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Preface   

When I first thought about pursuing a PhD, I never imagined I’d end up in the 
obesity and aging research field. What’s serendipitous, though, is that the first 

popular science article I ever wrote, way back when I was a young respiratory 

therapist, was something related to obesity. I also remember sitting in my 

respiratory therapy classes in college, where most of my classmates were 
excited about specializing in pediatrics or neonatal, working with children and 

newborns — it seemed so cool then. But, secretly, the 20-year-old me thought, 

"I want to work with older people." 

None of this would have been possible without Ida and Anna, who took a chance 

on me during a Zoom interview in the early days of the COVID-19 pandemic. 

Despite all the uncertainty at that time, they saw potential in me before I saw it 
in myself, and for that, I am deeply grateful. They opened the door to this 

incredible journey and guided me every step of the way, making sure I saw it 

through to the end. 

Throughout this journey, my co-supervisors — Alex, Debbie, and Juulia — played 

key roles. Each brought their own expertise and unique strengths, and their 

support made all the difference. I couldn’t have asked for a better team to help 

guide me through the twists and turns of this research. 

This work wouldn’t exist without the dedication of countless scientists before 

me. Their discoveries paved the way, and I am incredibly grateful for the 

opportunity and privilege to learn from the foundation they built. I also want to 
acknowledge all the researchers who established and maintained the cohorts, 

those who meticulously collected the data, and the participants who generously 

gave their time — without them, this thesis wouldn’t even be imaginable. 

I have to mention Robert Lustig’s YouTube video, “Sugar: The Bitter Truth.”  My 

boyfriend, Michel, encouraged me to watch it, and that simple suggestion 

sparked a curiosity that eventually grew into a full-blown obsession with obesity 
and metabolic health — ultimately leading to this thesis. The truth is, bitter or 

sweet, I used to think, “I will never want to study this again,” after struggling to 

memorize all those endocrine pathways back in college (well, lungs are more my 

thing, you see). I never would have guessed I needed to study these pathways 
again. Fortunately, there are now many videos online that make complex topics 



accessible. Imagine if this were the eighties or nineties; I doubt I would have even 

made it to a PhD program.  

In this thesis, I explore how body mass index and metabolic health relate to 
biological aging and mortality across four studies. Chapter 1 provides the 

background on BMI, metabolic health, and biological aging. Chapter 2 lays out the 

research aims. Chapters 3 and 4 get into the technical details, with Chapter 3 

covering the materials and methods and Chapter 4 diving into each study's 
methods, results, and challenges. Finally, Chapters 5 through 7 wrap everything 

up with discussion, conclusions, and personal reflections. 

Perhaps this thesis adds a small contribution to the body of knowledge on body 
mass index, metabolic health, and aging, but what’s more meaningful to me is the 

journey and the collaborative spirit of everyone who supported me along the 

way. This work is truly the result of many hands and minds coming together, and 

I am deeply grateful for all the support I’ve received, and the foundation laid by 
those who came before me. 

  



 

 

 

  



Abstract 

As global populations age and the prevalence of obesity and metabolic disorders 
rises, understanding the complex relationships between body mass index (BMI), 

metabolic health, and aging becomes increasingly critical. This thesis sought to 
unravel these connections, focusing on how BMI and metabolic health are 

associated with biological aging and all-cause mortality while considering the 

nonlinear effects of BMI and age differences. By employing measures of biological 

aging — encompassing functional (functional aging Index, FAI), physiological (frailty 
index – FI), and cellular (epigenetic age acceleration – EAA) levels — we aimed to 

provide a comprehensive examination of the BMI, metabolic health, and biological 

aging connections. 

Study I examined the independent and joint associations of midlife and late-life 

BMI and metabolic health status (MHS) assessments with risk of all-cause 

mortality. Data from 6,252 Swedish twins in midlife (65 years and below) and 6,215 

in late life (over 65 years) were analyzed using Cox proportional hazards models. 
In the joint models, being metabolically unhealthy (MU) was consistently 

associated with increased mortality risk robust to BMI adjustments, while the 

mortality risk associated with BMI categories attenuated. In the interaction 

models, MU with obesity in midlife and across all BMI categories in late life was 
associated with higher mortality risk than metabolically healthy normal weight 

(MHN). Conversely, metabolically healthy with overweight (MHOw) or obesity in 

midlife and late life was not associated with higher mortality risks. In fact, late-life 

MHOw was associated with a lower mortality risk compared to MHN. These 
findings suggest that MHS plays a more significant role than BMI in predicting 

mortality risk.  

Study II investigated how BMI and MHS jointly associate with biological aging, 

measured by FAI and FI, and whether these associations varied by chronological 

age. A cross-sectional analysis of 1,825 Swedish twins using mixed-effects linear 

models revealed a U-shaped association between BMI and FAI, where low and high 

BMI were associated with higher biological aging. MU was also associated with 
higher FAI. Significant three-way interactions between BMI, MHS, and 

chronological age on FI prompted the stratification of the analysis by age: below 

65, 65 to 85, and over 85 years. In these groups, low BMI, high BMI and MU were 

consistently associated with greater FI, with significant modifications by MU and 
chronological age in the 65 to 85 and over 85 groups, respectively. This study 



 

 

highlights a complex interplay between BMI, MHS, and chronological age. Low BMI, 

high BMI, and MU were associated with higher biological aging, indicating their 

potential contribution to age acceleration. 

Study III explored if biological aging, measured by EAA, mediates the BMI-

mortality relationship. Using data from 3,840 participants in the U.S. Health and 

Retirement Study, a nonlinear association was found: both low and high BMI were 

associated with increased EAA and shorter life expectancy. Mediation analysis 
showed that high BMI’s association with shorter life expectancy was strongly 

mediated by EAA, supporting the hypothesis that obesity accelerates biological 

aging. In contrast, the association of low BMI with shorter life expectancy was 

mainly driven by direct effects rather than mediation through biological aging.  

Study IV analyzed the bidirectional relationship between change in BMI and 

biological aging, measured by FAI and FI, in 1,902–1,976 Swedish twins aged 60 to 

91.9, using dual change score models. The age trajectory of BMI followed an almost 
linear, declining pattern, whereas FAI and FI exhibited exponentially increasing 

trends. The study found a unidirectional relationship where higher FAI predicted a 

steeper BMI decline. In contrast, the BMI-FI relationship was bidirectional — higher 

BMI predicted increased FI and higher FI contributed to a steeper BMI decline. 

These findings underscore the complex nature of the relationships between BMI, 

metabolic health, and aging, revealing the distinct influences of high BMI, low BMI, 

and metabolic health on biological aging and life expectancy. Together, these 
results emphasized the importance of integrating BMI, metabolic health, and 

biological aging into the assessment of late-life health, offering new insights into 

how these factors may converge to potentially shape the aging process and 

survival. 

Keywords: aging, all-cause mortality, biological aging, body mass index, frailty, 
epigenetic age, metabolic health, obesity, mediation analysis, dual change score 

models 
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1 Introduction 
The world is undergoing profound epidemiological and demographic transitions, 

marked by the alarming rise in the prevalence of obesity and metabolic disorders 
alongside an aging population. Between 1990 and 2022, the global prevalence of 

adult obesity surged from 7% to 16%,1 while the exposure prevalence to metabolic 

risks, which included high body mass index (BMI), hypertension, hyperglycemia, 

and dyslipidemia, increased from an average of 13% to 21%.2 Concurrently, the 
proportion of the global population aged 65 nearly doubled, rising from 6% to 10% 

during the same period.3, 4 Given that obesity and metabolic dysfunction are 

closely related to age-related diseases,2, 5, 6 these escalating trends present critical 

global health challenges, compelling further investigation into the intricate 
relationships between obesity, metabolic health, and aging.  

Although global healthy life expectancy has improved, the overall burden of 

disease has increased, with non-communicable diseases as a critical contributor 

and type 2 diabetes (T2DM) among the top climbers in 2021.7 This growing burden 

is largely driven by population growth and aging.7 This disparity — where longer life 
expectancy does not necessarily translate to better health — highlights the urgent 

need to understand how obesity and metabolic health influence healthy aging. 

Understanding these interrelationships is crucial for managing the growing burden 

of chronic diseases and improving the health of the aging population.  

However, examining the link between obesity and late-life health is complicated 
by the ’obesity paradox’ — the concept that high BMI in late life may be associated 

with better health outcomes, contrary to the well-established negative health 

impact of high BMI in early to mid-adulthood. While solid evidence shows that high 

BMI in younger and middle-aged adults is a risk factor for mortality, 8-10 its effects 
in older age remain less clear.11-14 In fact, some studies suggest that high BMI may 

be associated with better survival in older adults.11-14 This paradox highlights the 

need to explore why high BMI in late life may have different health implications 

and how it influences health outcomes among older adults.  

Adding to the complexity of the connection between BMI, metabolic health, and 

aging is the concept of “metabolic healthy obesity” (MHO). - Despite the common 
association of high BMI with metabolic diseases, approximately 35% of individuals 

with obesity do not exhibit signs of metabolic dysfunction.15 The state of obesity 

with preserved metabolic health, known as MHO,15-19 raises questions about 

whether it represents a less detrimental form of obesity.20-22 The limited research 
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on MHO in older populations adds to the uncertainty about its impact on health 

outcomes and its role within the obesity paradox and aging. Furthermore, 

metabolic diseases affect individuals across the BMI spectrum, making it essential 

to consider metabolic health alongside BMI in studies investigating their 

connections with aging.  

Aging is traditionally and most commonly assessed as chronological age, which 
assumes a uniform rate of aging across all individuals. This approach, however, 

overlooks the heterogeneity in health and aging processes.23 To address this 

limitation, researchers increasingly turn to biological age measures, which evaluate 

functional, physiological, and cellular markers to capture variations and nuances 
during aging. Incorporating biological aging metrics helps to disentangle the 

complex relationships between BMI, metabolic health, and biological aging by 

providing a more comprehensive view of how these factors interact and influence 

health outcomes throughout the aging process. 

Amidst the triple burden of global health — an obesity epidemic, the rising 
prevalence of metabolic diseases, and the aging population — this thesis seeks to 

disentangle the complex interplay between BMI, metabolic health, and aging. 

Through a literature review and four studies, each meticulously examining these 

interconnections and using cohort data from Sweden and the United States of 
America (U.S.), the research seeks to shed light on the roles these factors play in 

the aging process. The ultimate goal of epidemiological studies is often to inform 

the development of effective strategies for improving health outcomes. 

Realistically, this thesis focuses on deepening our understanding of these closely 
intertwined factors and highlighting key questions and considerations for 

managing BMI and metabolic health in older populations. Ultimately, this work 

represents the tip of the iceberg of knowledge and information, the beginning of a 

broader inquiry, marking just the start of what needs to be an ongoing exploration.  
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1.1 The Weighty Matters  

1.1.1 Epidemiology of Overweight and Obesity 

The prevalence of overweight and obesity has surged substantially over the past 

decades worldwide. Between 1975 and 2016, the number of adults classified as 
overweight grew by roughly 1.3 billion, while those classified as obesity rose by 

approximately 571 million.24 The age-standardized prevalence of overweight and 

obesity in 1975 stood at 26.5% and 7%, respectively.25 By 2015, these figures had 

soared to 39% and 12.5%, reflecting 50% and 80% increases.25  While there are 
regional differences, the prevalence of overweight and obesity increased in 

every country in 2016 and 2019.24, 26 Figure 1 maps the prevalence of adult 

overweight or obesity in 2016 and 1975. 

Figure 1: Mapping the Prevalence of Adult Overweight or Obesity in 2016 versus 
197527                       

The proportion of adults 18 years and above with BMI is 25kg/m2 or higher in percentage. Image modified 
from https://ourworldindata.org/grapher/share-of-adults-who-are-overweight27 
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The impact of high BMI on the global disease burden has been increasing over 

time. From 1990 to 2015, the global mortality rate attributable to overweight and 

obesity rose by 28%.28 Recent research has shifted its focus from reporting 

prevalence rates to utilizing more nuanced metrics like Summary Exposure 

Values (SEV) to understand disease burdens.2 SEV measures the age-
standardized, risk-weighted prevalence of exposure on a scale from 0 to 100, 

with 100 indicating maximum exposure for the entire population. From 1990 to 

2021, the SEV for high BMI, defined as BMI greater than 23.0 kg/m2, rose from 12.6 

to 21.5 (on a scale of 100), reflecting an increase in prevalence and overall 
burden.2 During the same period, the global age-standardized rates of health loss 

from disability and premature mortality, measured as disability-adjusted life-

years (DALY), attributable to high BMI increased from 2.5% to 4.5%, underscoring 

the growing health impact of high BMI.2  

Overweight and obesity rates typically increase throughout adulthood, peaking 

between the ages of 50 and 65.25 In 2021, the global DALY rate attributable to 
high BMI was estimated to be 3.2% among individuals aged 15 to 49 years.2 The 

global DALY rates nearly doubled to 7.6% for those aged 50 to 69.2 Among 

individuals aged 70 years and above, DALY rates from high BMI slightly 

decreased to 6.2%. Although this is lower than the rate observed in the 50 to 69 
age group, it remains higher than the age-standardized rates and the rates for 

those aged 15 to 49.2 Therefore, the global disease burden from high BMI appears 

to increase with age. 

1.1.2 Population Health, Metabolically Speaking 

High BMI is one of many metabolic risk factors. Other metabolic risk factors 

include hypertension, hyperglycemia, and dyslipidemia. According to two 
consecutive Global Burden of Disease Studies, one published in 2020 and the 

other in 2024, hyperglycemia based on high fasting plasma glucose levels and high 

BMI has demonstrated the largest increments in exposure prevalence based on 

SEVs.2, 26 The exposure prevalence of hyperglycemia increased from 10.6 in 1990 
to 16.2 (on a scale of 100) in 2021.2 Additionally, exposure prevalence of 

hypertension, defined as high systolic blood pressure, increased from 33 in 1990 

to 35.6 (on a scale of 100) in 2021.2  While dyslipidemia, based on low levels of low-

density lipid cholesterol levels, showed a slight decline in exposure prevalence of 
0.1%, the global exposure prevalence in 2021 remains high at 45.3 (on a scale of 

100).2 
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In 2000 and 2021, hypertension, hyperglycemia, and dyslipidemia consistently 

ranked among the top nine leading risk factors for disability and mortality out of 

88 environmental, occupational, and behavioral risk factors.2 The proportion of 

total disease burden, quantified by DALYs and attributed to hypertension, climbed 

from 6.3% in 2000 to 7.8% in 2021, establishing it as the second largest contributor 
to the global disease burden.2 Similarly, the impact of hyperglycemia and 

dyslipidemia on global health also rose during this period, with their contributions 

growing from 3.1% to 5.4% and from 2.6% to 3.0%, respectively.2 By 2021, 

hyperglycemia had become the fifth leading risk factor, and dyslipidemia the 
seventh, for disability and mortality worldwide.2 

By analyzing the global burden of diseases in relation to changes in risk exposure, 

population growth, and aging population, evidence suggests that the significant 

contribution of metabolic risk factors — such as high BMI, hypertension, and 

hyperglycemia — to morbidity and mortality is primarily driven by global 
population aging.2 Notably, the impact of hypertension, hyperglycemia, and 

dyslipidemia increases with advanced age. Among individuals aged 15 to 49, 50 to 

69, and 70 and above, hypertension accounted for 2.8%, 11.6%, and 17.1% of the 

global disease burden, respectively, making it the leading risk factor for morbidity 
and mortality in individuals aged 50 and above. Hyperglycemia contributed to 

2.6%, 8.4%, and 10.2% of the global disease burden across these age groups, while 

dyslipidemia accounted for 2.1%, 5.0%, and 4.7%, respectively.  

The metabolic risk factors tend to cluster as metabolic syndrome (MetS), often 

defined as the presence of at least three of five metabolic risks, namely central 
adiposity, hypertension, hyperglycemia, high triglyceride levels, and low high-

density lipid-cholesterol (HDL-C) levels.29 MetS has been linked to an increased 

risk of T2DM, cardiovascular disease (CVD), and mortality, making it a valuable tool 

for assessing metabolic health.30 Although there is no tracking of the global health 
impacts of MetS as a condition per se, a meta-analysis of 28 million individuals 

worldwide estimated the prevalence of MetS to range from 12.5% to 31.4% from 

global data published from 1990 to 2018.31  

1.1.3 The Aging Demography and its Epidemiological Implications 

The global life expectancy at birth has increased by nearly nine years since 1990, 

reaching  72.8 years in 2019.4 The rise in life expectancy, in tandem with declining 
birth rates, is changing the population age structure worldwide.4 By 2050, the 
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share of adults aged 65 years and over is projected to increase from 10% in 2022 

to 16%, posing significant global challenges to the health systems.4  

As discussed previously, the prevalence of metabolic risks increases with age, 

and its health impact also intensifies with age.2, 26 As life expectancy rises, the risk 

of non-communicable diseases (NCDs) such as CVD, T2DM, and dementia also 

grows, further highlighting the global health challenges that loom ahead.7 Although 
the global healthy life expectancy, an indicator of average years lived in good 

health, saw a modest increase of 1.4% between 2010 and 2021, it declined by 2.2% 

between 2019 and 2021.7 This decline was postulated to be primarily due to the 

Covid-19 pandemic. Still, NCDs such as T2DM also showed significant increases in 
terms of disease burden during this period.2 These trends highlight the ongoing 

need to prioritize addressing NCDs, which continue to rise in prevalence with age 

and remain a leading contributor to mortality among older adults.2  

1.2 The BMI and the Mortality Connection  

Research examining the relationship between BMI and mortality is extensive but 
yields inconsistent findings.e.g.8-10, 32-36 One systematic review and meta-analysis 

highlights these diverse results, showing no significant association between BMI 
and mortality risk in the general population, while higher BMI was associated with 

reduced mortality risk in specific populations, such as individuals with CVD, 

Covid-19, and surgery.33 The same study highlighted substantial heterogeneity in 

the numerous studies it reviewed.33    

Despite the mixed evidence, large population-based studies at a global scale 

consistently revealed a nonlinear association between BMI and mortality risk, with 
both high and low BMI associated with increased mortality risk in the general 

population aged 20 to 80 years.e.g.8, 10 This pattern of increased mortality risk 

associated with low and high BMI was also observed in smaller studies, including a 

meta-analysis of prospective cohorts of women aged 30 to 83 years,34  and single 
prospective cohort studies.9, 32, 37 A recent Mendelian randomization study has also 

confirmed this nonlinear pattern characterizing the BMI-mortality relationship.38 

Taken together, these studies provide solid evidence of a nonlinear BMI-mortality 

risk association.  

Additionally, the BMI-mortality connection appears to be age-dependent. In large 
population-based studies that performed age-stratified analyses, the elevated 

mortality risk associated with high BMI attenuated among older populations.8-10, 32, 
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37 Some studies found that the BMI range associated with the lowest mortality 

shifted to a higher BMI level in the older age groups.9, 32, 37  

This age-dependent pattern aligns with the findings of a comprehensive review of 

71 observational cohort studies focused on individuals aged 65 and above.35  In 

this review, 50% of the studies demonstrated a lower mortality risk for individuals 

with overweight compared to those with normal weight.35  Furthermore, 26% of the 
studies reported a mortality risk reduction for individuals with obesity compared 

to those with normal weight 35.  

In short, while substantial evidence shows that high BMI in mid-life is a risk factor 

for mortality, some studies suggest the presence of an ‘obesity paradox,’ where a 

higher BMI in late life may be associated with lower mortality risk.39, 40 

1.2.1 Everyone Loves Paradoxes — About ‘Obesity Paradox’ 

1.2.1.1 The Problem with BMI… 

The obesity paradox is a phenomenon that plagues prospective and 

retrospective epidemiological studies concerning obesity-related health 
outcomes.40-42 Although BMI is a common clinical and epidemiological measure 

of adiposity, it has limitations as an indicator of body fat levels.40 These 

limitations may partially explain the inconsistent findings seen in studies using 

BMI as a tool to investigate the effects of body fat.  

Firstly, BMI is calculated based on weight and height; it does not discriminate 

between weight attributed to fat and fat-free mass.43 As a result, an individual 

classified as overweight or obese based on a BMI measure might have either a 
high-fat mass or a high-fat-free mass. Although this may not fully explain the 

obesity paradox, as fat-free mass typically decreases with aging,44, 45 it raises 

concerns about using BMI in studies of a wide age range, given that body 

composition changes throughout adulthood.40-42, 44, 46  

Secondly, BMI provides no information about the distribution of body fat and, 

thus, the location of fat depots, which are crucial for understanding metabolic 

health.47 Body fat can be stored in three ways: ectopic fat, visceral adipose tissue 
(VAT), and subcutaneous adipose tissue (SAT) — each associated with different 

susceptibility to cardiometabolic morbidities.47 High levels of VAT and ectopic 

fat, particularly in the liver and skeletal muscles, are associated with metabolic 
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dysregulation, whereas fat stored as SAT, the largest fat depot, seems more 

benign.47 Since BMI cannot distinguish between these fat depots, any association 

between BMI and health outcomes may be influenced by varying levels of VAT, 

ectopic fat, or SAT. Without precise measures, it is difficult to determine the 

exact nature of these associations. 

