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k Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States
l Departments of Psychiatry, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
m Department of Pediatrics and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
n Seattle Children’s Research Institute, Seattle, WA, United States
o Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
p Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
q Department of Population Health, Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY, United 
States
r Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 
United States
s Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States

A R T I C L E  I N F O

Keywords:
OPE
Childhood obesity

A B S T R A C T

Introduction: Organophosphate esters (OPEs) are increasing in use as flame retardants and plasticizers and 
concerns have been raised given their endocrine-disrupting activities and possible obesogenic consequences. 
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Pregnancy
Flame retardants

However, longitudinal studies on gestational OPE exposure and childhood obesity are scarce. This study 
examined whether OPE levels in maternal urine during pregnancy were associated with the risk of childhood 
obesity. Methods: OPEs were analyzed in pregnancy urine samples of 5,087 individuals from 14 studies 
contributing to the Environmental influences on Child Health Outcomes (ECHO) Cohort. BDCPP, DBUP/DIBP, 
and DPHP, detected in > 80 % of the samples, were modeled continuously and by tertiles; whereas BCPP, BBOEP, 
and BCETP, detected in 50–80 % of samples, were modeled categorically (not-detected, low, and high). Child-
hood obesity was defined by BMI z-score ≥ 95th percentile according to WHO (<2 years) and the CDC (≥2 years) 
metrics. Adjusted modified Poisson regression models assessed childhood obesity risk and the mixture effect was 
assessed using Bayesian kernel machine regression (BKMR). Results: BMI measurements were available for 3,827 
children in infancy (0.5–1.9 years), 3,921 children in early childhood (2.0–4.9 years), and 2,541 children in mid- 
childhood (5.0–10.0 years). Obesity was present in 16–21 % of children across age groups. In mid-childhood 
DBUP/DIBP second and third versus first tertiles were associated with increased obesity risk (RR 1.14; 95 % 
CI: 1.02, 1.28; and RR 1.11; 95 % CI: 0.97, 1.27; respectively); whereas BDCPP second and third versus first 
tertiles reflected an inverse association with obesity risk (RR 0.85; 95 % CI: 0.80, 0.91 and RR 0.91; 95 % CI: 
0.77, 1.07; respectively). No association with obesity risk was observed for DPHP, BCPP, BBOEP, and BCETP. 
Directions observed were consistent with those seen in BKMR models. Conclusions: This study identified mixed 
associations between gestational OPE exposure and childhood obesity. Further investigation across a compre-
hensive range of OPE exposures is warranted.

1. Introduction

Organophosphate esters (OPEs) are used commercially as flame re-
tardants and plasticizers, and are found in various household and in-
dustrial products, including polyurethane foam, furniture, electronics, 
construction materials, infant products, textiles, and fabrics (Dou and 
Wang, 2023; Liu et al., 2021; Wei et al., 2015; Yang et al., 2022). OPEs 
volatilize from products, and have been found in indoor dust, water, soil, 
(Du et al., 2019; Stapleton et al., 2009) and even remote areas like the 
Arctic (Xie et al., 2022). The widespread use of OPEs has steadily risen in 
recent decades as they replaced polybrominated diphenyl ethers 
(PBDEs) as flame retardants in the mid-2000s (Yang et al., 2022). This 
shift occurred due to the known link between PBDEs and adverse 
developmental, reproductive, and neurological outcomes, (Dodson 
et al., 2012; Linares et al., Mar 2015) as well as the fact that OPEs have 
substantially shorter half-lives—ranging from hours to days—compared 
to the years-long half-life of PBDEs (Carignan et al., 2013; Ohoro et al., 
2021; Wang and Song, 2024). Since those widespread replacements, 
OPE production has surged, reaching over 1 million tons in 2018, far 
beyond previous PBDE manufacturing levels (Fu et al., 2020). As a 
result, human exposure to OPEs is pervasive, (Boyle et al., 2019; Cequier 
et al., 2015) with detected OPE metabolite concentrations ubiquitous in 
pregnant populations (Castorina et al., 2017; Hoffman et al., 2017; Percy 
et al., 2020). Data from toxicological and epidemiological studies indi-
cate that these metabolites have endocrine disrupting qualities (Dishaw 
et al., 2014; Gravel et al., 2020; Kojima et al., 2013; Li et al., 2023; 
Trowbridge et al., 2021; Yao et al., 2021). Endocrine-disrupting chem-
icals (EDCs) have been shown to influence obesity(Gupta et al., 2020) 
and glucose intolerance (Kahn et al., 2020) among other adverse health 
outcomes (Gore et al., 2015) with prenatal exposure linked to fetal 
epigenetic programming and metabolic homeostasis (Rabotnick et al., 
2023).

