with the addition of ipragiflozin to current therapy with DPP4 in-
hibitor or GLP1RA in a retrospective study [243]. In RCTs in humans 
with T2D the combined treatment with exenatide and dapagliflozin 
resulted in comparable reduction of liver lipid content measured from 
MRS as with dapagliflozin alone [244] while FIB-4 reduction was seen 
only in the combination therapy [245]. Future clinical trials with his-
tological follow up assessments will reveal whether the combined 
treatment with SGLT2i and GLP1RA represents an effective treatment 
option for MASH in T2D.

6. Conclusions

Diabetes-related MASH progression is characterized by a multifac-
eted nature and the mutual interaction between MASH and T2D war-
rants further investigation of the common mechanisms and risk factors. 
Visceral adipose tissue expansion and altered gut microbiota are key 
factors in the progression of simple hepatic steatosis to MASH in in-
dividuals with T2D. Subsequently, MASH progression is accelerated by 
adipose tissue and muscle insulin resistance driving increased lipid 
influx and de novo lipogenesis in the liver, which favors lipotoxicity, 
altered mitochondrial function and oxidative stress. ER stress and 
inflammation further drive disease progression. In order to manage and 
treat diabetes-related MASH lifestyle modifications and weight loss 
remain of critical importance. Several anti-hyperglycemic agents show 
promise in improving liver histology, but their efficacy varies in treating 
different aspects of MASH and long-term large-scale trials are still 
missing.
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