Unlike BMI, measurements of abdominal obesity, such as waist-hip ratios (WHR) 

or waist circumference (WC), are more rigorous metrics of excessive fat 
deposition in the abdominal region and thus better estimate VAT or ectopic fat 

levels. High WC in midlife is highly predictive of cardiometabolic diseases such 

as T2DM and CVD.47, 48  

1.2.1.2 Additional Methodological Concerns when BMI is the exposure 

The study of the BMI-mortality relationship is methodologically challenging and 

can be subject to biases that generate paradoxical findings, such as the obesity 
paradox. One potential explanation for these paradoxical findings is reverse 

causation, which arises when the study's outcome is the primary cause of the 

variations of exposure of interest. A case in point is unintentional weight loss - a 

consequence of comorbidities and a significant predictor of mortality.49-51 Since 
low BMI may reflect unintentional weight loss in cross-sectional data, a sample 

population with a high prevalence of comorbid conditions that cause 

unintentional weight loss can fabricate spurious associations, suggesting an 

inverse relationship between BMI and outcomes.52   

Reverse causation is more likely when analyses are based on a single baseline 

BMI measure.53-55 Studies that rely on BMI sampled at a single time point may 
overlook essential aspects, which include changes in body weight over time (like 

unintentional weight loss just discussed), the distinct effects of BMI at various 

life stages (childhood, adolescence, early adulthood, midlife, and late life), and 

the potential for cumulative effects.50 Investigating changes in BMI over long 
periods or repeated measures is crucial to better characterize the ramifications 

of BMI on health and avoid, control, or reduce biases from reverse causation. 

Nevertheless, it may not always be possible due to the lack of repeated 

measures.  

Another potential source of bias that can fabricate a spurious inverse 

relationship between obesity and risk of mortality is selective survival. For 
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example, a study population may have a high prevalence of individuals with 

obesity who also have poor health, multiple comorbidities, and low survival rates. 

Suppose these individuals were to die before they enter into the study or are 

less likely to participate due to ill health; this would leave a larger proportion who 

are 'healthier' with obesity. In this scenario, the effects of obesity on survival may 
be underestimated. On this account, the obesity paradox would manifest as a 

result of selective survival.52  

Factors that are associated with both the exposure (independent variable) and 

the outcome (dependent variable) are known as confounders. When studies do 

not adjust for confounders, results from statistical analysis can be biased and, 

thus, identify artificial relationships between variables. For example, not all studies 
investigating the obesity-mortality link adjust for strong confounders such as 

education, smoking, and cardiometabolic factors in a consistent fashion.56, 57  

Therefore, residual confounding may exist, which could, in turn, contribute to the 

heterogeneity in the findings, with some studies reporting a positive obesity-
mortality connection while others do not. 

In short, reverse causation, selective survival, and residual confounding are 
essential biases to consider when interpreting research on the effects of BMI. 

1.2.2 Hung up or Hanging up on BMI? 

The origins of BMI date back to the work of Belgian astronomer, mathematician, 

statistician, and sociologist Adolphe Quatelet, who, in the early 19th century, 

explored the relationship between height and weight to define the 
characteristics of an ‘average man’ and understand normal adult development.58 

Quatelet observed that the weight of an ‘average man’ generally increases 

proportionately to the square of height, a concept that underpins the 

development of BMI.58 Several decades later, in 1972, American physiologist 
Ancel Keys revisited Quatelet’s formula — weight divided by the square of height 

— and named it the “body mass index.”59  He advocated for its use as an effective 

tool for assessing obesity at a population level.59  

Over the decades, BMI became a standard measure for estimating body fat 

levels and diagnosing overweight and obesity.60 It continues to be the primary 

measure of adiposity in epidemiological studies and clinical settings to this day. 

BMI, calculated by dividing body weight in kilograms by the square of height in 
meters, categorized adults according to the World Health Organization 
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classification as underweight (<18.5 kg/m2), normal weight (18.5 — 24.9 kg/m2), 

overweight (25.0 — 29.9 kg/m2), and obesity (≥30 kg/m2).61  

BMI is a useful tool for approximating body fat levels at the population level. 
Despite its limitations, the strong correlation between BMI and body fat levels 

observed in epidemiological studies, along with its simplicity and accessibility, 

have made it a widely adopted measure in both the clinical setting and at home.62 

Nonetheless, in 2023, the American Medical Association highlighted BMI’s 
limitations in measuring body fat levels across different racial and ethnic groups, 

sexes, genders, and age ranges, urging the medical community to integrate 

alternative measures, such as visceral fat, body composition, and metabolic 

factors, to more accurately assess risk in clinical settings.63          

1.3 Metabolic Health and the Mortality Connection   

Robust evidence demonstrates that MetS is a significant mortality risk in the 

general adult population, with MetS associated with 46% and 50% higher risk for 

all-cause mortality from two meta-analyses.64, 65 Unlike the association between  
BMI and mortality, which tends to vary with age, the connection between MetS 

and mortality does not appear to be age-dependent. The age-stratified meta-

analysis of 21 studies found no significant difference in the all-cause mortality risk 

between individuals below and above 57.5 years.64 Conversely, a meta-analysis on 
older populations revealed that late-life MetS was associated with a 23% higher 

risk in all-cause mortality.66  

When examining individual metabolic components in the same meta-analysis 

among older individuals, hyperglycemia and low HDL-C levels emerged as 

significant mortality risk factors.66 Conversely, higher BMI or WC paradoxically 
showed reduced mortality risk among older adults.66 Hypertriglyceridemia and 

hypertension were not significantly associated with all-cause mortality.66 In a 

separate meta-analysis that explored the relationship between MetS components 

and mortality among older individuals, WC and hypertriglyceridemia were not 
associated with increased all-cause mortality risk.67 However, hypertension, 

hyperglycemia, and low HDL-C levels were found to be associated with increased 

mortality risk.67   

Individual components of MetS appear to associate with mortality risk differently, 

with some factors showing a lack of significant associations. However, MetS as a 
single entity was significantly associated with mortality, raising the question of 
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whether MetS, a combination of its components, operates differently as a unified 

construct compared to its parts.  

1.4 BMI feat. Metabolic Health 

Although high BMI often co-occurs with other cardiometabolic risk factors, some 
individuals with obesity do not exhibit these abnormalities and are classified as 

having metabolically healthy obesity (MHO).15-18 Conversely, while individuals with 

normal weight are typically metabolically healthy, some may present with 

metabolic dysfunction, classifying them as metabolically unhealthy normal weight 
(MUN), sometimes referred to as 'thin on the outside, fat on the inside,' 

abbreviated as TOFI.68  

A meta-analysis of 43 cohort studies encompassing 4.8 million individuals across 

all BMI categories found that the prevalence of MHO ranged from 1.2 — 31%, with a 

median of 6.6%.20 In addition, studies have reported that the prevalence of MUN 
ranged from 18% to 56%.69, 70 These findings indicate significant heterogeneity 

within each BMI classification. By incorporating metabolic health profiles, 

individuals can be better characterized beyond BMI alone, as demonstrated in 

Figure 2, which illustrates the diverse range of metabolic health-BMI phenotypes. 

 The concepts of MHO and MUN underscore the heterogeneity within BMI 

categories.71 These findings call for a re-evaluation of whether BMI alone is 
sufficient for understanding the development of cardiometabolic morbidities. It 

raises a critical question: is the increase in body fat a cause or the consequence 

of cardiometabolic dysfunction? Without a definitive answer, it may remain crucial 

to consider body fat levels in conjunction with other cardiometabolic components 
to enhance our understanding of their impact on human health.   
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Figure 2: BMI-metabolic phenotypes from the cross-categorizations of BMI and 
metabolic health                                                                                                                                                     

Figure illustrates the cross-categorization of individuals based on their BMI and metabolic health 
status, resulting in various BMI-metabolic health phenotypes. The top bar represents the BMI 
spectrum that can be on a continuous scale or categorized into underweight, normal weight, 
overweight, and obesity. Middle bar represents metabolic health status that can be divided into 
metabolically healthy and unhealthy. The bottom bar depicts the possible BMI-metabolic health 
phenotypes from the combination of BMI and metabolic health categories. 

Abbreviations: BMI – body mass index 

 

1.4.1 Defining Metabolic Health and Metabolically Healthy Obesity 

There is no standardized definition of metabolic health, which leads to marked 

variability in the classification of MHO.15, 72 Typically, MHO is defined by adapting 
the criteria for MetS, where the absence of MetS indicates a metabolically healthy 

state.73  As a result, MHO is commonly characterized as having obesity (BMI ≥ 30 

kg/m²) without the manifestation of MetS.15 However, different definitions of MetS 

exist, as Table 1 outlines the four most commonly used in the literature.29, 74-77   
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Table 1: Different criteria for ascertaining metabolic syndrome 

 

 

NCEP ATP III - 
2009  29 WHO – 199874 EGIR – 199975 IDF – 200576 

Compulsory 
requirements None 

• IR, 
• Impaired 

glucose 
tolerance, 

• Impaired 
fasting 
glucose, 

• T2DM 
diagnosis, or 

• Other 
evidence of IR 

• IR 
• plasma insulin 

> 75th 
percentile for 
patients 
without T2DM 

• Central 
obesity 
determined by  
WC: 

• ≥ 94 cm in M, 
• ≥ 80 cm in F 

Criteria 
Any 3 of the 5 
below 

Plus 2 of the 5 
below 

Plus 2 of the 4 
below 

Plus 2 of the 4 
below 

*Obesity or 
central obesity 

WC 
• ≥80 cm in F, 
• ≥94 cm  in M 

WHR 
• >0.90 in M, 
• >0.85 in F, or 
• BMI ≥ 30 

kg/m2 

WC 
• ≥80 cm in F, 
• ≥94 cm  in M 

Compulsory 
component 
defined above 

Hyperglycemia 

• Fasting glucose 
≥100 mg/dl, or 

• Treatment, or 
• T2DM diagnosis 

Compulsory 
component 
defined above 

Fasting glucose 
≥ 6.1 mmol/l for 
nondiabetic 

• Fasting 
glucose ≥ 100 
mg/dl, or 

• T2DM 
Diagnosis 

Dyslipidemia 
based on 
plasma TG 
levels 

• TG ≥150 mg/dL 
(1.7mmol/L), or 

• Treatment 

• TG ≥ 150 mg/dl 
or 

• HDL-C <35 
mg/dL in M, 
<39 mg/dL in F 

• Treatment 

• TG > 180mg/dl, 
or 

• HDL-C < 
40mg/dl, or  

• Treatment 

• TG > 150mg/dl, 
or 

• Treatment 

Dyslipidemia 
based on HDL-
C levels 

• <40 mg/dl in M, 
• <50 mg/dl in F, 

or 
• Treatment 

Combined with 
TG above 

Combined with 
TG above 

• < 40 mg/dl in 
M, 

• <50 mg/dl in F 
• Treatment 

Hypertension 

• Systolic blood 
pressure ≥ 130 
mmHg and 

• Diastolic blood 
pressure ≥ 85 
mmHg, or 

• Treatment 

≥ 160/90 mmHg 

• ≥140/90 
mmHg or 

Treatment 

• Systolic ≥ 
130mmHg or 

• Diastolic ≥ 85 
mmHg or 

• Treatment 
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  Continue 

 

 

NCEP ATP III - 
2005 revision 29 

WHO – 1998 74 EGIR – 1999 75 IDF – 2005 76 

Albumin 
levels Not included 

• Microalbuminuria, 
or 

• Urinary albumin 
excretion ≥20 
ug/min, or 

• A:C ≥ 20mg/g 

Not included Not included 

*Indicates threshold values in this table were based on the European population.  
 
Abbreviations: NCEP ATP III - National Cholesterol Education Program Adult Treatment Panel-III; WHO – 
World Health Organization; EGIR – European Group for the Study of Insulin Resistance; IDF – International 
Diabetes Definition; T2DM – Type II Diabetes Mellitus; BMI – body mass index, IR – Insulin resistance, WC – 
waist circumference; WHR – waist-hip-ratio; M – males; F – females; TG – triglyceride levels: HDL-C – high-
density lipoprotein cholesterol, A:C – albumin to creatinine ratio 

 

Some argue that being truly metabolically healthy should entail the absence of 

any metabolic abnormalities.15 This has led to two approaches for defining 

metabolically healthy states in MHO: a stricter definition, which requires the 

complete absence of any metabolic deficiencies, and a less strict definition, which 
defines metabolic health as the absence of MetS, typically allowing for no more 

than one metabolic abnormality.15, 72 

Several authors have called attention to the need for consensus in the definition 

of metabolic health to advance research in this area.15, 16, 71, 78 Zembic et al. initiated 

an attempt to define the MHO phenotype systematically.79 They identified an 
MHO phenotype associated with no increased risk of CVD mortality and all-cause 

mortality, while all unhealthy groups showed substantially increased risk.79 

According to their study, metabolic unhealthy status was based on three 

components: hypertension from systolic blood pressure, increased waist-hip 
ratio, and prevalent diabetes.79 These newly established criteria will need further 

validation in other cohorts to ensure their applicability and accuracy.  

1.4.2 Skinny on Metabolically Healthy Obesity 

MHO is distinguished by biological mechanisms and phenotypes that diverge 

from those associated with metabolically unhealthy obesity (MUO).15 MHO has 
lower levels of ectopic fat and VAT, increased SAT and leg fat levels, insulin 

sensitivity, normal leptin activity, normal levels of inflammatory markers, and 
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normal adipose tissue function, compared to MUO.15, 47 In individuals with MHO, 

adipose tissue tends to grow by cell quantity, resulting in less inflammation. In 

contrast, adipose tissue in MUO typically grows by increasing the cellular size 

instead of quantity, leading to more inflammation.15, 47  

The prognosis of the MHO phenotype is still debated, as past research yielded 

heterogeneous results. A meta-analysis of prospective cohort studies has 

reported that compared to MHN, MHO significantly increased the risk of all-
cause mortality by 59%.22 MHO was also associated with an increased risk of 

cardiovascular mortality, although the findings were not statistically significant.22  

The metabolically healthy overweight MHOw phenotype significantly increased 

the risk of all-cause and cardiovascular mortality by 22% and 34%, respectively, 
compared to MHN.22 

Most research on MHO has focused on relatively younger adults, with the mean 

age of under 55 and the mean follow-up periods ranging from 3.6 to 30 years.22 
Limited research investigates the BMI-metabolic health phenotypes and 

mortality among older persons. One study, which included 4551 participants 

aged 67 to 74 with a mean follow-up of 10.9 years, found that MHOw and 

metabolically healthy class I obesity(BMI between 30 to 35 kg/m2) had a 10% and 
42% lower mortality risk relative to MHN, respectively.80  In contrast, 

metabolically unhealthy class II obesity (BMI ≥ 35kg/m2) and metabolically 

unhealthy normal weight phenotypes were associated with increased mortality 

risk.80 Even when BMI was examined in conjunction with metabolic health, the 
evidence suggested the better prognosis with higher BMI among older 

individuals persisted as long as they were metabolically healthy.80 

A significant limitation of current literature on MHO is that most studies have 
assessed BMI-metabolic health phenotypes at a single time point. Nevertheless, 

several authors have posited that MHO and other BMI-metabolic health 

phenotypes may be transient.15, 29, 47, 69, 71, 81 The largest study to date, which followed 

90,257 women over 30 years, reported that 84% of women classified as MHO 
transitioned to a metabolically unhealthy state over time.81 Although those who 

remained in the MHO state were associated with a higher risk of CVD compared 

to women with stable, healthy, normal weight, their risks were lower than those 

who transitioned from a healthy to an unhealthy metabolic state, regardless of BMI 
category. Despite these findings, there is limited knowledge of the longitudinal 
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transitions in BMI-metabolic health phenotypes and their effects on morbidity 

and mortality. These are critical areas for future research to address. 

1.5 Biological Aging Simplified 

Chronological age is the number of years since an individual’s birth. Underlying this 
definition of age is the assumption that the passing of each unit of time (days, 

weeks, months, or years) is uniform for everyone, which is not plausible. In contrast 

to chronological age, biological age captures heterogeneity in aging among 

individuals and can be measured by quantifying various biomarkers of aging.23  
These biomarker measures can provide a deeper understanding of the aging 

process and overall health. They can be valuable for examining the connections 

among BMI, metabolic health, and BMI-metabolic health phenotypes, aging, and 

overall health outcomes. 

Biological age measures (BA) can be broadly categorized into functional, 
physiological, and cellular levels, each reflecting changes during aging at these 

hierarchical levels of biological organization.82 

1.5.1 Biological Aging at the Functional Level 

Developing and maintaining functional ability is vital to healthy aging.83  Metrics 

that assess aging at the functional level provide valuable insights into overall 

health during aging.84 These measures may capture age-related changes in 
physical, cognitive, emotional, and mental domains.82 The functional aging index 

(FAI) is an example derived from four components: gait speed, grip strength, peak 

expiratory flow, and subjective sensory ability.84  The FAI is a composite score such 

that a higher FAI indicates greater biological aging.84 This means that as FAI 
increases, it reflects higher levels of decline in physical and sensory functions, 

suggesting that the individual is experiencing more pronounced aging effects 

across these functional domains.84     

1.5.2 Biological Aging at the Physiological Level 

At the physiological level, biological aging reflects changes in body systems, such 
as metabolism and cardiovascular function, which often contribute to the 

development of diseases.82 The frailty index (FI) is a biological age measure that 

captures physiological and functional changes.85 Developed by Rockwood, FI is a 

ratio calculated as the number of health deficits present over the total number of 
health deficits considered.86 The health deficits considered within FI are diverse 
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and include symptoms like fatigue and pain, clinical signs such as hypertension 

and hyperglycemia, the presence of chronic diseases such as T2DM, physical 

disabilities, and results from laboratory tests, radiographic imaging, and 

electrocardiographic evaluations.86 Generally, 40 different deficits are considered 

in FI, and a minimum of 30 is necessary to maintain its predictive value for the risk 
of adverse events.86  

1.5.3 Biological Aging at the Epigenetic Level 

The programmed theory of aging posits that aging is regulated by specific 

mechanisms akin to a biological clock, which systematically controls the aging 

process.87 This theory postulates that aging is not the primary purpose of these 

regulatory mechanisms but rather an unintended consequence of biological 
functions and programmatic processes.87 At the cellular level, the concept of 

epigenetic clock, based on the methylation pattern of deoxyribonucleic acid 

(DNA), has gained prominence as a tool to understand these processes.88  

 
The earliest epigenetic clocks were developed using statistical models that were 

trained to predict chronological age based on a weighted average of DNA 

methylation (addition of a methyl group) levels at combinations of CpG sites — 

regions of DNA where a cytosine nucleotide is positioned before a guanine 
nucleotide.23, 89 The resultant DNA-methylation measure, known either as DNA 

methylation age or epigenetic age, correlates strongly with chronological age.23, 89 

Deviations of epigenetic age from the chronological age, known as epigenetic age 

acceleration (EAA), can predict age-related morbidities and mortality.90 The four 
most commonly used are Horvath,89 Hannum,91 PhenoAge,92 GrimAge,93 and PACE 

(see Table 2 for comparisons).94  

 

Horvath's89 and Hannum's91 clocks were constructed based on CpG sites 
correlated with chronological age, while PhenoAge incorporates chronological age 

and nine clinical biomarkers to predict better lifespan and health span.92 GrimAge, 

described by its inventors as a 'biomarker of mortality,' was derived by selecting 

CpG sites associated with smoking-pack-years and plasma proteins, followed by 
further regression of time-to-death on these chosen biomarkers.93 PACE, on the 

other hand, measures the pace of aging by examining changes in 19 biomarkers 

over 12 years of follow-up.93  
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Table 2: Comparisons of epigenetic clocks 
 

Epigenetic clock, 
year 

N. of 
CpGs Source of DNA Training targets 

Horvath, 201389 353 
Multiple 
tissues, 

including blood 
Chronological age 

Horvath, 201895 391 
Skin, blood, 
and saliva 
samples 

Chronological age 

Hannum, 201391 71 Whole blood, 
leukocytes Chronological age 

PhenoAge, 201892 513 Whole blood 

 
Chronological age + 9 biomarkers: 

albumin, creatinine, serum glucose, C-reactive protein, 
lymphocyte percent, mean red cell volume, 

red cell distribution width, alkaline phosphatase, white 
blood cell count 

 

GrimAge, 201993 1030 Whole blood 

Chronological age + sex + smoking pack-years 
+ 12 plasma proteins:                                       

adrenomedullin, beta-2-microglobulin, CD56, 
ceruloplasmin, cystatin-C, EGF fibulin-like ECM protein 1, 

growth differentiation factor 15, leptin, myoglobin, 
plasminogen activator inhibitor, serum 

paraoxonase/arylesterase 1, tissue inhibitor 
metalloproteinases 1 

PACE, 202294 46 Whole blood 

 
Chronological age + sex + longitudinal change 

of 19 biomarkers: 
BMI, waist-hip ratio, glycated hemoglobin, leptin, mean 
arterial pressure, cardiorespiratory fitness (VO2Max), 

forced expiratory volume in one second (FEV1), FEV1/forced 
vital capacity, total cholesterol, triglycerides, high-density 

lipoprotein, lipoprotein(a), apolipoprotein B100/A1 ratio, 
estimated glomerular filtration rate (eGFR), blood urea 

nitrogen (BUN), high sensitivity C-reactive protein, white 
blood cell count, mean periodontal attachment loss, the 

number of dental-caries-affected tooth surfaces 
 

 
Abbreviations: N. - number 

 

1.5.4 Connecting BMI and Metabolic Health with Biological Aging 

1.5.4.1 Associations with Functional and Physiological Aging 

A meta-analysis of 12 studies involving 74,985 individuals above the age of 60 
found that underweight and obesity were associated with a statistically significant 

increase in the risk of frailty (defined as FI≥ 21%, or the presence of three of the 

following: involuntary weight loss, exhaustion, slow gait speed, poor handgrip 

strength, and sedentary behavior), by 45% and 40%, respectively, compared to 
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normal weight. In contrast, overweight was associated with a 7% reduced risk of 

frailty; however, this estimate did not reach statistical significance.96 Additionally, 

abdominal obesity was reported to increase the risk of frailty by 57% based on 

data from 6 studies that included a total of 18,764 individuals.96 These findings 

highlight that both lower and higher BMI may impact overall health outcomes 
during aging.  