Childhood obesity is an escalating global public health concern, with 
prevalence and severity increasing among children at younger ages 
(Afshin et al., 2017; Apperley et al., 2022; Skinner et al., 2018). Obesity 
is implicated in several clinical outcomes including elevated risk of 
diabetes, hypertension, non-alcoholic fatty liver disease, cancer, and 
other health issues (Smith et al., 2020; Weihrauch-Blüher et al., 2019; 
Weihrauch-Blüher and Wiegand, 2018). Furthermore, childhood obesity 
often persists into adulthood, leading to greater morbidity and earlier 
mortality (Llewellyn et al., 2016). Environmental pollutants, including 
EDCs, have been proposed as contributors to this rising obesity trend due 
to their influences on hormonal processes related to adipose tissue 
development, appetite, satiety, weight regulation, and energy balance 
(Gupta et al., 2020). Toxicologic evidence has shown that OPE exposure 
may increase the risk of obesity as these chemicals may disrupt energy 

homeostasis through estrogen receptor alpha (ERα)-mediated pathways 
resulting in altered feeding efficiency, insulin tolerance, fat mass, and 
ghrelin levels (Vail et al., 2020; Vail et al., 2022). In mice, gestational 
exposure to OPEs led to disruption of endocrine metabolism and 
consequent impacts on offspring’s energy and glucose regulation, sug-
gesting a possible obesogenic effect in the offspring, with sex-specific 
effects (Walley et al., 2021). In humans, OPE metabolites have been 
detected in the placenta, suggesting maternal-fetal transfer (Ding et al., 
2016; Wang et al., 2021; Zhao et al., 2017). However, the extent to 
which gestational OPE exposures may lead to an elevated risk of obesity 
in children, as well as the potential existence of sex-specific effects, re-
mains understudied (Chen et al., 2023).

To address this knowledge gap, we assessed whether OPE levels 
measured in maternal urine during pregnancy were associated with the 
risk of childhood obesity in the offspring. We also assessed possible sex- 
specific associations. We hypothesized that gestational exposure to 
higher levels of OPEs was associated with increased risk of childhood 
obesity. This study highlights an important public health issue and could 
inform potential regulations on the manufacture and use of OPEs. The 
current study was conducted among a geographically and racially and 
ethnically diverse U.S. population of individuals who participated in the 
Environmental influences on Child Health Outcomes (ECHO) research 
consortium, a program funded by the National Institutes of Health.

2. Methods

2.1. Study population

We analyzed data from 14 longitudinal studies within the ECHO 
program. The ECHO program investigates how environmental exposures 
during pregnancy and early childhood, including physical, chemical, 
social, behavioral, biological, and environmental factors, impact child 
health and development (Blaisdell et al., 2022). All pregnancies within 
this study occurred between 2006 and 2020. The study underwent re-
view and obtained approval from Institutional Review Boards (IRBs), 
including the ECHO Cohort single IRB and the local IRBs of individual 
ECHO study sites. Additionally, Health Insurance Portability and 
Accountability Act (HIPAA) authorization was obtained for access to 
medical records. Written informed consent was also obtained from 
pregnant participants in each ECHO study site at the time of study 
enrollment as well as child assent for enrolled children starting at age 
eight.

2.2. OPE analysis

Single spot or first morning urine samples were collected from 
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participants during the 2nd or 3rd trimester of pregnancy (mean ±
standard deviation = 27 ± 5 weeks gestation). Samples were frozen for 
storage prior to being shipped on dry ice to the Wadsworth Center 
Human Health Exposure Analysis Resource (WC-HHEAR) laboratory for 
OPE measurement. OPE metabolites were measured using high- 
performance liquid chromatography-tandem mass spectrometry 
methods (HPLC, ExionLC™ system; MS/MS from SCIEX, Redwood City, 
CA, USA) with some modifications (Wang et al., 2019). Details of lab-
oratory methods are reported in the supplemental materials.

The measured OPE metabolites included bis(butoxyethyl) phosphate 
(BBOEP), bis(2-chloroethyl) phosphate (BCETP), bis(1-chloro-2-propyl) 
phosphate (BCPP), bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis 
(2-ethylhexyl) phosphate (BEHP), bis(2-methylphenyl) phosphate 
(BMPP), bis-(2-propylheptyl)-phthalate (DPHP), dipropyl phosphate 
(DPRP) and the composite of dibutyl phosphate and di-isobutyl phos-
phate (DBUP/DIBP). The two metabolites DBUP and DIBP were reported 
as a composite (DBUP/DIBP) because they coeluted during analysis and 
could not be quantified separately. Further, we only included OPEs with 
at least 50 % of samples above the limit of detection (LOD). In our study, 
the LOD for these analytes ranged from 0.0115 to 0.0441 µg/L.

Concentrations of OPEs in urine were dilution corrected using spe-
cific gravity or creatinine, depending on availability in the ECHO study 
site. Prior to dilution correction, we imputed any value below the LOD 
with the machine-read values provided by the laboratory. To stan-
dardize the correction method for urinary dilution across samples, we 
adopted the approach outlined by Kuiper et al (Kuiper et al., 2021; 
Kuiper et al., 2022; Oh et al., Jan 2024). For samples corrected using 
creatinine, OPE concentrations were adjusted by multiplying by the 
ratio of the ECHO site-specific median dilution value to the participant’s 
dilution value (Kuiper et al., 2021; Kuiper et al., 2022). For those using 
specific gravity, the values were first subtracted from one (Boeniger 
et al., Oct 1993).

2.3. Childhood obesity assessment

To define obesity, we used weight and height measurements 
collected within 30 days of each other during three different age groups: 
infancy (0.5–1.9 years), early childhood (2.0–4.9 years), and middle 
childhood (5.0–10.0 years). These age groups were used to be consistent 
with previous ECHO wide analyses (Aris et al., 2022). We used the 
height and weight measurements obtained from child medical records or 
during study-related clinic visits. BMI was calculated using weight (kg) 
/height (m2), where height is either standing height (≥ 24 months) or 
recumbent length (< 24 months). Age-and-sex-specific BMI z-scores 
were then calculated based on the growth curves provided by the World 
Health Organization (WHO) (measurements < 2 years of age) and the 
Centers for Disease Control and Prevention (CDC) (measurements ≥ 2 
years of age) metrics, as recommended by the CDC (Kuczmarski et al., 
2000; Grummer-Strawn et al., 2010). Extreme z-scores deemed biolog-
ically implausible were removed (CDC, 2023; CDC, 2019). For children 
under 2 years of age, extreme values were defined as WHO BMI z-scores 
< -5 or > 5. For children aged 2 years and older, extreme values were 
defined as CDC Modified BMI z-scores < -4 or > 8 (CDC, 2023; CDC, 
2019). If there was more than one BMI measurement within the age 
group for each child, the highest after data cleaning was used in the 
analysis. We defined childhood obesity as a BMI z-score at or above the 
95th percentile (Ogden and Flegal, 2010).

2.4. Covariates

We selected covariates based on a literature review which were then 
visualized using a directed acyclic graph (DAG) with the DAGitty pro-
gram (Supplemental Figure S1) (Textor et al., 2011). Covariates 
included in the main analysis were maternal age (years), highest level of 
maternal education (up to high school degree/GED, some college but no 
degree, Bachelor’s degree, and Master’s degree or above), pre- 

pregnancy BMI (kg/m2), parity (multiparous vs. nulliparous), any 
maternal smoking during pregnancy (yes vs. no), and child year of birth. 
Covariates also included race and ethnicity, as a proxy for structural 
inequities and for disparities in both detected OPE levels (Wang et al., 
2019; Ma et al., 2019; Bobb et al., 2018) and disease burden of child-
hood obesity (Skinner et al., 2018). Race and ethnicity were modeled as 
Hispanic (all), non-Hispanic White, non-Hispanic Asian, non-Hispanic 
Black, multiple races, and other races/ethnicities which included: 
Native Hawaiian or other Pacific Islander, American Indian or Alaskan 
Native, or missing/unknown (missing < 0.5 %). The source of covariate 
data varied by ECHO sites and included study visits, medical records, 
and questionnaires. Data were then harmonized by the ECHO Data 
Analysis Center (DAC). Further details on this process can be found in 
the supplemental materials. Child sex and age were not separately 
adjusted for, as they were factored into the outcome. Our DAG identified 
the minimal sufficient adjustment set for estimating the total effect of 
gestational OPE exposure on childhood obesity to be child birth year, 
ECHO site, maternal age at delivery, maternal education, maternal race/ 
ethnicity, maternal smoking in pregnancy, parity, and pre-pregnancy 
BMI.