Similarly, MetS has also been linked to an increased risk of frailty, indicating the 

crucial role metabolic health may play in health outcomes during aging. A meta-

analysis reported a 73% increased risk of frailty among those with MetS relative to 

those without MetS.97 Moreover, a cross-sectional study using data from the US 
National Health and Nutrition Examination Survey found a positive correlation 

between MetS and FI in 6,403 participants aged below 65 years, which was 

attenuated in 2,152 participants aged 65 years or older, suggesting age-

dependent effects between MetS and FI.98 Together, these findings emphasize the 
complex interplay between BMI, metabolic health, and biological aging at the 

physiological level.  

The FAI, being a relatively new BA, has not been studied extensively. There is, 

however, a moderate correlation between FAI and FI (correlation coefficient of 

0.46).84 FAI and FI seem to capture different facets of the aging process, 
suggesting they may be complementary.84  

1.5.4.2 Associations with Epigenetic Aging 

Higher BMI is consistently linked to increased epigenetic age.99 Nevertheless, 
research reveals that this association may differ across various tissue types.99 For 

instance, elevated BMI has been associated with higher EAA in the liver tissue100  

and VAT,101 but not in whole blood. In contrast, several other studies have 
consistently found that higher BMI correlates with higher EAA in whole blood.102-106   

Age-stratified analyses highlight that the relationship between BMI and EAA may 

differ across age groups. Specifically, one study found a positive correlation 

between BMI and EAA in middle-aged individuals but not in older adults.107   

Most of these studies that examined the BMI-EAA association referenced above 

are cross-sectional in design, which limits the ability to determine the direction of 
the BMI-EAA association. Therefore, the direction of the association remains 

elusive. However, a recent Mendelian randomization study revealed a bidirectional 

association between obesity and EAA, with more substantial effect sizes observed 
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when obesity leads to increased EAA.108 These findings underscore the necessity 

for research to elucidate further the pathways underlying the BMI-EAA 

relationship. 

Research investigating the relationship between metabolic health and EAA has 

identified significant associations. A longitudinal study showed that poor 

cardiovascular health (based on a composite score derived from BMI, blood 
pressure, glucose, and cholesterol) in early adulthood is associated with higher 

EAA 15 and 20 years later.109 Although only a few studies have specifically explored 

the connection between MetS and the EAA, the existing evidence generally 

indicates that MetS is associated with higher EAA.93, 102, 110-113    

Similar to the associations between BMI and EAA, there are suggestions of age-
specific effects in the MetS-EAA relationship. For example, a study based on a 

Korean population found a positive correlation between MetS and the 

acceleration of GrimAge among middle-aged but not older participants.114 

Furthermore, a recent twin study showed that accelerated epigenetic age was 
linked to MetS independently of lifestyle factors, with genetics contributing to this 

connection.113  

1.6 When Obesity and Aging Collide  

Aging and obesity, though distinct conditions, may be intricately connected. 
Aging, often perceived as an innate and inevitable process, involves the gradual 

accumulation of perturbations to physiological functions that increase 

vulnerability to diseases and mortality.115 According to the geroscience hypothesis, 

aging can be accelerated or decelerated, depending on genetic, environmental, 
and lifestyle factors.116 In contrast, obesity is a chronic, relapsing disease 

characterized by excessive accumulation of body fat.47 Its pathogenesis is 

multifactorial, involving complex interactions between genetic predispositions, 

tissue dysfunction, hormonal imbalances, and environmental factors such as 
lifestyle and diet.47 Both conditions share the potential for modulation, shaping 

their progression by the complex interplay of biological and external factors.  

Despite their differences, aging and obesity share many similarities in their 

pathophysiologies. While a thorough exploration of these similarities is beyond 

the scope of this thesis, key parallels have been reviewed by Tam et al.117 and 

Diaz-Ruiz et al.118 For example, both aging and obesity are associated with 
increased oxidative stress caused by the overproduction of reactive oxygen 



 

 21 

species (ROS). This oxidative stress damages cellular structures such as DNA 

and proteins, leading to tissue damage.117, 118 In both conditions, prolonged 

exposure to high levels of ROS can damage mitochondrial DNA, resulting in 

mitochondrial dysfunction.115 This dysfunction, in turn, contributes to chronic 

systemic inflammation and cellular senescence, which are well-established 
hallmarks of aging.115 Thus, the mechanisms seen in obesity not only mirror those 

of aging but also actively accelerate the aging process. 

Insulin resistance is a central pathophysiological mechanism that drives 

metabolic dysfunction in aging and obesity. In aging, increased visceral fat, 

senescent cells, and inflammatory cytokines from chronic inflammation likely 

impair insulin signaling pathways, leading to insulin resistance.119 In obesity, a 
combination of genetic and environmental factors can lead to hyperinsulinemia 

and, eventually, to insulin resistance, which impairs the glucose uptake by the 

cells, further promoting fat storage and metabolic deterioration.47 These shared 

mechanisms — oxidative stress, chronic inflammation, mitochondrial 
dysfunction, and insulin resistance — may drive the development of diseases, 

such as T2DM, CVD, and neurodegenerative conditions in both aging and 

obesity.117-119 

1.7 Minding the Gaps  

A vast body of literature explores the relationships between BMI, metabolic 
health, and aging, yet critical gaps remain in fully understanding the complexities 

of how these factors interact. 

One significant gap involves the "obesity paradox," which suggests that higher 

BMI in older adults may be linked to better health outcomes, contrary to the 

established risks in younger populations. This paradox may stem from the 
limitations of BMI as a measure and methodological challenges such as reverse 

causality and selective survival when studying BMI-mortality associations. To 

address these limitations, using biological aging metrics as markers of late-life 

health could provide valuable insights. Biological aging measures capture the 
heterogeneity of aging processes and offer a more comprehensive view of late-

life health. This could help clarify the potential impact of BMI and metabolic 

health in late-life health. 
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Another critical gap is the ambiguity surrounding the concept of metabolic 

health, including its definition and influence on health outcomes across the BMI 

spectrum. There is no universally accepted definition of metabolic health, and 

various studies use different criteria, leading to inconsistent conclusions. 

Furthermore, much-existing research considers BMI and metabolic health 
independently, while their joint effects on aging — especially biological aging — 

are poorly understood. The concept of "metabolically healthy obesity" 

exemplifies this uncertainty. It remains unclear whether MHO represents a 

genuinely lower-risk form of obesity or if it eventually leads to increased health 
risks, particularly in older adults. Understanding the joint effects of BMI and 

metabolic health and the implication of MHO is essential for better 

characterizing late-life health risks associated with BMI and metabolic health. 

The overlapping pathophysiologies of obesity and biological aging suggest that 

obesity may accelerate the aging process, yet the directionality and dynamics 

of this relationship remain unclear. The roles of biological aging, obesity, and 
metabolic health in determining mortality, particularly in older adults, have not 

been fully explored. Investigating how each factor contributes to survival 

outcomes could reveal important mechanisms driving health outcomes in aging 

populations. 
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2 Research Aims 

This thesis aims to clarify the complex relationships between BMI, metabolic 

health, and aging while addressing research gaps as best as we can and 
considering the non-linearity of BMI and age-specific effects. Specifically, we 

focused on how BMI and metabolic health are associated with biological aging 

and mortality risk. The thesis was structured around four specific studies, each 

with its objective: 

Study I: To examine the independent and joint associations of BMI and metabolic 

health in midlife and late life with all-cause mortality.  

Study II: To assess the cross-sectional association between BMI, metabolic health, 

and biological aging, using the functional aging index and frailty index as markers 

of aging at the functional and physiological levels. 

Study III:  To investigate the role of biological aging, as measured by epigenetic 

age acceleration, in mediating the relationship between BMI and mortality.  

Study IV: To explore the longitudinal association between BMI and biological aging, 

focusing on how changes in BMI influence biological aging and how changes in 

biological aging itself may drive changes in BMI over time.  

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 27 

3 Materials and Methods 

3.1 Overview of Data Sources 

This thesis drew data from several population-based cohorts,  including four sub-
studies of aging within the Swedish Twin Registry (STR):120 Aging in Women and 

Men:  A Longitudinal Study of Gender Differences in Health Behaviour and Health 

among Elderly (GENDER),121 the Origins of Variances in the Oldest-Old: 

Octogenarian Twins  (OCTO-Twin),122  the Swedish  Adoption/Twin  Study of Aging 
(SATSA),123 and TwinGene.124 The vital status of the participants within each sub-

study was obtained through linkages to several nationwide registries. In addition, 

data from the Health and Retirement Study (HRS) in the U.S. was also utilized.125  

3.1.1 Aging in Women and Men:  A Longitudinal Study of Gender Differences 

in Health Behaviour and Health among Elderly  

GENDER is a longitudinal study involving data collection through mail-in 
surveys and in-person testing and interviews (IPT) between 1994 and 2007.121 It 

constitutes Swedish twin pairs of the opposite sex born between 1906 and 1925 

and alive in 1994. A baseline mail-in survey was performed in 1994, and information 
on demographics, health status, health-related behaviors, and psychosocial 

aspects was collected. A total of 1,843 individuals responded to the survey, 

translating to a 54% individual response rate.121 Then, a selected sample underwent 

three waves of IPTs at approximately four-year intervals. The first IPT, which took 
place from 1995 to 1997, included 498 twins from 249 twin pairs of opposite sex 

with a mean age of 74.6 years [standard deviation (SD) = 2.6) at that time.126 Two 

additional IPTs were performed from 1999 to 2001 and 2003 to 2005. Each IPT 

involved interviews, cognitive tests, physical functioning tests, health 
examinations, and blood sampling conducted by trained healthcare professionals. 

The last survey was mailed in 2007 to all living participants. 

3.1.2 Origin of Variances in the Oldest-Old: Octogenarian Twins 

OCTO-Twin is a longitudinal study of Swedish same-sex twin pairs focused on 

twins aged 80 and above.122 Initiated in 1991, OCTO-Twin conducted five IPTs until 

2002 at two-year intervals.127 A total of 1,098 twins over 79 were invited to 
participate, with 702 twins (351 complete twin pairs) accepting the invitation and 

participating in the first IPT, yielding a participation rate of 64%.128 The mean age 



 

28 

at the first IPT was 83. (SD = 3.17).127 Each IPT was conducted by licensed nurses at 

the participant’s residence, who collected data on participants’ socio-

demographics, life histories, health-related behaviors, and blood samples.128  

Participants also underwent comprehensive cognitive tests, physical functioning 

assessments, and health examinations.122 

3.1.3 Swedish Adoption/Twin Study of Aging  

SATSA is a comprehensive longitudinal study that includes twins reared apart 
before age 11 and matched control pairs of twins reared together, matched 

according to sex, date of birth, and country of birth.123, 129 Initiated in 1984, SATSA 

is the earliest of the aging sub-studies compared to GENDER and OCTO-Twin, 
and it continued until 2014, spanning 30 years.123 Data for SATSA were obtained 

through mail-out questionnaires and IPTs at approximately three-year 

intervals.123   The study began with the first questionnaire sent in 1984 to 2,854 

individuals aged 50 and above.123 A total of 2,019 individuals responded (71%).123 
Among those who responded were 758 complete twin pairs, of which 351 twin 

pairs were reared apart before age 11 and 407 control pairs of twins reared 

together.123  

The questionnaires in SATSA consist of self-reported data on physical and 

mental health, personality traits, health behaviors, and environmental factors. At 

the same time, IPT involves biomedical assessments, physical functioning tests, 

and cognitive evaluations conducted by registered nurses.123 A total of 645 
individuals, with a mean age of 63.6 (SD=8.8), participated in the first IPT in 1986. 

By the study’s conclusion, in 2014, nine questionnaires and ten IPTs had been 

completed, with 859 twins participating in at least one IPT.129  

3.1.4 TwinGene 

TwinGene is a cross-sectional study involving Swedish twins born between 1911 

and 1958 who had previously participated in the Screening Across the Lifespan 

Twin (SALT) study conducted from 1998 to 2002.124 Data collection for TwinGene 
occurred between 2004 and 2008 through a health questionnaire, which 

focused on inquiries on CVD, T2DM, and medical interventions such as surgeries 

and medication use.124 Participants also underwent a health examination and 

provided blood samples at local healthcare facilities.124 Of the 22,391 twins 
invited, around 14,600 (65%) responded to the questionnaire, and 12,614 
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individuals (56%), including 5,014 complete twin pairs, completed the health 

examination.124 

3.1.5 The Health and Retirement Study  

The HRS is a large-scale, longitudinal study designed to explore the factors 
influencing aging in a nationally representative sample of U.S. residents aged 50 

and over.125 Since its launch in 1992,  HRS has collected data every two years on 

various topics, including health, financial status, cognitive abilities, employment, 

retirement, and family dynamics.125 The first data collection primarily involved 
face-to-face interviews, with follow-up interviews conducted via telephone — 

except for participants aged 80 and above, who continued to have in-person 

interviews.125 

HRS broadened its scope to incorporate biological markers, genetic data, and 

more detailed psychological and social measures in 2006.125 As part of this 

expansion, half of the participants underwent face-to-face interviews, which 
included the collection of biomarkers, while the other half continued with 

telephone interviews only.125 These face-to-face interviews, along with 

the collection of biomarkers (dried blood spots), alternated between halves of the 

sample, ensuring that comprehensive data was gathered for each participant 
every four years.125 Additionally, HRS is linked to administrative records such as 

Social Security, Medicare, and the National Death Index, providing a rich dataset 

for examining the impact of aging on individuals and broader population trends.125  

The initial wave in 1992 included 15,497 invited participants, with 12,652 completing 

interviews, resulting in a strong response rate of 81.6%.125 Over time, additional 

cohorts were incorporated, including the Asset and Health Dynamics Among the 

Oldest Old (AHEAD) in 1993, the Children of the Depression (CODA) and War 
Babies in 1998, Early Baby Boomers in 2004, and Mid Baby Boomers in 2010.125 

Although response rates have gradually declined, HRS has surveyed over 37,000 

individuals from more than 23,000 households.125 Between 1992 and 2020, the 

number of individuals contacted in each wave ranged from 7,555 to 27,198, with 
respondents per wave ranging from 7,027 to 22,032.130 The latest wave of data 

collection occurred in 2022.  
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3.1.6 Data Source Allocation Across Studies  

Figure 3 shows the data collection timelines for each cohort and the specific 
data sources used in each study.  

Figure 3: Data collection timelines for each cohort and study-specific data 
sources.    

Abbreviations: IPT – in-person testing, W – data collection wave 

 

Study I aimed to examine how BMI and metabolic health in midlife and late life 

are independently and jointly associated with mortality risk. This study used 

pooled data from IPT1 of the GENDER study, IPT1-3 of OCTO-Twin, IPT1-6 of 

SATSA, and TwinGene.  

The vital status of participants as of December 31, 2020, was obtained from the 

Swedish Tax Register. 

Study II, which assessed the cross-sectional associations between BMI, metabolic 

health, and biological aging, and Study IV, which explored the longitudinal 

relationship between BMI and biological aging, utilized data from all IPTs across 
GENDER, OCTO-Twin, and SATSA. 

Study III investigated the mediating role of epigenetic aging in the relationship 

between BMI and mortality risk while adjusting for metabolic health. The analysis 
used data from the 2016 HRS when the Venous Blood Study (VBS) was introduced. 

All respondents from the 2016 wave were invited to participate in VBS, with 78.5% 
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accepting the invitation and 82.9% completing blood sampling, resulting in a total 

sample size of 9,934 individuals.131 The venous blood samples collected were 

assayed for numerous aging markers, many of which were metabolic, enabling the 

inclusion of metabolic health variables in Study III. From this group, a non-random 

subsample of 4,104 blood samples underwent DNA methylation assays, from 
which epigenetic age measures were derived and used in this analysis.132  Data on 

participants' vital status as of December 2020 was also incorporated. 

3.2 Operationalization of Study Variables  

3.2.1 Body Mass Index  

BMI was calculated by dividing weight in kilograms (kg) by the square of height in 

meters (m2). As a categorical variable (Study I), BMI was classified according to 
the WHO criteria as underweight (<18.5kg/m2 ), normal weight (18.5 — 24.9 kg/m2), 

overweight (25.0 — 29.9 kg/m2), and obesity (≥30kg/m2).61 The remaining studies 

treated BMI as a continuous variable (Study II-IV).  

In GENDER, OCTO-Twin, SATSA, and TwinGene, BMI data were obtained from 

measurements of height and weight taken by trained healthcare professionals. 
During the measurements, participants were instructed to remove their shoes, 

heavy items, and bulky clothing.  

BMI data from the HRS study was based on self-reported height and weight during 

telephone interviews. From 1998, height was only recorded during the first 

interview and then carried forward in subsequent survey waves. 

3.2.2 Metabolic Health  

The operationalization of metabolic health status (MHS) across the studies was 
based mainly on the National Cholesterol Education Program Adult Treatment 

Panel-III (NCEP ATP-III) criteria for MetS,29 along with insights from previous 

research15, 72 and data availability from each cohort. Since no consensus exists on 

the definition of metabolic health,15 we applied the most appropriate definitions 
using all available data. This thesis typically considered the following metabolic 

components: hypertension, hyperglycemia, hypertriglyceridemia, and low HDL-C 

levels.  
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While the NCEP ATP-III criteria also included central obesity, the primary analyses 

excluded this factor. However, central obesity was incorporated into the definition 

of metabolic health in sensitivity analyses when measures were available.  

According to NCEP ATP-III criteria, MetS is defined as the presence of three or 

more of the five metabolic components: hypertension, hyperglycemia, 

hypertriglyceridemia, low HDL-C, and central obesity. In primary analyses that 
excluded measures of central obesity, metabolically unhealthy status was defined 

by the presence of two or more metabolic components (less strict definition) or 

one or more components (strict definition). Table 3 provides the specific criteria 

used by the data source and study. 

3.2.3 Hypertension 

Hypertension was ascertained in GENDER, OCTO-Twin, SATSA, and TwinGene 
through systolic and diastolic blood pressure measured by licensed healthcare 

professionals.  In GENDER and TwinGene, participants' systolic and diastolic blood 

pressure was measured while seated, whereas in OCTO-Twin and SATSA, 
measurements were taken with participants supine. In all three studies, 

measurements were taken after five minutes of rest, followed by a second reading 

after an approximately one-minute pause, with the lower of the two readings 

recorded. Blood pressure was not measured in the HRS VBS study, so 
hypertension was identified based on participants' self-reports of a prior 

diagnosis from a doctor indicating high blood pressure or hypertension. 

3.2.4 Hyperglycemia 

Based on available data, hyperglycemia was determined using a combination of 

venous blood glucose levels (fasting and non-fasting), hemoglobin A1c (HbA1c) 

levels, self-reported use of T2DM medications, and self-reported T2DM diagnosis. 
In SATSA, venous blood glucose levels were available and used to define 

hyperglycemia. Venous blood HbA1c levels were used for this purpose in 

TwinGene. All Swedish twin cohorts provided self-reported information on T2DM 

diagnosis and medication use, which were used to ascertain hyperglycemia. For 
the HRS cohort, hyperglycemia was determined using both venous blood glucose 

levels and self-reported T2DM diagnosis. 
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3.2.5 Hypertriglyceridemia  

Hypertriglyceridemia was determined using venous blood triglyceride levels (in both 

fasting and non-fasting conditions) and self-reported use of lipid-lowering medications 
in GENDER, SATSA, and TwinGene. Since triglyceride levels were not measured in 

OCTO-Twin, hypertriglyceridemia in this cohort was based solely on self-reported 

lipid-lowering medication use. In the HRS VBS study, hypertriglyceridemia was 

ascertained through venous blood triglyceride levels. 

3.2.6 Low HDL-C 

Low HDL-C was determined using venous blood HDL-C levels, available across all 
cohorts. In addition, the Swedish Twin cohorts also considered self-reported use of 

lipid-lowering medications as part of the criteria for identifying low HDL-C status. 

3.3 Biological Aging Measures 

3.3.1 Functional Aging Index  

FAI is used to quantify biological aging at the functional level. It is a composite 
score derived from three physical performance metrics: gait speed, grip strength, peak 

expiratory flow (PEF), and self-reported sensory ability.84 A higher FAI score reflects 

more advanced aging in the functional domain. Gait speed was measured as the time 

taken to walk 3 meters and back, while grip strength was determined by recording the 
highest of three attempts from each hand using a dynamometer or vigorimeter.84 PEF 

was calculated as the best result from two trials using a portable spirometer.84 Licensed 

healthcare professionals in GENDER, OCTO-Twin, and SATSA.83 measured the 

functional metrics, gait speed, grip strength, and PEF.  

Vision and hearing were assessed through self-reported measures.84 In SATSA, 

participants rated their vision on a scale from 1 (excellent) to 5 (nearly blind or blind) 
and their hearing from 1 (excellent) to 5 (nearly deaf or deaf).84 The two scores were 

combined to form a single measure of subjective sensory ability.84 OCTO-Twin and 

GENDER used 6-point scales to rate vision and heating; therefore, the responses were 

adjusted to a 5-point scale.  The two scores were then combined to form a measure of 
subjective sensory ability.84  
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Before calculating FAI, grip strength was adjusted for sex, and PEF was normalized for 

body size by dividing it by the square of the individual’s height in meters.84 Each of the 

four variables, gait speed, grip strength, PEF, and subjective sensory ability, was 

standardized individually based on the means and standard deviations at baseline to 
address measurement variance.84 Grip strength and PEF were reverse-scored so that 

higher values indicated lower physical performance.84 Then, the composite score was 

created by summing the four variables with equal weighting, and the resulting score 

was standardized to a mean of 50 and SD of 10.  

3.3.2 Frailty Index  

FI is a measure of biological aging that captures decline at the physiological and 
functional levels. It is calculated as the ratio of health deficits present to the total 

number of deficits considered, based on the Rockwood deficit accumulation model.86 

In this thesis, FI was created using a broad range of self-reported symptoms, clinical 

signs, chronic diseases, and functional impairments to comprehensively assess aging 
at the physiological and functional levels. Table 4 lists the specific items considered in 

the FI calculation.  

The total number of health deficits considered in the FI calculation was 42 for GENDER 

and SATSA and 41 for OCTO-Twin. To be included in the FI, the health deficits had at 

least 1% prevalence within each cohort.133 In previous work, data imputation was 
performed for participants with 20% or fewer missing items to limit missingness to a 

maximum of 10%.134 Participants with more than 20% missing items were excluded from 

the analyses.134 In Study II, self-reported T2D was removed from the FI calculation since 

the same item was used to define metabolic health.  

 

 

 

 

 



 

36 

Table 4: List of possible items included in the FI calculation across studies 

Type 
General health and 
chronic conditions 

Physical, functional, 
and sensory 

limitations 

Mental well-
being and health 

Activities of 
daily living 

Items  
• General health status 
• Limited from doing 

things one would 
normally like to do due 
to health status 

• Anemia 
• Asthma 
• Persistent cough 
• Chronic bronchitis or 

emphysema 
• Allergies/allergic 

manifestations 
• Eczema 
• Herpes 
• Cataracts 
• Glaucoma 
• Arthritis 
• Rheumatoid arthritis 
• Osteoporosis 
• Sciatica 
• Gout 
• Gall bladder issues  
• Gastric ulcer 
• Liver disease 
• Kidney disease 
• Goiter or other gland 

problems 
• Type II Diabetes 
• Heart attack 
• Heart failure 
• Hypertension 
• Vascular spasm in leg 
• Circulation problems in 

arms and legs 
• Migraine 
• Stroke 
• Epilepsy 
• Cerebral hemorrhage or 

blood clot in brain 
• Cancer or leukemia 

• Hip joint 
impairment 

• Neck pain 
• Shoulder pain 
• Speech impairment 
• Picking something 

up from the floor 
• Handling small 

things with your 
fingers 

• Showering and 
bathing 

• Getting in and out 
of bed 

• Dressing and 
undressing 

• Self-grooming 
• Walking 
• Trouble getting to 

the toilet in time 
• Traveling further 

distances 
• Housework 
• Preparing meals 
• Hearing acuity 
• Vision acuity 

• Feeling lonely 
the past week 

• Feeling 
depressed the 
past week 

• Feeling happy 
the past week 

• Feeling tired 
the past week 

• Insomnia 
• Psychological 

problems 

• Managing 
medications 

• Managing 
money 

• Using the 
telephone 

• Grocery 
shopping 

• Keeping body 
fit 
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3.3.3 Epigenetic Age Acceleration 

Epigenetic age was derived using DNA methylation data from the 2016 VBS study within 

HRS, where DNA methylation levels were measured with the Infinium Methylation EPIC 
BeadChip (Illumina Inc., San Diego, CA, USA).132 This assay measures DNA methylation at 

over 850,000 CpG sites across the genome, which are associated with aging and other 

health-related phenotypes.132 HRS computed multiple epigenetic clocks based on 

these data, each designed to estimate biological aging through CpG methylation 
patterns predictive of chronological age, health outcomes, and mortality risk.132 This 

thesis included five of the epigenetic clocks: 

1. Horvath-I: One of the first multi-tissue epigenetic clocks, Horvath-I estimates 
DNA methylation age using 353 CpG sites across 51 different tissue types.89 The 

clock was trained on 8,000 samples using data from multiple Illumina 

methylation array datasets, and it showed a high correlation with chronological 

age (r = 0.96-0.97).132 
2. Hannum: The Hannum clock focuses on age prediction in blood using 71 CpG 

sites selected from the Illumina 450,000 array.91 The clock was developed from 

methylation data of 656 individuals, ranging from 19 to 101 years old, and was one 

of the first blood-based clocks to correlate DNA methylation changes with 
aging.91  It strongly correlated with chronological age (r = 0.96). 

3. Horvath-II: An extension of the first Horvath clock, Horvath-I, Horvath-II was 

developed to enhance age prediction, specifically in skin, fibroblasts, and blood. 

It utilizes 391 CpG sites, including shared CpGs with the original Horvath and 
Hannum clocks.95 Horvath-II shows robust correlations with age in multiple 

tissues and is less affected by variations in blood cell types than its 

predecessor.95 

4. PhenoAge: This clock integrates 513 CpG sites associated with chronological age 
and a range of clinical biomarkers (e.g., albumin, glucose, and C-reactive protein), 

enabling the prediction of mortality and disease risk beyond chronological age.92 

PhenoAge was strongly associated with health outcomes such as mortality, 

health span, and physical function.92  
5. GrimAge: The GrimAge incorporates 1,030 CpG sites linked to smoking history 

and protein biomarkers of physiological health (e.g., CRP, GDF-15, and PAI-1).93 
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This model was trained to predict lifespan and age-related diseases and has 

been shown to have substantial predictive value for mortality and morbidity 

risks.93 

6. DunedinPACE: Unlike traditional epigenetic clocks, DunedinPACE measures the 
rate of biological aging rather than cumulative age. It estimates the average rate 

of physiological changes across multiple systems, such as cardiovascular, 

metabolic, and immune functions, using 19 biomarkers of aging.94 This pace-of-

aging metric was derived using elastic-net regression models trained on 
longitudinal biomarker data taken from the Dunedin Study at ages 26, 32, and 38

.94 The resulting estimates, expressed as “years per chronological year 

(year/chronological year),” quantify the pace of biological aging relative to the 

actual chronological age, with higher values indicating faster aging.  

Epigenetic Age Acceleration (EAA) was calculated by adjusting each clock’s estimated 

biological age for chronological age (except for DunedinPACE, which measures the 

pace of aging). This adjustment was done by regressing chronological age from each 
clock's estimate, with the resulting residuals representing how much an individual's 

biological age deviates from their chronological age. In the case of GrimAge, sex was 

also included in the regression model due to its role in the clock's construction.135 A 

positive EAA indicates accelerated aging, where biological age exceeds chronological 
age, while a negative EAA suggests decelerated aging. The resulting EAA measures were 

labeled HorvathAgeAcc-I, HorvathAgeAcc-II, HannumAgeAcc, PhenoAgeAcc, and 

GrimAgeAcc. 

3.3.4 Survival Outcomes 

All-cause mortality, a clear and definitive endpoint, was used to capture overall 
mortality risk and assess population health in Study I and Study III. For the STR cohorts, 

survival data such as vital status and dates of death (when available) were obtained 

through linkages with the Swedish Tax Agency, using the unique personal identification 

numbers assigned to Swedish residents. 

In the HRS, respondents' vital status was monitored through interviews with the 

respondents, their spouses or partners, or other knowledgeable individuals. When a 
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respondent passed away, these contacts typically reported the date of death. If this 

information was not directly available, the date of death was imputed based on the last 

known date the respondent was confirmed alive and the subsequent confirmation of 

their death. 

3.3.5 Other Variables 

Demographic variables, such as chronological age and sex (biological sex at birth), along 
with lifestyle factors like educational attainment and smoking status, were included in 

all studies within this thesis. Sex was dichotomized into male and female across all 

studies.  

In the STR, education was categorized into seven years or less of education and more 

than seven years, which correspond to basic and more than basic education in Sweden. 

In the HRS, education was divided into two categories: those with a college or university 
education and above, versus those with less than a college or university education.  

Smoking status was also categorized into two groups in STR: ever smokers and never 

smokers, and three groups in HRS: ever smokers, never smokers, and current smokers. 
A variable on the data source, categorized based on the sub-studies included in the 

research, was included in Study I, II, and IV to adjust for between-study heterogeneity. 

This variable had three categories: Gender, OCTO-Twin, and SATSA (coded numerically 

in Study IV for DCSM). In Study III, using data from HRS, models were adjusted for 
ethnicity and race based on self-reports and grouped into three categories: 

White/Caucasian, Black/African American, and other. 

History of CVD was included as a variable in the models for Study I. It was defined based 
on self-reported conditions such as angina pectoris, myocardial infarction, 

hypertension, angina, thrombosis in the legs, ischemic stroke, or hemorrhagic stroke. 

Additionally, the year of exposure measurement in 10-year intervals (1985 to before 

1995, 1995 to before 2005, 2005 to before 2015) was included in sensitivity analysis in 
Study II to assess the period effects of changing trends in prevalence and incidence of 

obesity and metabolic unhealthy status over time. 
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3.4 General Overview of Statistical Approaches 

This thesis employs different regression-based models to investigate the relationships 
between BMI, metabolic health, biological aging, and all-cause mortality. Regression 

models are a cornerstone of statistical analysis in epidemiological research, allowing us 

to quantify the association between an exposure (e.g., BMI) and an outcome (e.g., 
survival time) while controlling for potential confounding factors.136 These models are 

flexible and can accommodate different types of outcome variables (e.g., continuous, 

binary, time-to-event) and predictor variables.136  

In this thesis, linear and nonlinear regression techniques are employed to capture the 

often complex and sometimes nonlinear associations between exposures and 

outcomes. Other regression methods, including mixed-effects linear models, Cox 

proportional hazards models, parametric survival models, and mediation analysis, are 
applied to address specific research questions. Additionally, the thesis utilizes the dual 

change score model (DCSM), a form of structural equation modeling, to investigate 

bidirectional relationships over time, offering deeper insights into the dynamic 

interactions between BMI and biological aging. All parameter estimates from these 
analyses were reported with 95% confidence intervals (CI). 

3.4.1 Linear Regression 

Linear regression is a statistical method used to examine the association between a 

continuous dependent variable and one or more independent variables. The goal is to 

model how the mean of a dependent variable (𝑌) depends linearly on the values of 
independent variables (𝑋1, … . . , 𝑋𝑝). This relationship is expressed as: 

𝐸(𝑌|𝑋) =  𝛽0 + 𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝 +  𝜖 

where 𝐸(𝑌|𝑋) denotes the conditional mean of Y given the independent variables X1,…,Xp, 

𝛽0 the intercept, and 𝛽1, … 𝛽𝑝 denote the regression coefficients represent the expected 

change in Y for a unit change in the corresponding independent variable. 𝜖 is the error 

term accounting for the deviation of the observed values from the predicted values. 
Key assumptions must be met to yield reliable results from linear regression: linearity 

between dependent and independent variables, independence between error terms 
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for separate observations, homoscedasticity (equal variance in residuals across values 

of X), normal distribution of the error terms, and no multicollinearity between 

independent variables.  

3.4.2 Mixed-effects Models 

Mixed-effects models are a class of regression models useful when data have a 

longitudinal or clustered structure, specifically when observations are grouped into 
units, such as twins within a twin pair, individuals within healthcare facilities, or repeated 

observations within individuals.137 In cases where data are structured longitudinally, in 

clusters or in a nested fashion, the assumption of independent observations in linear 

regression may be violated. Mixed-effects models can then be applied in such data 
structures to recognize this dependency by incorporating both fixed and random 

effects.137 Fixed effects are the overall linear effects of an independent variable on an 

outcome, which are constant across all individuals or groups. 

On the other hand, random effects capture variation that occurs due to the grouping 

or clustering of the data. Random effects can be included to let the intercepts and/or 

slope parameters vary randomly across groups or individuals, capturing variability that 
cannot be explained only by fixed effects alone and accounting for correlations 

between observations. The equation for a linear mixed-effects model with random 

intercepts and random slopes can be expressed as: 

𝑌𝑖𝑗 =  𝛽0 + 𝛽1𝑋𝑖𝑗 +  𝜇0𝑗 +  𝜇1𝑗𝑋𝑖𝑗 +  𝜖𝑖𝑗 

where 𝑌𝑖𝑗 denotes the observed dependent variable for individual 𝑖 in group 𝑗,  𝛽0 the 

fixed intercept (mean intercept across all groups), 𝛽1𝑋𝑖𝑗  the fixed effects of observed 

independent variable 𝑋𝑖𝑗 on the observed dependent variable 𝑌𝑖𝑗 that is consistent 

across all groups,  𝜇0𝑗 the random intercept for group 𝑗, indicating how much the 

intercept for group 𝑗 deviates from the fixed intercept 𝛽0,  𝜇1𝑗𝑋𝑖𝑗 denote the random 

slope for group 𝑗, representing the deviation of group 𝑗’s slope from the fixed slope 𝛽1, 

and 𝜖𝑖𝑗 represents the measurement error for individual 𝑖 in group 𝑗.138 
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The assumptions in linear models apply to mixed-effects models, except that in mixed-

effects models, there can be non-independence in observations. Additional 

assumptions include the normality of random effects and independence between 

random effects and error terms. 

3.4.3 Cox Proportional Hazards Models 

The Cox proportional hazards regression model is a statistical method used to describe 
the relationship between the time to an event (such as death or disease onset) and one 

or more predictor variables in the presence of censoring.139 It is one of the most 

common models used in time-event-analysis in medical research.139 The model builds 

on the hazard (or risk) of the event occurring at any given time, conditional on the 
covariates (predictors). An essential feature of the Cox model is its semi-parametric 

nature — it does not require specification of the baseline hazard function (which 

describes the hazard when all predictors are zero), providing flexibility to accommodate 

different hazard shapes. Only the effects of the covariates on the baseline hazard, the 
hazard ratios, are directly estimated. The model is written as: 

ℎ(𝑡|𝑋) =  ℎ0(𝑡)exp (𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝) 

where ℎ(𝑡|𝑋) denotes the hazard at time 𝑡 given predictors X1,…,.Xp , ℎ0(𝑡) the baseline 

hazard function, and 𝛽1,…,𝛽𝑝 represent the coefficients of the independent variables on 

a log hazard ratio scale.139 A central assumption of the Cox model is that the ratio of 

hazards between the groups is constant over time.139 The proportional hazards 
assumption can be tested using the scaled Schoenfeld residuals test, which assesses 

whether there is a time-dependent relationship between the Schoenfeld residuals and 

time. A random scatter of residuals over time indicates that the hazard ratios are 

constant, thus supporting the proportional hazards assumption. 

3.4.4 Parametric Proportional Hazards Models 

Parametric proportional hazards (PPH) models are a type of time-to-event analysis 
where the time-to-event (or survival time) follows a specific continuous parametric 

distribution, such as Exponential, Weibull, or Gompertz.139 Like Cox models, PPH models 

assume the proportionality of hazards. However, unlike Cox models, the baseline hazard 
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function in PPH is fully specified and changes based on the selected parametric 

distribution. This explicit specification allows the model to fit the data more precisely. 

Still, it requires selecting a distribution that represents the underlying hazard function 

to avoid bias in the estimates.139 The key difference between PPH and Cox models lies 
in the specification of the baseline hazard function. While Cox models leave the baseline 

hazard unspecified, PPH models define it explicitly according to the selected 

distribution (e.g., Exponential, Weibull, or Gompertz). The PPH model is expressed 

similarly to Cox models but with a specific form for ℎ0(𝑡), the baseline hazard. In the 
Gompertz PPH model, for example, the baseline hazard is replaced with  𝜆𝑒𝑥𝑝(𝛾𝑡), where 

is the 𝜆 baseline hazard rate and 𝛾 is the shape parameter that controls the increase in 

hazard over time. The Gompertz PPH model is written as: 

ℎ(𝑡|𝑋) =  𝜆𝑒𝑥𝑝(𝛾𝑡)exp (𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝) 

where ℎ(𝑡|𝑋) denotes the hazard at time 𝑡 given predictors X1,…,.Xp , and 𝛽1,…,𝛽𝑝 represent 

the coefficients of the predictors on a log hazard ratio scale.140, 141 In this 
equation 𝜆𝑒𝑥𝑝(𝛾𝑡) replaces ℎ0(𝑡) as the baseline hazard function, while 𝑡 is still the time 

variable.  

One of the advantages of PPH models is that, in addition to estimating hazard ratios, 
they allow for straightforward calculation of survival probabilities, hazard rates, and 

survival times based on the assumed distribution.139 The survival function for the 

Gompertz PPH model is derived from the cumulative hazard and is expressed as:  

𝑆(𝑡|𝑋) = exp (−
𝜆

𝛾
(𝑒𝑥𝑝(𝛾𝑡) − 1) 𝑒𝑥𝑝(𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝)) 

Where 𝑆(𝑡|𝑋) represents the survival probability at time 𝑡, given the covariates X1,…,.Xp.140, 

141 

3.4.5 Mediation Analysis  

Mediation analyses aim to disentangle pathways, mechanisms, and mediators through 
which a cause influences an outcome.142 There are different approaches to mediation 

analysis. Traditional techniques, such as the difference method and the product-of-
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coefficients method142 will not be discussed here; I will focus on mediation analysis 

within the counterfactual, or potential outcomes framework, as described by Imai et 

al.143  This is the approach adopted in Study III. This framework allows us to estimate 

mediation effects by comparing potential outcomes under different conditions of the 
exposure variable and the mediator.  

Mediation analysis using the counterfactual framework follows the general structure of 

traditional mediation models, in which two models are specified: one for the mediator 
as a function of the exposure (mediator model) and another for the outcome as a 

function of both the exposure and the mediator (outcomes model). However, instead 

of expressing direct and indirect (mediated) effects through regression coefficients, 

the counterfactual approach estimates these effects as differences in outcomes 
between hypothetical scenarios — comparing an exposed group to an unexposed 

group.143  

In line with the terminology used by Imai et al.,143 the exposed group is referred to as the 
treatment group (treated), and the unexposed group is the control group (not treated). 

To estimate mediated or indirect effects, the treatment status is held constant while 

adjusting the mediator to its value under either the treated or untreated condition, with 

all covariates left at their observed values. Let 𝑀𝑖(𝑇𝑖) represent the potential value of 
mediator for individual 𝑖 under treatment 𝑇𝑖 , and 𝑌𝑖(𝑇𝑖, 𝑀𝑖(𝑇𝑖)) denote the potential 

outcome for the individual  𝑖, where the outcome is a function of both the treatment 

and the mediator. The indirect effect can then be defined as the difference in potential 

outcomes when the mediator changes between the treatment (being treated, 𝑇 = 1) 
and control (not treated, 𝑇 = 0) conditions while holding the treatment status 

constant:143 

𝛿𝑖(𝑇) =  𝑌𝑖(𝑇, 𝑀𝑖(1)) −  𝑌𝑖(𝑇, 𝑀𝑖(0))  

where 𝛿𝑖(𝑇) represents the mediated or indirect effect for individual 𝑖. The direct effect 

is defined as the change in the potential outcomes caused by the treatment, with the 
mediator held constant at a fixed level: 

𝜁𝑖(𝑇) =  𝑌𝑖(1, 𝑀𝑖(𝑇)) −  𝑌𝑖(0, 𝑀𝑖(𝑇)) 
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where 𝜁𝑖(𝑇) represents the direct effects for individual  𝑖. 

The average causal mediation effect (ACME) is the average causal mediation effects of 

a population, denoted as 𝛿(𝑇) and written as: 

𝛿(𝑇) =  𝐸[𝑌𝑖(𝑇, 𝑀𝑖(1)) −  𝑌𝑖(𝑇, 𝑀𝑖(0))]  

The average direct effect (ADE) is the average direct effects of a population denoted 

as  𝜁(𝑇) and written as: 

𝜁(𝑇) =  𝐸[𝑌𝑖(1, 𝑀𝑖(𝑇)) − 𝑌𝑖(0, 𝑀𝑖(𝑇))] 

A crucial aspect of mediation analysis is ensuring that indirect and direct effects can 

be interpreted causally, which requires meeting four key assumptions.142 One is that 

there is no unmeasured confounding between treatment(exposure) and outcome.142 
Two, that there is no unmeasured confounding between mediator and outcome. Three, 

there is no unmeasured confounding between treatment and mediator.142 Four, there is 

no confounder of the mediator outcome that is affected by the treatment (exposure).142 

3.4.6 Restricted Cubic Splines 

Regression models typically assume a linear relationship between the dependent 
(outcome) variable and independent variables. However, not all associations follow a 

linear pattern. One can use transformations such as the polynomial functions, 

logarithms, or splines to capture the true shape of non-linear relationships.144 This 

section focuses on the use of splines, specifically restricted cubic splines (RCS), as 
applied in Studies II and III. 

Restricted cubic splines, also known as natural splines, are piecewise cubic polynomials 

used to model the relationship between dependent and independent variables.144  They 
offer flexibility to fit complex, non-linear patterns while ensuring smooth transitions 

between polynomial segments.144 The "restricted" aspect refers to the constraint RCS 

imposes at the tails, where the spline is forced to become linear, ensuring stable and 

interpretable fits.144  In contrast, unrestricted cubic splines do not have this constraint, 
which can lead to unstable behavior at the extremes. 
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When specifying RCS, the number and location of knots must be chosen.145 Knots are 

points where the cubic polynomials meet, and a separate cubic function is fitted 

between each pair of knots. For example, when using three knots, they are typically 

placed at the 25th, 50th, and 75th percentiles of the independent variable. This results in 
one cubic polynomial fitted between the 25th and 50th percentiles and another between 

the 50th and 75th percentiles. Linear functions are applied to the data below the 25th 

percentile and above the 75th percentile.  

3.4.7 Dual Change Score Models 

DCSMs are a specialized form of structural equation modeling used to explore how 
changes in one variable may influence changes in another while accounting for linear 

and nonlinear trajectories over time.146 These models are valuable for investigating 
bidirectional relationships, where both variables can potentially impact each other’s 

rate of change. DCSMs decompose change into two key components: constant 

change and proportional change.146 The constant change reflects the expected steady 

trajectory over time. In contrast, proportional change accounts for any nonlinear shifts 
by linking the rate of change at a given point to the variable's value at the previous 

time point. 

3.4.7.1 Univariate DCSM 

Before examining bidirectional association, univariate DCSMs are applied to model 

each variable's baseline level (intercept) and trajectory separately. The proportional 

change parameter (𝛽) captures whether the rate of change is influenced by the 
variable’s previous level.147 Taking BMI as an example, the change in BMI from one time 

to the next (Δ𝐵𝑀𝐼𝑡) can be expressed as: 

Δ𝐵𝑀𝐼𝑡 =  𝛼 (𝐵𝑀𝐼𝑠𝑙𝑜𝑝𝑒) +  𝛽 (𝐵𝑀𝐼𝑡−1) 

Here, 𝐵𝑀𝐼𝑠𝑙𝑜𝑝𝑒  represents the constant linear rate of change in BMI, while 𝛽 reflects 

any additional non-linear change that depends on the value of the BMI at the previous 

time point (𝐵𝑀𝐼𝑡−1). The trajectories produced from univariate models with a single 𝛽 

and 𝛼 set to one are typically exponential in shape, showing increasing and decreasing 

trends.147 
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3.4.7.2 Bivariate DCSM 

Once the univariate trajectories are modeled, a bivariate DCSM is employed to assess 

how changes in the two variables — such as BMI and a biological age measure (BA) — 
are interrelated over time. Bivariate DCSMs estimate coupling parameters (γ), which 

quantify how changes in one variable (e.g., Δ𝐵𝑀𝐼) are associated with changes in the 

other (e.g., Δ𝐵𝐴).147 Accounting for such coupling effects from BMI, change in BMI from 

one-time point to the next can be expressed as:  

Δ𝐵𝑀𝐼𝑡 =  𝛼 (𝐵𝑀𝐼𝑠𝑙𝑜𝑝𝑒) +  𝛽 (𝐵𝑀𝐼𝑡−1) + 𝛾𝐵𝐴→Δ𝐵𝑀𝐼 (𝐵𝐴𝑡−1) 

This equation includes the same parameters as the univariate model above and, in 

addition, a coupling parameter, 𝛾𝐵𝐴→Δ𝐵𝑀𝐼 which captures the effect of BA from the 

previous level on the rate of change of BMI.147 Similarly, changes in BA (Δ𝐵𝐴𝑡) can be 

modeled as: 

Δ𝐵𝐴𝑡 =  𝛼 (𝐵𝐴𝑠𝑙𝑜𝑝𝑒) +  𝛽 (𝐵𝐴𝑡−1) +  𝛾𝐵𝑀𝐼→Δ𝐵𝐴 (𝐵𝐴𝑡−1) 

Here, the same logic applies: Δ𝐵𝐴𝑡 denotes the change in BA at time 𝑡 and 𝛾𝐵𝑀𝐼→Δ𝐵𝐴 
reflects the influence of prior BMI levels on the change in BA. 

Coupling between two variables, such as BMI and BA, can manifest in four distinct ways: 

1. Bi-directional coupling: Changes in BMI influence changes in BA, and at the same 

time, changes in BA also influence changes in BMI (𝛾𝐵𝑀𝐼→Δ𝐵𝐴 ≠ 0; 𝛾𝐵𝐴→Δ𝐵𝑀𝐼  ≠ 0)  
2. Unidirectional coupling (BMI→BA): Changes in BMI affect the rate of change in 

BA, but BA does not affect changes in BMI (𝛾𝐵𝑀𝐼→Δ𝐵𝐴 ≠ 0; 𝛾𝐵𝐴→Δ𝐵𝑀𝐼  =  0) 

3. Unidirectional coupling (BA→BMI): Changes in BA affect the rate of change in BMI, 

but BMI does not affect changes in BA (𝛾𝐵𝑀𝐼→Δ𝐵𝐴 = 0; 𝛾𝐵𝐴→Δ𝐵𝑀𝐼  ≠ 0) 
4. No coupling: Changes in BMI and BA are independent of each other, implying no 

predictive relationship between the two variables over time (𝛾𝐵𝑀𝐼→Δ𝐵𝐴 =

0; 𝛾𝐵𝐴→Δ𝐵𝑀𝐼 = 0) 

To identify the best-fitting model, we may compare different coupling scenarios using 

likelihood ratio tests for nested models (LRTs), log-likelihood ratio (-2LL), and Akaike 
Information Criterion (AIC). The model that provides the most accurate 
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representation of the data while balancing complexity is selected, and this best-

fitting model indicates the direction of the coupling between the variables. 

3.4.7.3 Flexibility with Breakpoints 

Breakpoints can be introduced into the model to accommodate changes in the 

strength or direction of associations at different life stages. These breakpoints allow 

the proportional change parameter (𝛽) and coupling parameter (𝛾) to vary at specific 
ages, providing flexibility in modeling how the relationships evolve over time. Models 

with different numbers of breakpoints were compared using criteria such as AIC and 

LRT to determine the best-fitting model. 

3.4.7.4 Adjusting for Covariates 

DCSMs also allow for the inclusion of covariates to adjust for potential confounding 
factors, such as sex or smoking status. Additionally, the variance and covariance of 

the intercepts and slopes are estimated to capture individual differences in baseline 

levels and rates of change for both variables. Figure 4 illustrates an example of how 

dual change score models can represent the dynamic relationship between BMI and 
biological age over time, with adjustments for individual-level characteristics like sex 

and smoking, as a path diagram.  
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Figure 4: Sample path diagram of a bivariate dual change score model of BMI and BA 

This sample diagram illustrates the relationship between BMI and BA across several time points, specifically from 
ages 60 to 68. In practice, the full model may extend to account for changes over a broader age   

• Time Points: BMI 60–68 and BA 60–BA 68 represent BMI and BA levels at ages 60-68, with each age bin 
covering approximately two years (e.g., 60-61.9, 62-63.9, etc.) 

• Intercepts and Slopes: BMI₀ and BA₀ denote the baseline levels at age 60. BMIslope, BAslope denote the constant 
linear change for BMI and BA over time   

• Mean Levels, variances, and covariances: μBMI₀, μBMIslope, μBA₀, and μBAslope represent the mean levels for 
intercepts and linear slopes of BMI and BA, (σ²BMI₀, σ²BMIslope, σ²BA₀, σ²BAslope) corresponding variances. Covariance 

is denoted by σ, so σBMI₀BMIslope, σBMI0BAslope, σBMI0BA0,σBMI0BAslope, etc. represent the covariance between BMI 
and BA intercepts and slopes. 

• Changes in BMI and BA Over Time: ∆BMI 62 to ∆BMI 68 and ∆BA 62 to ∆BA 68 represent changes between time 
points. These are linked by slopes(BMIslope, BAslope)representing linear effects, and proportional parameters(βBMI, 
βBA) capturing non-linear effects 

• Coupling Parameters: γBMI→∆BA links BMI at one time point to BA change, and γBA→∆BMI links BA to BMI change. 
• Covariate Adjustments: The model accounts for sex and smoking through parameters like βsexBMI₀, βsmokeBMIslope, 

βsexBA₀, and βsmokeBAslope 
• Breakpoints in proportional change and coupling: The diagram illustrates, for example, a breakpoint at age 66. 

Separate proportional change parameters are estimated for BMI before (βBMI<66) and after age 66 (βBMI>66). 
Likewise, coupling parameters for BMI’s effect on BA are split: γBMI→∆BA<66 (before age 66) and γBMI→∆BA>66 (after age 
66). 
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3.5 Ethical Considerations 

This thesis draws on data from sub-studies within the STR and the HRS. As the analyses 

are conducted in Sweden, they are governed by Swedish ethical regulations, 
specifically Law 2003:460,148 which ensures the protection of human rights and dignity 

in research. Ethical permits for the studies in this thesis were obtained from the 

Swedish Ethical Authority. Table 5 shows the ethical approvals for each study included 

in this thesis. 

Table 5: Ethical approvals for each study  

Study Ethical approval numbers 

Study I 2015/1729 – 35/5  

Study II 2015/1729 – 35/5, 2022-06634-0  

Study III 2015/1729 – 35/5, 2019-02588, 2022-06634-01, 2024-03706-0  

Study IV 2015/1729 – 35/5, 2022-06634-01, 2024-03706-0  

 

This thesis relies on previously collected data, which reduces ethical risks since there 

was no direct contact with participants and no new data collection. Informed consent 

was obtained from all participants in the original studies, both STR and HRS.120, 149  

Despite the lack of new participant involvement, using sensitive personal and health 
data from these studies still presents potential risks, mainly related to confidentiality 

and re-identification. The data include sociodemographic information, medical 

histories, physical and cognitive assessments, and biological samples. STR and HRS 

have established rigorous protocols for de-identification and data security to protect 
participants' privacy, ensuring access is limited to approved researchers through 

secure, controlled systems.120, 149 

In the HRS, data are de-identified, and personal identifiers such as names and 
addresses are stored separately on secure servers, accessible only to authorized 

personnel at the Survey Research Center.149 The HRS data undergo a three-stage 

iterative process to ensure confidentiality before being made available to 

researchers.149 Public data are distributed through a secure, password-protected 
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website, while more sensitive data are released after additional application 

processes.149 HRS holds a Federal Certificate of Confidentiality, which protects 

participants from being identified in legal proceedings.149 

STR data are pseudonymized.120 The keycodes linking data to personal identifiers are 

securely stored by principal investigators according to Swedish regulations, and the 

datasets provided to researchers contain no direct personal identifiers.120, 150  

All datasets used in this thesis are securely stored on servers at Karolinska Institutet, 

with access restricted to authorized researchers only. Remote access to the data is 

enabled through a secure virtual desktop infrastructure that is password-protected 

and requires multi-stage authentication within the network at Karolinska Institutet. The 
data has not been and will not be stored on personal devices or third-party cloud 

services, and data sharing through insecure methods like email or messaging platforms 

is strictly prohibited. 

While randomized controlled trials (RCTs) are the gold standard for establishing 

causality in medical research, conducting RCTs to study disease risk factors would 

often be unethical. Leveraging epidemiological data, such as that from STR and HRS, 
allows for the exploration of long-term trends and associations across large 

populations without exposing participants to new risks. This thesis benefits from the 

extensive longitudinal data on aging, metabolic health, and BMI trajectories provided by 

these data sources. The research reduces ethical risks by using pre-existing data while 
yielding valuable insights into public health. 

This thesis's use of inclusive and respectful language is a key ethical consideration. 

While terms like "obesity" are scientific, the focus is to avoid stigmatizing language, such 
as referring to "obese individuals" or "obese people."151 Instead, neutral and person-first 

terminology like "individuals with high BMI" or "people with high BMI" were used as much 

as possible to emphasize the person rather than defining them by their condition. 

Similarly, terms like "elderly" have been avoided in favor of more neutral phrases like 
"older adults" or "older people," aligning with the guidelines provided by the American 

Medical Association to reduce ageism in research language.152 These efforts ensure that 
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the language used throughout the thesis is respectful and avoids perpetuating 

stereotypes or stigmatization. 

Like many others, this thesis has only been made possible by the voluntary 
participation of individuals in both the STR and HRS. While the anonymous participants 

may not directly benefit from their involvement, their contributions are essential in 

improving our understanding of aging, disease prevention, and public health, benefitting 

current and future generations. 
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3.6 Study I to IV — The Big Picture 

In this section, I will delve into each study's specific methods, results, and 
methodological challenges. Figure 5 provides an overview of all four studies, offering a 

visual snapshot of their key themes and contributions.  

 

Figure 5: Overview of all four studies                                                                                            

*indicates role as a mediator              

Abbreviations: BMI – body mass index, CA – chronological age, EAA – epigenetic age acceleration, FAI – functional 
aging index, FI – frailty index, MH – metabolic health status
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4 Results 

4.1 Study I — Mortality Risk Linked to Metabolic Health, Regardless of 

BMI 

This study had two main objectives. First, we aimed to understand how BMI and 

metabolic health independently and jointly associate with the risk of all-cause 
mortality. Second, we explored whether these associations differed depending on 

whether BMI and metabolic health were assessed in midlife or late life.  

4.1.1 How We Got Here: Methods Overview 

This study pooled data from GENDER, OCTO-Twin, SATSA, and TwinGene from 
1958 to 2008, with mortality data linked through December 31st, 2020.  This study 

used BMI as a categorical variable (normal weight, overweight, and obesity). 

Underweight was excluded due to the low sample size. We examined the mortality 
risk associated with an interaction between BMI categories and metabolic health, 

resulting in metabolic-BMI phenotypes (see Figure 2): MHN — reference group, 

MUN, MHOw, MUOw, MHO, and MUO.  

Cox proportional hazard regression models were applied, with attained age as an 

underlying timescale to assess the associations of BMI, metabolic health, and 

metabolic-BMI phenotypes with all-cause mortality, adjusted for sex, education, 
smoking, and CVD history. The analyses were stratified into midlife (measures 

taken aged ≤ 65) and late life (measures taken aged > 65) to examine age-specific 

effects.  

The proportional hazards assumption was tested with Schoenfeld residuals for 

each independent variable. CVD in midlife and smoking in late life, which did not 
meet proportionality requirements, were incorporated in the models as time-

varying covariates. 

4.1.1.1 Sensitivity analyses 

Extensive sensitivity analyses were conducted with metabolic-BMI phenotypes 

as the primary exposure. Firstly, since this was the first study where we used 
metabolic health as a variable within this dataset, and there is no agreement on 

the definition of metabolic health, we tested different ways of operationalizing it, 

including:  

• adding CVD history as a component in the metabolic health definition; 
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• excluding self-reported data, such as use of diabetes medications, lipid-

lowering drugs, and diagnoses of diabetes; 

• defining metabolic health as the absence of any metabolic abnormalities; 

• adding WC as an additional criterion for determining metabolic health, with 

cut-off points set at 80 cm for females and 94 cm for males to indicate 
metabolic abnormalities 

 

Secondly, we further adjusted the models with BMI history as a categorical 

variable to assess bias and reverse causality. BMI history was the highest BMI 
recorded in ages 45 to 65, at least five years before baseline. Thirdly, the entire 

sample was stratified by sex to examine sex differences. Lastly, we examined all 

the individual metabolic components within a single model.  

4.1.2 What We Found 

We analyzed 12,467 individuals, with a mean follow-up period of 13 years. A total 

of 6,252 individuals, with a mean age of 60 years, were followed up from midlife 

for an average of 14 years, while 6,215 individuals, with a mean age of 73 years, were 
followed up from late life for an average of 12 years.  

Independently, obesity in both midlife and late life was associated with a 42% and 

22% higher risk of mortality, respectively, compared to normal weight (see Table 

6). Overweight in both midlife and late life, however, was not significantly 

associated with increased mortality risk. Being metabolically unhealthy in midlife 

and late life was associated with a 43% and 25% higher risk of mortality, 
respectively, compared to being metabolically healthy.  

Jointly, the hazard ratios (HRs) for midlife and late-life obesity weakened to 15% 

and 25% higher mortality risk, respectively. The HRs for being metabolically 
unhealthy remained consistent. The HRs for midlife and late-life obesity and 

metabolic health were attenuated in independent and joint models when adjusted 

for CVD. 
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In the interaction models (see Figure 6), MUOw and MUO in midlife were 

associated with a 31% and 73% higher risk of mortality, respectively, compared to 

MHN. In contrast, neither MHOw nor MHO in midlife was associated with a higher 

mortality risk. In late life, being metabolically unhealthy was associated with higher 

mortality risk regardless of BMI: MUN, MUOw, and MUO were associated with 21%, 
20%, and 43% higher mortality risk compared to MHN, respectively. However, MHO 

in late life was not significantly associated with mortality risk. Interestingly, late-

life MHOw was associated with lower mortality risk in models adjusted for CVD. 

4.1.2.1 What we found in sensitivity analyses 

Firstly, we found that different ways of defining metabolic health changed the 
magnitude but not the direction of the associations. 

When BMI history was added to the model, the mortality risks associated with the 

metabolic health-BMI phenotypes were attenuated and generally no longer 

statistically significant (see Figure 6).  The BMI history in the midlife stratum was 

not significantly associated with an increased mortality risk. However, in the late-
life sample, BMI history had little impact on the increased mortality risk in MUN. 

Additionally, reduced risk of mortality in late-life MHOw reached statistical 

significance. A history of overweight and obesity in late-life stratum, on the other 

hand, was associated with an 11% and 32% increased risk of mortality compared to 
a history of normal weight, respectively.  

No notable sex differences were observed in the findings, although hazard ratios 

were generally higher in males than females, especially during midlife (see Figure 
7). In addition, we found that applying different definitions of MHS influenced the 

magnitude of the effects but did not alter the overall pattern or conclusions. 

When we included all the metabolic health components separately in a single 
model, the BMI category in midlife and late life was not associated with mortality 

risk (see Table 7). Among the metabolic parameters defining metabolic health, 

hyperglycemia had the strongest association with all-cause mortality, increasing 

risk by 78% in midlife and 52% in late life compared to normoglycemia. In late life, 
hypertriglyceridemia raised mortality risk by 9%, though it was not statistically 

significant in midlife. Hypertension, BMI, and low HDL-C were not associated with 

mortality at any age. CVD in midlife was associated with an almost ninefold 

increase in mortality risk, but with a time-varying effect, reducing HRs by 3% per 
year of survival. In late life, CVD was associated with a 33% higher mortality risk.  
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Figure 6: Hazard ratios and 95% confidence intervals of all-cause mortality   

Main analysis refers to models adjusted for sex, education, and smoking, +CVD models are further adjusted further 
for history of CVD, + CVD, BMI History models were further adjusted for BMI history. The reference category for 
metabolic health-BMI phenotypes was metabolically healthy normal weight, for BMI history normal weight. Figure 
reproduced from Ler et al., BMC Public Health 2022.153 

Abbreviations: CVD - history of cardiovascular disease, MUN – metabolically unhealthy normal weight, MHOw – 
metabolically healthy overweight, MUOw – metabolically unhealthy overweight, MHO – metabolically healthy obesity, 
MUO – metabolically unhealthy obesity, HR – hazard ratios, CI – confidence intervals      
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Figure 7: Hazard ratios and 95% confidence intervals of all-cause mortality by sex 

Models adjusted for education and smoking. CVD adjusted models were further adjusted for history of CVD.  

Abbreviations: MUN – metabolically unhealthy normal weight, MHOw – metabolically healthy overweight, MUOw – 
metabolically unhealthy overweight, MHO – metabolically healthy obesity, MUO – metabolically unhealthy obesity, 
HR – hazard ratios, CI – confidence intervals      
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Table 7: Association of individual metabolic components with all-cause mortality  

Metabolic Components 

Age Strata 

≤65 years >65 years 

HR (95% CI) HR (95% CI) 

Overweight 
 (Reference = Normal weight) 0.95 (0.80 – 1.13) 0.93 (0.87 – 1.00) 

Obesity 
 (Reference = Normal weight) 1.13 (0.90 – 1.42) 1.10 (0.99 – 1.21) 

Hypertension  
(Reference = Normatension) 1.00 (0.85 – 1.19) 0.93 (0.85 – 1.04) 

Hyperglycemia  
(Reference = Normaglycemia) 1.78 (1.43 – 2.20) 1.52 (1.38 – 1.67) 

Hypertriglyceridemia  
(Reference = Normaglyceridemia) 1.13 (0.92 – 1.36) 1.09 (1.01 – 1.18) 

Low HDL-C  
(Reference = Normal HDL-C) 

1.01 (0.83 – 1.22) 1.02 (0.94 – 1.11) 

CVD History  
(Reference = No CVD History) 8.94 (2.06 – 38.81) 1.33 (1.25 – 1.43) 

CVD History*Time 
(Reference = No CVD History) 0.97 (0.95 – 0.99)  

 
 

Hazard ratios with 95% confidence intervals of all-cause mortality in relation to BMI category and individual 
metabolic components, adjusted for sex, education, and smoking. 

Abbreviations: CVD – cardiovascular disease, HR – hazard ratios, CI – confidence intervals 

 

4.1.3 How We Tackled Challenges 

As section 1.2.1.2 in Chapter 1 outlines, one of the major issues in this study is the 

potential for reverse causation. In the late-life group, the observed associations 

between MUN and MHOw with mortality risk could have been influenced by illness-

induced weight loss, potentially exaggerating the risks for MUN and downplaying them 
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for MHOw. To mitigate this issue, we incorporated BMI history into our models, to 

account for BMI fluctuations that may be attributable to chronic illnesses. The 

attenuation but consistency of HRs after adjusting for BMI history suggests that the 

effects of reverse causation may have been minimized. 

The classification of MHS presented another challenge. Using non-fasting glucose and 

lipid levels to classify hyperglycemia and hypertriglyceridemia may have introduced 

some misclassification. In the OCTO-Twin cohort, the lack of triglyceride data required 
reliance on self-reported use of lipid-lowering medications only, which may have 

overestimated hypertriglyceridemia. To account for concerns in the ascertainment of 

MHS, we performed comprehensive sensitivity analyses using alternative MHS 

definitions. Changes in MHS definitions yielded results with stable trends reinforcing 
the robustness of our findings. 

In the midlife group, the 13.9-year mean follow-up increased the likelihood of capturing 

early deaths, particularly from CVD. The ninefold rise in CVD mortality risk in those with 
a history of CVD, which decreased over time as reflected by CVD history as a time-

varying covariate, likely reflects survivor bias, where premature deaths 

disproportionately influence the observed associations (see Table 7). 

Relying solely on baseline assessments for BMI and MHS limited our ability to capture 

changes over time, which can offer valuable insights into longitudinal effects, temporal 

dynamics, and disease progression or reversal. BMI is not the only variable subject to 
fluctuation; previous studies have demonstrated the transient nature of BMI-metabolic 

health phenotypes, showing how MUO can transition to MHO, or vice versa, over time.81, 

154, 155  Ongoing research within our group continues to explore the trajectories of these 

phenotypes to deepen our understanding of their dynamic changes. 

Finally, BMI was categorized, and metabolic health was dichotomized as healthy or 

unhealthy based on specific thresholds. BMI-metabolic health categories were then 

created through the cross-categorization of these variables. While using categorical 
variables simplifies interpretation, facilitates comparisons across studies, and mirrors 

real-world clinical and policy contexts (especially for BMI), it may result in the loss of 

valuable information. Broad BMI categories can mask subtle, non-linear associations, 
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particularly within specific BMI ranges, and fail to capture individual variability. Similarly, 

simplifying metabolic health into binary categories may overlook intermediate 

metabolic profiles that could have important implications for health outcomes. These 

limitations highlight the need for more refined approaches, such as the continuous 
treatment of BMI, addressed in the following section of Study II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

4.2 Study II — Higher Biological Aging in Low BMI, High BMI, and Metabolically 

Unhealthy Status  

Building on the findings from Study I, which highlighted the joint associations of midlife 
and late-life BMI and metabolic health with all-cause mortality, Study II shifts the focus 

to exploring how BMI and metabolic health from mid to late life influence functional and 

physiological aspects of biological aging. In this study, BMI was treated as a continuous 

variable while considering non-linearity, addressing the limitations of categorical BMI 
that can lead to a loss of critical information. This approach allows for a more nuanced 

analysis of the relationship between BMI, metabolic health, and aging, capturing non-

linear effects and providing a comprehensive understanding of how BMI and metabolic 

health contribute to functional and physiological aging.  

4.2.1 How We Got Here: Methods Overview 

Study II utilized longitudinal data from the GENDER, OCTO-Twin, and SATSA cohorts, 
which included three, five, and ten waves of IPT. Linear mixed-effects models were 

employed to account for repeated measures within individuals over time and 

correlations within twin pairs. This approach allowed us to model the cross-sectional 

associations of BMI and metabolic health with FAI (FAI model) and FI (FI model) as 
separate outcomes while controlling for chronological age, sex, and education. 

RCS were applied to account for potential non-linear associations between BMI, 
chronological age, and outcomes. We also tested three-way interactions between BMI, 

metabolic health, and chronological age to determine whether the joint association of 

BMI and metabolic health with FAI or FI was influenced by age. 

Significant three-way interactions were found for FI but not for FAI. Visual inspection of 

predicted FI over chronological age showed that FI exhibited a mostly linear relationship 

within three age groups: under 65, 65 to under 85, and 85 and above. Based on this, we 

proceeded with age-stratified linear mixed-effects models for these intervals and 
reassessed the linearity and three-way interactions within each age group. 

Sensitivity analyses were conducted in the full sample for FAI and each stratum for FI. 

We adjusted the models for the data source and the period during which the exposures 
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were collected, as well as included measure of central obesity (WHR) in the definition 

of metabolic health to assess their influence on the findings. Additionally, we 

investigated how individual metabolic components and BMI jointly associate with FAI 

and FI. 

4.2.2 What We Found 

The models included data from 1,691 individuals with 5,257 FAI measurements and 1,825 

individuals with 6,051 FI measurements. The mean age for the FAI sample was 73.0 years 
(SD = 9.87), and for the FI sample, it was 73.6 years (SD = 9.93). The average BMI was 

25.5 (SD = 4.01) for the FAI group and 25.6 (SD = 3.96) for the FI group. Approximately 

23% of participants in both samples were classified as MU. 

4.2.2.1 FAI Models 

The results from the FAI models showed no significant three-way interactions between 

BMI, metabolic health, and chronological age, indicating that the association between 
BMI, metabolic health, and functional aging did not vary significantly across age groups 

[all p-value of interactions (p-interaction > 0.11), see Figure 8]. BMI was associated with 

FAI (Wald test p-value = 3.1E-7) in a nonlinear manner (Wald test p-value = 1.4E-4), 

where individuals with a BMI around 28.4 kg/m² had the lowest FAI. Lower and higher 
values of BMI were associated with higher FAI. Being metabolically unhealthy was 

associated with higher FAI across all ages [Beta-coefficient (β) = 1·46, 95% CI = 0·94—

1·97, p-value = 2·9E-9]. 
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Figure 8. Association between BMI and FAI stratified by MHS across age groups. 

Predicted FAI values were derived from mixed-effects model with random intercepts at the twin-pair and individual 
levels, for females, never smokers with more than basic education. Age and BMI were modeled as restricted cubic 
splines with three knots. Red dashed lines represent the metabolically unhealthy group, while blue solid lines 
represent the metabolically healthy group. Shaded areas around each line represent the 95% confidence intervals. 
Each curve shows the BMI-FAI association at four representative ages, from 60 to 90 years, in 10-year intervals. 
Figure reproduced from Ler et al., Geroscience 2024.156  

Abbreviations: MU – metabolically unhealthy, MH – metabolically healthy 

 

4.2.2.2 FI models 

In contrast, the FI models revealed significant three-way interactions between BMI, 

metabolic health, and chronological age, highlighting FI’s dependency on all three 
factors: BMI, metabolic health, and chronological age (p-interaction = 0.006). 

In the ages under 65, there was no statistically significant interaction between BMI and 

MHS (all p-interactions > 0.33). BMI was significantly (Wald test p-value = 2.5E-3) and 
non-linearly (Wald test p-value = 1.3E-3) associated with FI, with the lowest estimated 

FI (nadir) at BMI 26.3 kg/m², and FI higher at both lower and higher BMI values (see Figure 

9A). The difference in the estimated FI between individuals who were metabolically 

healthy and unhealthy was slight and not statistically significant (β = -0.24, 95% CI = -
1.12 to 0.64, p = 0.59).  



 

    67 

In the 65 to 85 age group, a statistically significant interaction existed between BMI and 

MHS (p-interaction = 0.02). Like the <65 age group, the association between BMI and 

FI remained statistically significant (Wald test p = 3.0E-05) and non-linear (Wald test 

p = 2.2E-03), with both low and high BMI associated with higher FI. However, the nadir 
for the metabolically unhealthy group was higher (28.1 kg/m²) than the metabolically 

healthy group (26.0 kg/m²). Up to a BMI of 28 kg/m², the expected FI was similar in both 

groups. Beyond this point, the FI increased more steeply in individuals who were 

metabolically unhealthy (see Figure 9B). 

In the group aged 85 and above, a significant interaction between age (as a linear term) 

and MHS was found (p-interaction = 0.01). In this group, the expected FI increased by 

an extra 0.52% (95% CI = 0.11 to 0.93) with each year of age for individuals who were 
metabolically unhealthy compared to those who were metabolically healthy. A non-

significant inverse linear association between BMI and FI was observed (β = -0.15, 95% 

CI = -0.33 to 0.03, p = 0.09; see Figure 9C). Compared to younger age groups, FI 

changes in this stratum were modest for the metabolically healthy group but 
substantial for the metabolically unhealthy especially at higher ages due to the 

interaction effect (see Figure 9C). 

4.2.2.3 Sensitivity Analysis 

Sensitivity analyses confirmed the robustness of the findings. Adjustments for 

differences in the data source (GENDER, OCTO-Twin, and GENDER), the measurement 
period, and including WHR in the metabolic health definition did not alter the main 

conclusions.  
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Figure 9. Association between BMI and biological age, measured by FI, stratified by 

MHS in each age stratum 

Predicted FI derived from mixed-effects model with random intercepts at the twin-pair and individual levels for 
females, never smokers with more than basic education. Age was a linear term except at ages 65 – 85 and modelled 
as a restricted cubic spline (RCS) with 3 knots. BMI was modeled as RCS with 3 knots, except in ages 85 and above, 
where it was modelled as a linear term. Red dashed lines represent the metabolically unhealthy group, while blue solid 
lines represent the metabolically healthy group. Shaded areas around each line represent the 95% confidence 
intervals. Figure reproduced from Ler et al., Geroscience 2024.156 

Abbreviations: MU – metabolically unhealthy, MH – metabolically healthy 
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Findings from Sensitivity Analysis of Individual Metabolic Components Jointly with BMI 

Figure 10 presents the models analyzing individual metabolic health components. The 

nonlinear relationship between BMI and FAI was consistent across all age groups. For FI, 

this association persisted only in those under 85. For participants 85 and older, the 

BMI-FI associations were not statistically significant. 

With FAI as the outcome, hyperglycemia (β = 3.27, 95% CI = 2.09 to 4.45, p = 7.1E-7), 

hypertriglyceridemia (β = 1.21, 95% CI = 0.63 to 1.79, p = 4.3E-5), and low HDL-C (β = 1.17, 
95% CI = 0.56 to 1.78, p = 2.0E-4) were significantly associated with higher FAI. 

Hypertension was associated with lower FAI (β = -1.03, 95% CI = -1.71 to -0.34, p = 

0.003). Figure 10A — D illustrates the FAI-BMI relationships stratified by each metabolic  

component. 

In the FI models for individuals under 65, hypertension was associated with lower FI (β 

= -0.89, 95% CI = -1.77 to -0.02, p = 0.05). Other metabolic components showed no 

significant association in this age group (see Figure 10E — H). 

In the 65 — 85 age group, hyperglycemia showed the strongest association with FI, with 

significant interaction with BMI (p-interaction = 0.003). Individuals with hyperglycemia 

had a more pronounced increase in FI at low and high BMI than those with 
normoglycemia (Figure 10J). Hypertriglyceridemia was associated with higher FI (β = 

1.09, 95% CI = 0.24 to 1.94, p = 0.01), while hypertension and low HDL were not 

significantly associated with FI. Interactions between BMI and other metabolic 

components were not statistically significant (Figures 10I, K, and L).  

For participants aged 85 and older, significant interactions were found between 

chronological age and hyperglycemia (p = 0.001), hypertriglyceridemia (p = 0.01), and 
low HDL-C (p = 0.003), but not hypertension. In the presence of hyperglycemia, 

hypertriglyceridemia, and low HDL-C, FI increased by an extra 0.83% (95% CI = 0.32 to 

1.34), 0.87% (95% CI = 0.20 to 1.53), and 0.73% (95% CI = 0.25 to 1.21) per year of age 

increment, respectively (see Figure 10M — P). 
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Figure 10. Association between BMI and biological age, measured by FI, stratified by 
status of individual metabolic component 

Predicted FI derived from mixed-effects model with random intercepts at the twin-pair and individual levels and 
fixed effects for sex, education, and smoking history. Age was a linear term except at ages 65 – 85 and modelled as 
a restricted cubic spline (RCS) with 3 knots. BMI was modeled as RCS with 3 knots, except for ages 85 and above, 
where it was modeled as a linear term. Red dashed lines represent the presence of individual metabolic components, 
while blue solid lines represent the absence of individual metabolic components. Shaded areas around each line 
represent the 95% confidence intervals. Figure reproduced from Ler et al., Geroscience 2024.156 



 

    71 

4.2.3 How We Tackled Challenges 

Given the significant three-way interaction observed in the FI model, we stratified the 

analysis to explore further how BMI and MHS jointly influence FI. This stratification 
resulted in three groups based on changes in predicted FI with age. However, it also 

reduced the number of observations within each stratum, a common challenge in 

stratified analyses. Sparse data in specific subgroups, particularly at lower and higher 

ages, can limit statistical power and increase estimate variability. Although not 
stratifying by age could have avoided the smaller sample sizes in the youngest and 

oldest groups, retaining the three-way interaction would have compromised the 

interpretability of the results. Since the number of observations within each stratum 

was not too small, we proceeded with stratified analyses.    

The data was combined from multiple studies, which enhanced statistical power and 

allowed us to stratify. However, this approach introduced challenges related to 

differences in baseline characteristics and data collection periods across the studies. 
To account for variations across the studies pooled together, we adjusted for study 

differences by including them as a categorical covariate in sensitivity analyses. 

Additionally, we included the year of data collection in 10-year intervals in the model as 

a sensitivity analysis — to account for temporal trends in the prevalence of overweight, 
obesity, and metabolically unhealthy states.  

It is essential to acknowledge the cross-sectional nature of the analyses. Cross-
sectional studies provide a snapshot of how these factors interact at a given time, 

offering a clear overview of their associations across different ages. Given that BMI, 

metabolic health, and aging are closely intertwined, this cross-sectional perspective is 

beneficial for identifying patterns and immediate relationships within the population. It 
can serve as a starting point to generate hypotheses.  

However, the cross-sectional design also has limitations. It cannot establish causal links 

or temporal relations or determine how these relationships evolve, leaving the 
possibility of reverse causality — whereby aging or deteriorating health may influence 

BMI and metabolic health rather than vice versa. This limitation indicates the need for 

further studies examining the underlying mechanisms through longitudinal studies. 
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4.3 Study III — The Mediating Role of Epigenetic Aging in the Nonlinear Association 

Between BMI and Mortality 

While Study I revealed the joint associations of BMI and metabolic health with mortality 

risk, Study II provided a broad snapshot of how low BMI, high BMI, and metabolic health 

were linked to higher functional and physiological aging and highlighted the complex 
interaction between BMI, metabolic health, and chronological age. In Study III, we 

shifted the focus from functional and physiological aging to the cellular level, exploring 

epigenetic aging as a potential mediator in the relationship between BMI and mortality.  

4.3.1 How We Got Here: Methods Overview 

For this study, we used data from the Health and Retirement Study (HRS), which 
provided 2016 data on self-reported BMI and EAA measurements from blood samples 

and mortality follow-up data through December 2020. Figure 11 presents a direct 

acyclic graph that guided our statistical approach. 

 

Figure 11: Direct acyclic graph guiding the statistical approach 
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We performed mediation analysis using the potential outcomes framework (see 

Chapter 3, section 3.4.5 for details). This allowed us to estimate for the ADE and ACME.  

Separate analyses were performed for each EAA measure — HannumAgeAcc, 
PhenoAgeAcc, GrimAgeAcc, and DunedinPACE — which served as mediators in the 

relationship between BMI (low and high) and all-cause mortality. 

To recap: 

• ADE reflects the average difference in outcomes when BMI changes between 

control (reference) and treated (exposed) levels while EAA is kept constant. 
• ACME represents the average difference in mortality outcomes when the 

mediator (EAA) varies between treatment or exposed (BMI) conditions while 

keeping the exposure level constant. 

The mediation analysis involved specifying two models: 

1. Mediator model: Linear regression to assess the cross-sectional relationship 

between BMI and each EAA measure  
2. Outcomes model: Gompertz proportional hazards model with chronological age 

as the underlying timescale to evaluate the associations between BMI, EAA, and 

mortality. The Gompertz distribution was chosen based on the lowest AIC value 

compared to other parametric survival models. 

The estimates from the mediation analysis — ACME and ADE — represent the 

difference in survival time (ΔST) between the treated (exposed) and control 
(reference) BMI levels, expressed in years of life gained or lost. In this study, we set 

the control (reference) level at BMI 27 kg/m², associated with the longest life 

expectancy. The treatment levels for BMI were 19 kg/m² for low BMI and 35 kg/m² for 

high BMI. 

We adjusted both models for chronological age, sex, race/ethnicity, education 

attainment, smoking status, and metabolic health. Where appropriate, RCS was applied 

to continuous variables to account for nonlinear relationships, selected based on AIC 
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and LRT. We performed 3,000 bootstrap resamples to estimate the 95% confidence 

intervals for the estimands in mediation analyses. 

Study III defined metabolically healthy status as the absence of metabolic 
abnormalities. As part of the sensitivity analysis, we used a more lenient definition of 

metabolic health in sensitivity analyses, categorizing participants as metabolically 

healthy if they had no more than one metabolic abnormality. We also repeated the 

mediation analysis after excluding follow-ups that were 12 months or less.  

4.3.2 What We Found 

The study sample consisted of 3,840 individuals aged 51 to 100 years in 2016, with a 
mean age of 70 (SD = 9.7). Of the participants, 58% were female, 75% identified as 

White/Caucasian, 17% as Black/African American, and 8% as other ethnicities/races. By 

the end of 2020, 423 participants (11.0%) were deceased. 

4.3.2.1 Mediator models 

Our analysis showed linear relationships (see Figure 12A), between BMI and 
HorvathAgeAcc-I (β = 0.03, 95% CI = -0.003 – 0.07), although this was not statistically 

significant; and between BMI and HorvathAgeAcc-II (β = 0.04, 95% CI = 0.01 – 0.06). 

In contrast, nonlinear relationships were found between BMI and the other EAA 

measures. Both low and high BMI levels were associated with increased biological aging 

(see Figure 12C–F). The BMI levels corresponding to the lowest EAA (nadir) were 25.4 

kg/m² for HannumAgeAcc, 23.5 kg/m² for PhenoAgeAcc, 25.8 kg/m² for GrimAgeAcc, 
and 24.7 kg/m² for DunedinPACE. 
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Figure 12. Association Between BMI and Epigenetic Age Acceleration                     

Predicted estimates were computed from linear models and represent white males aged 70 years who were never 
smokers, from the metabolically unhealthy group, and had a high school education or lower.  

 

4.3.2.2 Outcome models 

BMI displayed a nonlinear relationship with predicted life expectancy, with the shortest 
life expectancies observed at both extremes of BMI. The BMI associated with the 

longest life expectancy was approximately 27 kg/m² (see Figure 13A). 

Figures 13B–G depict predicted mean life expectancy as a function of EAA, adjusted for 

white males aged 70, who were metabolically unhealthy, never smoked, had a high 

school education or lower, and had a 25 kg/m² BMI. Contrary to expectations, 

HorvathAgeAcc-I and HorvathAgeAcc-II showed concave associations with survival, 
where lower EAA was linked to reduced life expectancy (Figures 13B & C). 
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HannumAgeAcc followed a similar pattern, though lower EAA values were generally 

associated with higher life expectancy (Figure 13D). 

In contrast, PhenoAgeAcc, GrimAgeAcc, and DunedinPACE demonstrated a consistent 
decline in predicted life expectancy as EAA increased (Figures 13E–G). - A one standard 

deviation increase in PhenoAgeAcc, GrimAgeAcc, and DunedinPACE was associated 

with a 32% (HR = 1.32, 95% CI = 1.23 – 1.51), 72% (HR = 1.72, 95% CI = 1.50 – 1.88), and 40% 

(HR = 1.40, 95% CI = 1.25 – 1.56) higher risk of mortality, respectively. 

 

Figure 13: Association Between Body Mass Index and Epigenetic Age Acceleration 
Measures with Mean Life Expectancy                                                                                         

Mean life expectancies were predicted from the Gompertz proportional hazards model, using chronological age as 
the underlying timescale, and represent white males aged 70, with average levels of either BMI (panel A) or EAA 
(panel B – G), who were never smokers, had a high school education or less, and in the metabolically unhealthy 
group. 
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4.3.2.3 Epigenetic Age Acceleration as a Mediator 

The mediation analysis revealed that EAA partially mediated the relationship between 

BMI and mortality (see Figure 14). For individuals with higher BMI, EAA accounted for a 
significant portion of the association with reduced survival time. In this group, the ADE 

on survival, independent of EAA, showed that BMI at 35 kg/m2 was associated with 

1.22–1.58 years shorter survival than BMI at 27 kg/m2. Notably, ADEs of high BMI were 

not statistically significant. The ACME, representing the indirect or mediating effect 
through EAA, was smaller but statistically significant, contributing to approximately 

0.28 – 0.72 year reduction in survival time. This indicates that EAA mediates 15 – 37% 

of the total association between high BMI and survival. 

Conversely, the direct effects on mortality were more pronounced and statistically 

significant for lower BMI. A BMI of 19 kg/m2 was associated with a 5.60 – 6.38 years 

shorter survival time than a BMI of 27 kg/m2. The mediated effect through EAA was 

relatively modest in comparison, accounting for only 7 – 11% of the total association 
between lower BMI and survival time, with the ACME statistically significant when the 

EAA was either HannumAgeAcc [predicted difference in survival time (∆ST) = 0.44, 

95% CI=-0.87 – -0.10] or GrimAgeAcc (∆ST = 0.74, 95% CI=-1.44 – -0.16). 

Sensitivity analyses adjusting the models using a less strict definition of metabolic 

health and limiting the analytical sample to those who survived more than 12 months 

had little impact on the results (see Figure 15). 

A note on Metabolic Health 

Although metabolic health was not a main exposure of interest specifically in this 
study, the presence of any metabolic abnormality was associated with higher EAA 

measured as HorvathAgeAcc-II (β=0.46, CI=0.08 - 0.85), HannumAgeAcc (β= 0.68, 

CI=0.22 – 1.13), PhenoAgeAcc (β=1.30, CI=0.70 – 1.90), GrimAgeAcc (β=1.29, CI=0.96 –

1.62), and DunedinPACE (β=0.02, CI=0.01 – 0.02). Metabolic health was not 
significantly associated with survival outcomes.  
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Figure 14: Estimated ADE and ACME by Epigenetic Age Acceleration in the BMI-
Mortality Association                                                                                                               

This figure shows the mediation analyses estimating the average direct effects (ADE) and average causal mediation 
effects (ACME) for the association between BMI and survival, with epigenetic age acceleration as the mediator. Linear 
models assessed the BMI-mediator relationship, and Gompertz proportional hazards models were used for survival 
outcomes. Adjustments were made for sex, race/ethnicity, smoking, education, and metabolic health. The x-axis 
shows the mean difference in survival time. 

• Panel A: The left panel shows ADE (dotted lines) and ACME (solid lines) for low BMI (19 kg/m² vs. 27 kg/m²), 
and the right panel for high BMI (35 kg/m² vs. 27 kg/m²). 

• Panel B: Shows ACME for high BMI (blue) and low BMI (red). 
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Figure 15: Estimated ADE and ACME by Epigenetic Age Acceleration in the BMI-
Mortality Association from Sensitivity Analysis 

This figure shows ADE and ACME estimates from mediation analyses of BMI and survival, with epigenetic age 
acceleration as the mediator adjusted for metabolic health defined with a strict criteria (no hypertension, 
hyperglycemia, hypertriglyceridemia, or low HDL) used in the main analysis, a less strict criteria (no more than one 
condition), and mediation analysis on a sample including only those who survived at least 12 months. The x-axis 
represents the mean difference in survival time. 

• The left panel shows ADE (circles) and ACME (cross) for low BMI (19 kg/m² vs. 27 kg/m², in blue), using the 
strict criteria (solid lines),  less strict criteria (dotted lines) and sample excluding deaths in the first 12 months 
(dashed lines) 

• The right panel shows ADE (circles) and ACME (cross) for high BMI (35 kg/m² vs. 27 kg/m², in red),  using the 
strict criteria (solid lines), less strict criteria (dotted lines) and sample excluding deaths in the first 12 months 
(dashed lines) 
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4.3.3 How We Tackled Challenges  

By treating BMI as a continuous variable, we reduced the loss of information from 

categorization or stratification, allowing for evaluating both low and high BMI as 
contributors to mortality. Additionally, we accounted for nonlinearity in the 

associations by applying restricted cubic splines, enabling us to explore more 

complex relationships. 

Despite these strengths, there were limitations. BMI was calculated using self-

reported height and weight, which may introduce measurement errors. While self-

reported BMI has been shown to closely approximate measured BMI,157, 158 we should 

consider potential biases such as under-reporting in individuals with higher BMI and 
over-reporting among those with lower BMI. These discrepancies could have 

influenced the accuracy of our findings.  

The relatively short follow-up period (2016–2020) restricted our capacity to observe 

long-term mortality outcomes, which may limit the robustness of the associations 

observed. Extending the follow-up period would have provided a more accurate 

assessment of the long-term effects of BMI and EAA on survival.  

The study employed a prospective design by considering 4-year mortality as the 

outcome, but BMI and EAA were measured cross-sectionally in 2016. This limited our 

ability to draw causal inferences between BMI, biological aging, and survival outcomes. 
Notably, the possibility of reverse causality — where accelerated biological aging 

could affect BMI, especially in older individuals — cannot be ruled out. Data on BMI 

and EAA at multiple time points could help clarify the temporal relationships between 

these factors. 
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4.4 Study IV — ∆BMI and ∆Biological Age: Which came first? 

Study IV aimed to disentangle the temporal dynamics of how BMI and biological aging 
influence each other. The goal was to assess whether a change in BMI over time predicts 

changes in biological aging, as measured by functional and physiological aging markers, 

and conversely, whether changes in biological aging predict a change in BMI. 

4.4.1 How We Got Here: Methods Overview 

We used longitudinal data on BMI and biological aging measures (FAI and FI) from 
GENDER, OCTO-Twin, and SATSA. DCSM (see Chapter 3, section 3.4.7 for details) was 

applied following the workflow illustrated in Figure 16. We began by dividing the data 

into two-year age bins using chronological age as the underlying timescale. Age bins 
consisting of less than 100 assessments of BMI and biological aging measures were 

excluded from the analysis, resulting in age bins covering ages 60.0 to 91.9 years. Then, 

the BMI, FAI, and FI age trajectories were estimated through univariate DCSM. 

Subsequently, bivariate DCSM models were applied to examine the longitudinal 
association between BMI and BA (FAI and FI), allowing us to estimate if the association 

between change in BMI and biological aging is bidirectional or unidirectional. 

We adjusted all models for sex, smoking status, study, and twin-relatedness. 

4.4.2 What We Found  

In the FAI and FI analyses, 1,902 participants had at least one BMI or FAI measurement, 

and 1,976 participants had at least one BMI or FI measurement. Of these, 1,207 had at 

least three BMI or FAI measurements, and 1,291 for BMI or FI measurements.  

The mean age for both the FAI and FI analytical samples was similar, approximately 74 

(SD= 8), and the mean BMI was 25.6 kg/m2 (SD=4.0). The mean FAI was 48.0 (SD=11.7), 

and the mean FI was 15.7% (SD = 10.3).  In both samples, about 59% were females, and 
52% were never smokers. The proportion of the analytical sample from GENDER, 

OCTO-Twin, and SATSA was slightly different in the FAI (26%, 31%, and 43%, 

respectively) and FI samples (25%, 33%, and 41%, respectively). 
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Figure 16: Statistical analytical workflow for Study IV 

Abbreviations: BA – biological aging measure, BMI – body mass index 



 

    83 

4.4.2.1 BMI, FAI, and FI age trajectories 

In the univariate models of changes in BMI, FAI, and FI, the model with a proportional 

change parameter offered a better fit than one with only the constant change 
parameter. BMI had a negative linear slope offset by a positive proportional effect, 

resulting in a decline from ages 60 to 91.9. For FAI and FI, changes were similarly driven 

by a negative linear slope and a positive proportional change, leading to an exponential 

increase in FI and FAI as the participants aged. 

4.4.2.2 Bivariate DCSM 

For BMI and FAI, the best-fitting model was unidirectional, with FAI changes preceding 
changes in BMI. Including coupling from FAI reduced both the linear slope and 

proportional change in BMI but with a negative coupling parameter, indicating that 

higher FAI was associated with a greater decline in BMI (Table 8). As FAI levels were 
lower in younger ages and increased exponentially with age, the coupling effect led to 

a slight increase in BMI at younger ages, followed by a leveling off and then a steeper 

decline in BMI at older ages (see Figure 17). 

 

Figure 17: BMI and FAI trajectories (A & B) from bivariate dual change score models 
with and without coupling effects                                                                                               

Blue dotted lines represent trajectories without coupling, while red lines show those with coupling effects. 
Trajectories were generated from ages 60 to 91.9 using bivariate dual change score models, adjusted for age, sex, 
smoking, study, and twin-relatedness. The model was unidirectional, with one coupling parameter from FAI to BMI. 

Abbreviations: BMI – body mass index, FAI – functional aging index 
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Table 8: Longitudinal association between BMI and FAI from Dual Change Score 
Models 

 

No coupling FAI to BMI coupling 

Estimate 95% CI  Estimate 95% CI  

Mean intercept BMI (μBMI0) 26.95 26.37,27.52 26.10 25.47,26.74 

Mean slope BMI (μBMIslope) -1.77 -2.67,-0.87 -0.69 -1.57,0.19 

Mean intercept FAI (μFAI0) 35.99 33.85,38.13 36.49 34.54,38.43 

Mean slope FAI (μFAIslope) -2.23 -3.47,-0.99 -2.35 -3.53,-1.17 

Proportional change parameters (β) 

βBMI  0.06 0.03,0.10 0.05 0.02,0.08 

βFAI  0.09 0.07,0.11 0.09 0.07,0.11 

Coupling parameters (γ) 

γFAI -> ∆BMI    -0.02 -0.02,-0.01 

 

Estimates and 95% confidence intervals were derived from dual change score models with and without coupling 
parameters. μBMI0  and μBMIslope denote mean BMI intercept and slope; μFAI0 and μFAIslope denote mean FAI 
intercept and slope; βBMI  and βFAI denote proportional change of BMI and FAI; γFAI→∆BMI denotes coupling parameters 
from FAI to BMI change.  

Abbreviations: BMI – body mass index, FAI – functional aging index 

 

For BMI and FI, the best-fitting model revealed a bidirectional association. Like FAI, when 

coupling from FI was added, both the linear slope and proportional change in BMI 

decreased compared to the no-coupling model (see Figure 18). A negative coupling 
parameter indicated that higher FI was associated with a greater decline in BMI (see 

Table 9). Since FI levels were lower in younger individuals and rose exponentially with 

age, the coupling effect led to a slight increase in BMI at younger ages, stabilization 

around ages 70 to 75, and a more pronounced decline at older ages.  
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For FI, incorporating coupling from BMI reduced the initial intercept, strengthened the 

negative linear slope, and weakened the proportional change while introducing a 

positive coupling effect from BMI (Table 9). As BMI decreased with age, this contributed 

to a lower initial FI level but led to a sharper rise in FI up until approximately age 75, 
followed by a less steep increase after age 85, compared to the no-coupling model 

(Figure 18B). 

 

 

Figure 18: BMI and FI trajectories (A & B) from bivariate dual change score models 
with and without coupling effects                                                                                                          

Blue dotted lines represent trajectories without coupling, while red lines show those with coupling effects. 
Trajectories were generated from ages 60 to 91.9 using bivariate dual change score models, adjusted for sex, 
smoking, study, and twin-relatedness. Model with coupling was bidirectional, with one coupling parameter from 
FI to BMI, and one from BMI to FI.  

Abbreviations: BMI – body mass index, FI – frailty index 
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Table 9: Longitudinal association between BMI and FI from Dual Change Score 
Models 

 No coupling Bidirectional coupling 

 Estimate 95% CI  Estimate 95% CI  

Mean intercept BMI (μBMI0)      26.97 26.4,27.53 26.32 25.76,26.88 

Mean slope BMI (μBMIslope) -1.75 -2.58,-0.92 -0.36 -1.37,0.65 

Mean FI intercept (μFI0) 8.83 7.37,10.29 7.91 6.41,9.42 

Mean FI slope (μFIslope) -0.97 -1.47,-0.47 -23.44 -28.89,-17.99 

Proportional change parameters (β) 

βBMI  0.06 0.03,0.09 0.03 -0.01,0.07 

βFI  0.15 0.12,0.18 0.14 0.11,0.17 

Coupling parameters (γ) 

γBMI -> ∆FI    0.86 0.65,1.06 

γFI -> ∆BMI    -0.04 -0.05,-0.03 

 

Estimates and 95% confidence intervals were derived from dual change score models with and without coupling 
parameters. μBMI0 and μBMIslope denote mean BMI intercept and slope, μFI0 and μFIslope denote mean FI intercept and 
slope; βBMI and βFAI denote proportional change of BMI and FI; γFI→∆BMI denotes coupling parameters from FI to BMI 
change, γBMI→∆FI  denotes coupling parameter from BMI to FI 

Abbreviations: BMI – body mass index, FI – frailty index 

 

4.4.3 How We Tackled Challenges 

The limitation of pooling data from three distinct longitudinal cohorts, which may 
introduce heterogeneity, is also present in this study, like in Study I and II. Participants 

in the GENDER and OCTO-Twin studies were older at baseline than those in the SATSA 

study. Additionally, each cohort entered the analysis at different starting ages: SATSA 
at 60, GENDER at 70, and OCTO-Twin at 80. This could lead to survival bias, as the twins 

in the GENDER and OCTO-Twin studies were likely healthier to have been included at 
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older ages. Models were adjusted for cohort membership to account for this, though 

survival bias could not be fully eliminated. 

Although DCSMs can be adjusted for confounders such as sex and smoking, the 
trajectories for males and females, smokers and non-smokers, may differ. 

Consequently, these sub-groups could exhibit varying BMI-biological age relationships. 

A limitation of this study is the inability to stratify the DCSMs by these factors, as the 

small sample size made such stratifications infeasible. 

In our study, we assumed no variation in proportional change across different ages. 

Although some models incorporate breakpoints to allow proportional change and 

coupling effects to vary by age, attempts to include breakpoints in this study led to 
model instability. Therefore, we did not include breakpoints, which limited the ability to 

capture turning points in trajectories and age differences in the associations. 

Combining the estimates for a constant linear change component and a proportional 

change component leads to variations in intercepts, slope coefficients, and a 
proportional change parameter, typically resulting in an exponential trajectory with 

either an increasing or decreasing trend.147 

While it is unlikely that trajectories in biological aging measured at three-year intervals 

will have turning points, BMI has been shown to exhibit fluctuations, such as an increase 

in midlife (ages 50 to 65), stabilization, and a decline around age 80.49  It is possible 

that models without breaks in proportional change inadequately capture such 
variations. Extensive testing was performed by including a wider age range and 

breakpoints in the proportional change and coupling effects, but these tests are not 

reported here due to model instability. Despite this, the overall direction of the 

association between BMI and FAI or FI remained consistent. Future research should 
investigate the causes of instability when including breakpoints to proportional change 

within DCSM.
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5 Weighing the Evidence 

5.1 Summary of Results 

In this thesis, I attempted to unravel the complex relationships between BMI, 
metabolic health, biological aging, and all-cause mortality. Through four studies, 

we explored how BMI and metabolic health, independently, jointly, and in 

interaction, associate with biological aging and survival, each offering unique 
insights into the interplay between BMI, metabolic health, aging, with health 

outcomes. Below is a synopsis of the findings: 

Study I: Metabolically unhealthy status in midlife and late life was consistently 
associated with increased mortality risk, even after adjusting for BMI. Metabolically 

unhealthy obesity in midlife, as well as being metabolically unhealthy across all BMI 

categories in late life, were associated with increased mortality risk. In late life, 

metabolically healthy and overweight had a lower risk of mortality, though this 
inverse association was not observed in midlife.  

Study II: Both low and high BMI and metabolically unhealthy status were 

associated with higher functional and physiological aging. The effect modification 
of BMI by metabolic health was significant only when biological aging was 

measured by FI, particularly in individuals aged 65 to 85. In addition, metabolic 

health modified the association between chronological age and FI, with 

the metabolically unhealthy group associated with a greater increase in FI with 
each advancing year in ages 85 and above.   

Study III: Both low and high BMI levels were associated with greater epigenetic age 
acceleration and shorter life expectancy. Our findings suggest that epigenetic 

aging partially mediated the relationship between high BMI and survival, 

contributing to shorter survival times. In contrast, the evidence of epigenetic aging 

as a mediator in the low BMI-survival relationship was weaker, with low BMI 
showing stronger direct effects on shorter survival time. 

Study IV: The relationship between BMI and FAI was unidirectional, with functional 

aging driving changes in BMI. However, the relationship between BMI and FI was 
bidirectional, with BMI influencing physiological aging and vice versa. These results 

highlight the dynamic interactions between BMI and aging, depending on the 
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specific measure of biological aging and how they contribute to health outcomes 

over time. 

These studies offer a more nuanced understanding of how BMI, metabolic health, 
and biological aging potentially contribute to health and longevity. 

5.2 The Weight of the Extremes  

Synthesizing the findings from all Study I to III, a clear nonlinear association 

between BMI and biological aging or mortality risk emerged. Both low and high BMI 
were associated with adverse health outcomes, forming a U-shaped — or 

sometimes as J-shaped — curve. These associations are well documented in 

previous research, which has consistently shown that extremes in BMI increase 

the risk of fraillty96 and mortality in the general population,e.g.8-10, 32, 34, 37, 38, and among 
older adults.159 

While Study I was not explicitly designed to explore the non-linearity of BMI, it 
revealed that individuals with obesity (BMI ≥ 30 kg/m²) in mid and late life had a 

higher risk of mortality compared to those with normal weight, aligning with 

previous findings which showed high BMI was associated with increased all-cause 

mortality.e.g.8-10, 32, 34, 37, 38 Importantly, a history of overweight or obesity in midlife 
increased mortality risk in late life regardless of late-life BMI, reinforcing the 

established risk attributable to high BMI in midlife. Based on a U.S. cohort, Study III 

further confirmed the U-shape association where low and high BMI were 

associated with mortality risk.  

The same nonlinear relationship between BMI and mortality risk was observed in 

the BMI-biological aging relationship. Studies II and III demonstrated that higher 

and lower BMI levels were associated with higher functional, physiological, and 
epigenetic aging, building on a limited body of research where BMI’s nonlinear form 

was not previously explored, except concerning frailty risk.96, 99  

5.2.1 The Middle ‘Weigh’ — An Optimal BMI in Older Adults? 

Interestingly, the nadir for the lowest biological aging or highest life expectancy, 

found in Study II and Study III, ranged between BMI 25 and 28, and thus within the 
overweight range rather than the typical normal weight range recommended for 

the general population (18.5–25.0).61 This aligns with other cohort studies showing 

that the optimal BMI for survival in older adults is between 25 and 30.13, 160 This 
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raises the question: could being overweight be less harmful than it seems for older 

individuals?  

While weight loss through restrictive diets is a common intervention for obesity, 

such diets in older adults, particularly those over age 75, can exacerbate 

malnutrition among older individuals and increase the risk for conditions related 

to malnutrition.160 Therefore, current guidelines urge caution when introducing 
restrictive diets to older adults and recommend prioritizing physical activity over 

weight reduction for those who are overweight or obese.161 In light of Studies I and 

II’s findings, metabolic health status may provide additional insights for tailoring 

interventions in older adults with overweight or obesity. 

Together, these studies reveal that BMI's impact on aging is not straightforward. 
Both ends of the BMI spectrum are associated with poorer health outcomes, 

manifesting as increased and accelerated biological aging or reduced life 

expectancy. This nonlinear association underscores the need to view low and high 

BMI as important risk factors in aging research and health interventions. 

5.3 Fitting the Metabolic Piece in the BMI and Aging Puzzle 

Findings from Study I to Study III highlight metabolic health's pivotal role in 

biological aging and survival outcomes. However, many previous studies may not 

have considered BMI alongside metabolic health in the same model.64-66, 93, 97, 98, 

102, 110, 111, 113  

Metabolic health emerged as potentially having a more substantial influence on 
mortality risk and biological aging than BMI based on Studies I and II. Notably, 

Study I showed that metabolically unhealthy phenotypes across all BMI 

categories in late life were associated with significantly higher mortality risk 

compared to MHN. Furthermore, late-life MUN had a higher mortality risk than 
those with a higher BMI but better metabolic health, a finding consistent with 

other studies.162 In contrast, late-life MHOw, and midlife or late-life MHO may not 

have a higher mortality risk than MHN.  

Study II provided further evidence that a metabolically unhealthy status is linked 

to increased functional and physiological aging, consistent with earlier studies 

showing a positive association between MetS and frailty risk.97, 163, 164 There were 

significant modifying effects of metabolic health on physiological aging, 
demonstrating that metabolically unhealthy status, when combined with higher 
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BMI, was associated with higher physiological aging compared to their 

metabolically healthy counterparts, particularly among individuals aged 65 to 85. 

Metabolic unhealthy status further amplified the increase in physiological aging 

with advancing chronological age, particularly after 85, suggesting that metabolic 

health may have an even more substantial impact on health outcomes, especially 
in late life.  

Although metabolic health was not the main focus and was included in the 
models as a covariate in Study III, being metabolically unhealthy was associated 

with higher epigenetic aging, aligning with previous studies.93, 102, 110-113  

In short, metabolic health may play a critical role in aging and survival outcomes, 
potentially exerting a more substantial influence than BMI alone. Therefore, 

metabolic health and BMI may be crucial targets for intervention in aging 

research and healthcare strategies. 

5.3.1.1 Lack of Standardized Definitions 

However, despite the clear importance of metabolic health, the lack of a 

consistent and universally accepted definition of metabolic health status 

presents significant challenges.15, 72  Different studies use varying criteria to define 
metabolic health, with thresholds for glucose levels, blood pressure, cholesterol, 

and triglycerides often differing. These inconsistencies complicate comparisons 

across studies. Although in Studies I to III, altering the definition of metabolic 

health during sensitivity analyses affected the magnitude of the effects rather 
than the direction, standardized criteria still need to be used to examine how 

metabolic health impacts aging and mortality. 

5.3.2 Not all BMIs are Born Equal? 

Adding to this complexity is the metabolic heterogeneity within BMI phenotypes. 

Study I revealed that different metabolic health factors were associated with 
mortality risk in distinct ways. Specifically, mid and late-life hyperglycemia had 

the strongest association with increased mortality risk, consistent with previous 

literature,80, 165 while hypertension was not significantly associated with risk of 

mortality, highlighting the nuanced roles of various metabolic components.  

Similarly, Study II showed that BMI and metabolic health interact differently 

depending on the specific metabolic factor. For example, metabolically unhealthy 
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status strengthened the positive link between high BMI and frailty index in the 65–

85 age group. However, individual factors like hypertension, hypertriglyceridemia, 

and low HDL did not have similar effects, with hyperglycemia emerging as the main 

driver. Moreover, in individuals aged 85 and above, although metabolically 

unhealthy status and age had a synergistic influence on FI, hypertension did not 
show the same modifying influence when considered individually. These findings 

underscore the importance of viewing metabolic health as a collection of distinct 

factors, each potentially influencing aging and mortality through different 

mechanisms. 

Altogether, these results emphasize that metabolic health is not a uniform 

construct but a complex interplay of factors that may need to be considered 
individually. The individual metabolic factors appear to have distinct influences, 

and their combined effect within the construct of metabolic health could lead to 

a compounded risk that may not be fully explained by simply the sum of its parts. 

These findings underline the importance of metabolic health as a whole and 
through its components to capture its actual impact on health.  

5.3.3 A Word on the Metabolically Healthy Obesity Conundrum  

The hypothesis that MHO may confer health benefits15, 17, 69 was not substantiated 
by findings in Study I — although the risk of mortality in MHO was slightly raised, 

it was not significantly different from the risk for MHN. Nevertheless, the estimated 

mortality risk appeared lower in MHO than in metabolically unhealthy 
counterparts — MUO and MUOw. This contrasts with meta-analyses, which have 

shown significant associations between MHO and increased risk for CVD22 and all-

cause mortality compared to MHN.20  

Although MHO has garnered much attention and debate, the MUN phenotype may 

be even more critical.68, 79 MUN may be a ‘silent’ high-risk phenotype that goes 

unnoticed without metabolic health assessments. This underscores the 
importance of evaluating metabolic health across all BMI categories, particularly 

in older adults. 

However, metabolic health-BMI phenotypes are not static. Individuals can 
transition between different metabolic health-BMI categories over time, and these 

changes influence health risks.15, 29, 47, 69, 71, 81 For example, transitioning from a 

metabolically unhealthy to a healthy state reduces the risk of illnesses.155 If weight 



 

94 

history was significantly associated with all-cause mortality risk in Study I, 

suggesting that long-term obesity may increase the likelihood of metabolic 

dysfunction and poorer health outcomes, then perhaps the history of metabolic 

health-BMI phenotype should also be a key determinant of health risk. A recent 

analysis of SATSA data conducted alongside this thesis highlighted the fluctuation 
of BMI-metabolic health phenotypes over 30 years, further underscoring how 

dynamic these states can be.154 This transience complicates our understanding of 

the interaction between BMI and metabolic health throughout life. Nonetheless, it 

emphasizes the need to account for the trajectories of BMI and metabolic health 
over time, rather than relying on static measurements, to fully grasp their effects 

on aging and mortality. 

Despite the evidence that MHO carries higher risks of CVD and mortality 

compared to MHN,22 and given its transient nature, we are left with the question: 

Does a true MHO phenotype exist? Genome-wide association studies (GWAS) 

have already been conducted to identify genetic variants that define subtypes of 
obesity, including those that increase adiposity with favorable or unfavorable 

cardiometabolic effects.166, 167 These insights help disentangle the mechanisms 

that separate excess adiposity from its usual metabolic complications. A 

Mendelian randomization study found that while favorable adiposity reduces the 
risk of metabolic diseases such as T2DM and CVD, it still increases the risk of non-

metabolic conditions like osteoarthritis and venous thromboembolism due to 

mechanical effects.168 The verdict on MHO, or favorable adiposity, remains 

uncertain. 

5.4 The Obesity Paradox: A Heavier Dilemma? 

The obesity paradox, as highlighted in the introduction, refers to the 

counterintuitive finding that, particularly in older adults, higher BMI levels are 

sometimes associated with lower mortality risk.40 None of the studies included in 
this thesis show results reflecting this paradox. 

In Study I, the obesity paradox was not directly observed. Instead, individuals with 
obesity in both midlife and late life generally had an increased risk of mortality. 

However, the findings raised the question of whether metabolic health might 

contribute to the paradox. For example, metabolically healthy individuals who 

were overweight in late life showed a lower mortality risk, while those with 
metabolically unhealthy normal weight had higher risks. This suggests that the 
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protective effects sometimes attributed to a high BMI may be linked to metabolic 

health rather than BMI itself. A study population with a higher BMI but better 

metabolic health might create the appearance of a paradox, while the opposite 

holds for populations with poor metabolic health. 

Nonetheless, if metabolic health explains the obesity paradox, it would likely 

require a substantial portion of the study population with obesity to be 

metabolically healthy.169 In Study I, about 36% of individuals with obesity were 
metabolically healthy, and just 5% of the total population had MHO. This makes it 

unlikely that metabolic health alone can account for the obesity paradox seen in 

other studies.169  

Among individuals aged 85 and older in Study II, higher BMI was associated with 

lower physiological aging, though not statistically significant, potentially signaling 

an obesity paradox. Nevertheless, since this was only observed in the oldest 

stratum of the analysis, the weak association between BMI and physiological aging 
in late life is likely explained by selective survival.  

The findings in Study IV suggest that much of the obesity paradox can be 

explained by reverse causality. Based on Study IV, the mean BMI declined from 
60 to 91.9, with both functional and physiological aging driving a steeper BMI 

decline at older ages. These findings support the explanation that the link between 

low BMI and poorer health outcomes is due to health deterioration leading to 

unintentional weight loss rather than a protective effect of higher body weight. As 
individuals age, unintentional weight loss — often due to underlying acute and 

chronic health conditions — becomes more common.161, 170 This may produce a 

positive association between high BMI and better health outcomes, fabricating an 

appearance of a protective effect for high BMI simply because lower BMI reflects 
pre-existing health deterioration.40-42  

Taken together, these findings support the notion that the obesity paradox may 
not represent a true protective effect of high BMI but instead reflect the complex 

interactions between aging and unintentional weight loss.40-42 As age advances, it 

becomes increasingly crucial to disentangle the role of BMI from the physiological 

processes that drive health outcomes, particularly unintentional weight loss and 
metabolic dysfunction, which may mask the actual risks associated with higher 

BMI in older adults. Future research should focus on understanding how weight 
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change over time, rather than static BMI measurements, contributes to health and 

mortality risks in older populations. 

5.5 Low BMI: More Than a Lightweight Issue 

While the obesity paradox has sparked considerable debate over the potential 
protective effects of higher BMI in older adults, an equally important, but often 

overlooked, aspect is the role of low BMI. Low BMI, mainly when resulting from 

unintentional weight loss, not only helps explain the obesity paradox but also 

significantly impacts health outcomes, with earlier research linking unintentional 
weight loss with increased mortality risk.170-175  

In Studies II and III, low BMI was associated with higher functional, physiological, 

and epigenetic aging. Specifically, Study III highlighted the dangers of low BMI in 
the context of EAA and mortality. Here, low BMI was associated with higher EAA 

and mortality risk, although the direct effects of low BMI on survival were more 

pronounced than those mediated through EAA. This suggests that while 

accelerated biological aging may contribute to the relationship between low BMI 
and mortality, the more immediate concern with low BMI may be the underlying 

health conditions driving low BMI, such as unintentional weight loss, rather than 

acceleration in biological aging. Therefore, lower BMI may be a marker of 

vulnerability rather than resilience, often signaling declining health rather than 
improved well-being among older people.13 

Study IV further supported the findings with longitudinal data, demonstrating that 
increased functional and physiological aging led to steeper declines in BMI in later 

life. As biological aging advanced, BMI declined more rapidly, reinforcing that low 

BMI as a clear marker of advanced aging and deteriorating health. Therefore, while 

low BMI may initially seem counterintuitive as a risk factor for mortality, it becomes 
clearer when considering the potential drivers of low BMI, such as unintentional 

weight loss as a result of underlying acute and chronic diseases.170, 173 

Given the more substantial direct effects of low BMI on mortality observed in 
Study III and the evidence from Study IV that both functional and physiological 

aging contribute to BMI decline, could unintentional weight loss be a consequence 

of accelerated biological aging? Physiological changes associated with advanced 

aging — such as reduced taste and smell, slower gastric emptying, earlier satiety, 
and metabolic shifts that accelerate lean body mass loss — can lead to 
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unintentional weight loss.161, 170, 173 These changes, especially diminished taste and 

smell, delayed gastric emptying, and earlier satiety, are vital indicators of appetite 

reduction, likely caused by age-related dysregulation of appetite control.176 

Additionally, side effects of medications, including changes in taste or smell, oral 

dryness, and constipation, can further reduce appetite in older adults.176 While 
these physiological changes support the hypothesis that low BMI from 

unintentional weight loss may result from accelerated biological aging, the exact 

mechanisms remain unclear.  

Studies II to IV demonstrate that lower BMI, particularly in older adults, is not 

simply the inverse of high BMI regarding health risk. Instead, it highlights a distinct 

set of risks potentially involving unintentional weight loss. The more pronounced 
direct effects of low BMI on survival in Study III also hint at the possibility of 

different mechanisms linking low BMI to survival compared to high BMI. Taken 

together, these findings remind us that weight loss in older adults often serves as 

a warning sign of underlying health deterioration rather than improved health. 
Future research and clinical interventions should prioritize understanding the 

causes and consequences of unintentional weight loss across the BMI spectrum 

in older individuals, addressing their specific needs to better manage their health 

risks. 

5.6 High BMI: The Weighty Issue 

This thesis is driven by the urgent need to understand the connection between 

obesity and aging, prompted by two significant global trends: the growing 

prevalence of obesity and the aging population. With these trends comes a critical 
question: does obesity accelerate aging, thereby contributing to worse health 

outcomes in older adults? Overlapping biological mechanisms, including chronic 

inflammation, oxidative stress, and cellular senescence, support the hypothesis 

that obesity accelerates aging.117, 118 These mechanisms provide a glimpse into how 
high BMI may hasten the aging process. Throughout this thesis, the relationship 

between high BMI and aging was explored in multiple contexts, from the role of 

biological aging to its direct impact on biological aging markers and life 

expectancy. 

In Study II and Study III, high BMI was associated with higher biological aging at 

the functional, physiological, and cellular levels. This supports the broader 
hypothesis that obesity drives aging,117, 118 consistent with recent findings showing 
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hallmarks in cellular aging — such as mitochondrial dysfunction, epigenetic 

changes, deregulated nutrient sensing, and cellular senescence — in individuals 

with higher BMI contribute to the development of age-related diseases.177 Notably, 

biological aging was a mediator between high BMI and mortality in Study III. This 

finding aligns with the hypothesis that obesity doesn’t just directly influence 
health through metabolic complications but actively accelerates aging processes, 

which in turn contribute to earlier mortality.117, 118  

In Study IV, high BMI drove higher physiological but not functional aging. According 

to the hierarchical model of aging metrics proposed by Ferrucci and colleagues,82 

aging progresses from molecular and cellular levels to phenotypic and functional 

stages. FI encompasses deficits related to functional abilities and age-related 
signs and symptoms, capturing functional and physiological aging aspects. In 

contrast, FAI focuses solely on functional aging. Interestingly, Study II also found 

the modifying effects of metabolic health in relation to physiologic aging, not 

functional aging, suggesting that these aging metrics may be influenced differently 
by various factors. Based on the hierarchical aging model, BMI's impact on 

biological aging might appear earlier in the FI than in the FAI. The functional 

aspects measured by the FAI may manifest later in the aging process. This could 

explain why the associations between BMI and these two indices differ in direction 
within Study IV.  

Moreover, common pathophysiological changes observed in both obesity and 

aging, such as heightened systemic inflammation, mitochondrial dysfunction, and 
increased cellular senescence,117, 118 are more closely associated with molecular and 

cellular aging metrics. Therefore, it's plausible that higher BMI primarily affects the 

earlier stages of aging at the cellular and physiological level, with less direct 

influence on later functional stages. 

In Study IV, the bidirectional relationship between BMI and physiological aging 

highlighted the cycle of obesity and aging: high BMI contributes to accelerated 

biological aging, and as biological aging increases, BMI tends to decline. This 
dynamics underscores the complex relationship between obesity and aging, 

where weight loss in late life, often driven by advanced aging, complicates the 

simple narrative of BMI as a risk factor.  

The findings from Study II, Study III, and Study IV substantiate the hypothesis that 

obesity accelerates biological aging. Whether through epigenetic, physiological, or 
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functional aging markers, high BMI is a significant driver of aging, contributing to 

worse health outcomes over time. These studies highlight the importance of 

addressing obesity as a metabolic issue and a central factor in the aging process. 

As global obesity rates continue to rise alongside an aging population, 

understanding how high BMI accelerates aging will continue to be crucial for 
developing interventions that target these biological pathways, ultimately 

promoting healthier aging trajectories. 

5.7 Strengths and Limitations 

5.7.1 Strengths 

A major strength of this thesis is the use of large, population-based datasets from 

multiple prospective cohorts, which enabled robust and comprehensive analyses. 
Studies I, II, and IV utilized data from various sub-studies within the STR, including 

GENDER, OCTO-Twin, SATSA, and TwinGene, while Study III relied on data from 

the US Health and Retirement Study. These datasets provided a wide range of 

variables such as BMI, metabolic health indicators, biological aging measures, and 
potential confounders, allowing for a thorough exploration of the relationships 

under study.  

Objective measurements of key variables across these studies further bolstered 

internal validity by minimizing biases inherent in self-reported data. For instance, 

height and weight were measured by trained professionals in Studies I, II, and IV, 

ensuring consistency and accuracy in BMI assessment. Metabolic health was 
assessed primarily through venous blood biomarkers, improving the reliability of 

health measurements. Likewise, biological aging measures, including EAA from 

blood samples and the functional FAI from standardized functional assessments, 

were objectively collected, contributing to the robustness of the findings. 
Although the FI relied on self-reported data, it remains a validated measure of 

functional and physiological change in older adults, supporting the reliability of the 

thesis' conclusions. 

An additional strength lies in the use of multiple complementary measures of 

biological aging, including FAI, FI, and EAA markers. This multi-dimensional 

approach provides a more holistic view of aging, allowing for a nuanced 

examination of how BMI and metabolic health interact with different aspects of 
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the aging process and mortality, yielding rich insights into these complex 

relationships. 

Furthermore, this thesis was able to analyze age-specific effects due to the 
inclusion of participants with a wide age range. This broad age spectrum enabled 

us to identify age-related patterns and differences in these relationships, 

providing insights into how the impact of BMI and metabolic health on biological 

aging may vary at different stages of midlife to late life. Lastly, the extended 
follow-up periods further enhanced this strength by allowing the observation of 

long-term trends and changes over time.  This longitudinal perspective is crucial 

for understanding the progression of biological aging and its association with BMI 

and metabolic health, thereby enriching the overall findings of the thesis. 

5.7.2 Limitations 

A common limitation across studies is using BMI as a proxy for adiposity. While 
widely accepted, BMI’s inability to differentiate between fat and lean mass or 

account for fat distribution can introduce measurement error,  potentially leading 

to misclassification and weakening the findings' internal validity.178  As a result, the 

relationships between BMI and aging may be distorted, making it more difficult to 
draw accurate conclusions about how body composition influences aging and 

health outcomes.178 

Another challenge was classifying metabolic health status, compounded by the 

lack of consensus on what constitutes metabolic health. In several sub-studies, 

including those from the STR and HRS, the use of non-fasting glucose and lipid 

levels for defining hyperglycemia and hypertriglyceridemia introduced the 
potential for misclassification. Although only a few samples were non-fasting, and 

adjusted thresholds were applied, this issue remains relevant. In the OCTO-Twin 

cohort, the absence of triglyceride measurements meant hypertriglyceridemia 

was inferred through self-reported use of lipid-lowering medications, likely 
underestimating its prevalence. Similarly, in the HRS, hypertension classification 

was based solely on self-reported diagnoses, as measured blood pressure data 

was unavailable, while in STR, we did not rely on self-reported hypertension nor 

the use of anti-hypertensive, raising concerns about accuracy. Additionally, lipid-
lowering medication was used to define hypertriglyceridemia and low HDL in the 

STR but not in the HRS. Despite these discrepancies, using MHS as a composite 

measure across sub-studies may have provided a more cohesive approach. 
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Sensitivity analyses with alternative MHS definitions were conducted across all 

studies to address these concerns.  

Survival bias is a challenge in studies involving older populations. In particular, 
cohorts such as OCTO-Twin and GENDER had higher baseline ages than SATSA. 

This raises the possibility that healthier individuals were more likely to survive into 

older age and be recruited into the study, potentially skewing the results. While 

adjustments were made to mitigate this bias, it remains a limitation that could 
affect the accuracy of the findings. 

Finally, the generalizability of the results is limited since the data primarily 

represent older adults from higher-income countries, specifically Sweden and the 
US. This limits the applicability of the findings to populations in low- and middle-

income countries, where socioeconomic, environmental, and healthcare factors 

may influence the relationships between BMI, metabolic health, and aging. 

Moreover, the cohorts lack ethnic diversity, further constraining the 
generalizability of the results. Future research should aim to include more diverse 

populations from a broader range of socioeconomic and cultural contexts to 

explore potential variations in these associations. 
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6 Conclusions 

The relationships between BMI, metabolic health, and biological aging are intricate 
and multifaceted. This thesis sought to untangle these connections, providing 

valuable insights into how they may collectively shape survival and late-life health 

outcomes. 

Study I demonstrated that metabolic health status is a critical determinant of the 

BMI-mortality association. While being metabolically unhealthy with obesity in 

midlife, and regardless of BMI category, in late life was strongly associated with 

increased mortality risk, metabolic health appears to modify the impact of BMI. 
Specifically, individuals who were metabolically healthy overweight or 

metabolically healthy obesity in mid and late life were not associated with an 

increased mortality risk, suggesting that assessing BMI alone is insufficient. 

Instead, a nuanced evaluation considering both BMI and metabolic health status 
offers a more accurate assessment of an individual's mortality risk. 

Study II reinforced the hypothesis that obesity and metabolically unhealthy 
status accelerate functional and physiological aging. Interestingly, both low and 

high BMI were associated with advanced functional and physiological aging, 

highlighting the importance of considering low and high BMI as potential indicators 

of ill health. This study suggested that integrating metabolic health and BMI 
provides a more comprehensive picture of overall health status, particularly in 

older individuals, since both high and low BMI are indicators of increased 

functional and physiological aging. 

Study III reinforced the nonlinear association between BMI and biological aging, as 

seen in Study II, this time highlighting the nonlinear relationship between BMI, 

epigenetic aging, and risk of all-cause mortality. While both low and high BMI levels 

were associated with increased epigenetic aging and decreased survival time, the 
mediating effects of epigenetic aging were stronger in those with high BMI. In line 

with Study II, these findings support the hypothesis that obesity accelerates 

aging, thereby increasing mortality risk. In contrast, low BMI was associated with 

stronger direct effects on survival, potentially due to factors such as unintentional 
weight loss linked to pre-existing health conditions rather than through aging 

mechanisms. 
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Study IV highlighted the bidirectional relationship between BMI and biological 

aging, with higher BMI accelerating physiological aging, while higher physiological 

aging, in turn, contributed to steeper BMI decline. A unidirectional relationship was 

observed between functional aging and BMI, where higher functional aging 

accelerated BMI decline but not vice versa. The consistent role of biological aging 
as a driver of steeper BMI decline complements Study III’s findings of weaker 

mediation through epigenetic aging and stronger direct effects in the low BMI and 

survival relationship. These findings underscore the complexity of the BMI-aging 

relationship, indicating that while obesity accelerates aging at the physiological 
level, unintentional weight loss may signal advanced functional aging. Managing 

obesity and unintentional weight loss, alongside preserving physical and 

functional capacity, emerges as a critical strategy for promoting healthy aging 

from midlife to late life. 

This thesis provides insights into the complex entanglement between BMI, 

metabolic health,  chronological age, and biological aging, demonstrating their joint 
influence on all-cause mortality. By emphasizing the intricacies of these 

relationships, the findings underscore the need for a more personalized approach 

to managing body weight and metabolic health across the aging process. 

Ultimately, maintaining metabolic health may be as crucial as managing body 
weight in promoting healthy aging and extending longevity, paving the way for 

more targeted interventions and future research to improve late-life health 

outcomes. 
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7 Epilogue 

7.1 So What? 

By now, if you’ve made it through my thesis, you might be asking yourself, "So what’s 
the big takeaway here?" And that’s a fair question. The studies all point to one 

overarching message: whether it’s high BMI, low BMI, or metabolic health issues, they all 

affect your health in late life. No shocker, right? There’s already plenty of evidence out 

there showing that high BMI from a young age is tied to chronic diseases and higher 
mortality rates.  

But here’s when things get interesting. If we are convinced that high BMI is already an 

issue in childhood and early adulthood and should be tackled earlier in life, then trying 

to fix it in older adults may be like trying to turn a ship that has already set sail. It’s 

probably too late? Well, I don’t have the exact findings to back this up, but we do have 
some hints. In Study I, we found that in midlife, only MUO was a significant mortality risk; 

neither MHO, MHOw, nor MUN did. Then, in Study II, we saw that high BMI was linked to 

higher physiological aging before age 65, but this relationship weakened after age 80.  

What’s clear in my studies, however, is that low BMI in older adults is linked to faster 
biological aging and higher mortality risk. And guess what? A late-life drop in BMI is a 

major clinical red flag - and as Study IV suggests, it may be driven by advanced 

physiological and functional aging. 

Perhaps it’s time to rethink how we assess BMI in older adults. It’s not just about 

checking their weight — it’s about asking the right questions. What was the weight last 
year, two years ago, five years ago? Has there been unintentional weight loss? Could 

this be pointing to something more serious? The connection between low BMI and 

worse outcomes in this thesis should raise some eyebrows.  

And let’s not forget metabolic health.  This isn’t just a problem for those with high BMI. 

The data suggests that metabolic health influences aging and mortality across the 

board, regardless of BMI. So, perhaps having metabolic health check-ups is a good 
idea? And if so, that should be for everyone, not just those who appear to have 

overweight. For those older adults with obesity, it’s even more critical to look beyond 

the surface. We need to assess their metabolic health, maybe factor in physical activity 
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and functional levels, and watch out for sarcopenic obesity — a combo of low muscle 

mass and excess body fat that spells trouble and a research gap.  

To sum it up, we may need to take a broader, more holistic approach to BMI and 

metabolic health in older populations. This may mean acting earlier, taking a more 

comprehensive look at health, and not waiting until the later years when the damage 

may have already been done. 

7.2 Beyond The Tip of the Iceberg 

By now, perhaps it’s clear to you, it’s pretty clear to me — that my thesis is merely 

scraping the tip of an iceberg — a minuscule, visible part of a much larger and more 
complex field of knowledge. While this thesis offered some insights into the relationship 

between BMI, metabolic health, and aging, it also revealed the vast unknown beneath 

the surface, waiting to be explored.  

One thing that’s been bugging me throughout this process is the question of what really 

defines metabolic health. It feels like I have been just dancing around it without fully 

understanding. Sure, there has already been research, like GWAS, that has started to 

separate metabolic health from adiposity, but the next step is probably to take those 
findings and run with them.166, 167  With the incredible advancements in data analytics 

over the past decade (my first ever Bachelor’s thesis was on a floppy disk to give a 

sense of how far we’ve come), we now have the tools to dig deeper and faster — by 

combining multi-omics approaches to really figure out what it means to be 
metabolically healthy. And how about the exciting field of precision medicine, where we 

can start using personalized data to refine our understanding of metabolic health and 

how we can manage it? Plus, it’s not just about the flashy new tools like machine learning 

or neural networks; it’s also about using solid research methods, such as triangulation 
of evidence, to ensure we’re getting a full picture and robust findings.  

Also, one area I think deserves attention, which is something I couldn’t fully delve into, 
although it has been part of the plan (I know, it’s a shame), is considering the impact of 

cohort effects. Growing old in the 1970s is not going to be the same as growing old 

today. A lot has changed — not just the climate, the health policies, prescriptions 
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practices, diet, and lifestyles — they all have changed. What’s their impact on the 

connection between BMI-metabolic health and aging?  

And let’s not forget my thesis does have a narrow focus on high-income countries. I am 
likely missing a huge part of the picture by not expanding these studies to low- and 

middle-income countries. How BMI, metabolic health, and aging connect can vary 

based on environmental, cultural, and socio-economic factors. We won’t have a 

complete, globally relevant understanding of these issues until we widen the scope of 
our research. 

Well, I can go on. But I hope this thesis has sparked your curiosity and inspired you to 

explore this iceberg’s deeper, hidden parts because there’s still so much left to 
uncover. Thank you so much for letting me go on this rant — it has been a journey.
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May everyone who is sick 
Be swiftly healed, 
And may every disease that affects living beings 
Be permanently eradicated. 

—  Chapter 10, Verse 21, Guide to the Bodhisattva’s Way of Life                                      
by Shantideva 
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