2.5. Statistical analysis

Distributions of gestational OPE metabolites were summarized for 
the full unique sample, for participants involved in each age group 
analysis, and by individual ECHO study site. Spearman’s correlations 
assessed relationships of the metabolites (continuously) within the full 
unique sample and by participants involved in each age group analysis.

We assessed associations between individual OPE metabolites and 
childhood obesity at each age group by using adjusted modified Poisson 
regression models with robust standard errors where children with BMI 
below the 95th percentile served as the reference group. We employed 
modified Poisson models to estimate relative risk (RR) for all OPE me-
tabolites due to the high prevalence of childhood obesity within each 
age group (>16 %) (Zou, 2004). For metabolites that were detected in at 
least 80% of samples, we imputed the value of the remaining samples 
below the LOD with the machine-read values provided by the laboratory 
which were then log2 transformed. Any machine read values that were 
negative or zero were replaced with 0.001 prior to transformation. For 
the metabolites that were detected in 50%-80% of samples, we modeled 
the metabolites categorically: non-detected (<LOD), low exposure 
(detected but less than the sample median of dilution adjusted values), 
and high exposure (≥ sample median of dilution adjusted values). For 
metabolites that were detected in at least 80% of samples, we carefully 
considered the shape of associations present in the analysis, initially 
examining associations in tertiles to accommodate potential non- 
linearity. If non-linearity was suggested, continuous linear associations 
were considered secondary analyses.

All models were adjusted for the covariates listed above. All cova-
riates had little missing data (<7%). For all missing values for cova-
riates, with the exception of race/ethnicity, we imputed values using 
multiple imputation by chained equations (MICE) (Azur et al., 2011). 
We generated 50 imputed datasets with 100 burn-in iterations. Predic-
tive mean matching was used for continuous pre-pregnancy BMI, and 
the discriminant function method was applied to categorical variables 
such as maternal education, smoking during pregnancy, and parity. The 
SAS MI procedure was used for imputation, followed by MIANALYZE to 
combine results from the modified Poisson regression, forming single 
statistical inferences based on Rubin’s (1987) combining rule. Race/ 
ethnicity data (<0.5 % missing) were grouped into “other” because the 
assumptions for imputation—that the missing data either followed 
random patterns or mirrored the available data—were not met (Azur 
et al., 2011). Research suggests that individuals who choose not to 
provide race and ethnicity data often belong to underrepresented de-
mographic groups (Moscou et al., 2003). Furthermore, all models 
accounted for ECHO study sites by a cluster on site to consider 
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correlation and the variability in recruitment eligibility and possible 
geographic differences.

Bayesian kernel machine regression (BKMR) was used to model OPEs 
as a mixture (Bobb et al., Jul 2015). BKMR is highly flexible, accom-
modating non-linear associations and complex interactions (Bobb et al., 
Jul 2015). Metabolites detected in more than 60% of samples(Howe 
et al., 2020; Hernandez-Castro et al., 2023) were included in BKMR 
models. BKMR models were completed using a complete-case analysis 
due to the inability to use MICE for the mixture analysis. Each BKMR 
model was fit using probit regression for binary outcomes with 10,000 
Markov Chain Monte Carlo iterations (Bobb et al., 2018). Convergence 
was assessed using trace plots and the Rhat statistic (Bobb et al., 2018; 
Gelman and Rubin, 1992). Results of the BKMR mixture analysis were 
summarized with the posterior inclusion probabilities (PIPs) and plots of 
the exposure response function. Cross-section response plots summa-
rized the univariate association between each OPE and the outcome, 
holding the other OPEs constant at their medians. Bivariate response 
plots summarized the associations between two OPEs and the outcome, 
showing the response function for one OPE while fixing the second OPE 
at quantiles of 0.1, 0.25, 0.5, 0.75, and 0.9, and holding the other OPEs 
constant at their medians.

To determine if associations were modified by child sex, statistical 
interactions were added to models individually for highly detected OPEs 
(>80% of samples > LOD). We also stratified these models by child sex 
to assess potential effect modification. Multiple sensitivity analyses were 
conducted. Models were restricted to participants with obesity outcome 
data collected at all three assessment points in infancy, early childhood, 
and middle childhood to account for variations in participants across age 
groups in the main analysis. We also conducted a leave-one-ECHO site- 
out approach to evaluate the influence of each site on our results. 
Finally, we compared results by referencing obesity to normal weight, 
by excluding children with overweight (≥85th percentile and < 95th 
percentile), and then by referencing overweight (≥85th percentile) to 
normal weight, excluding those classified with obesity. This comparison 
allowed us to thoroughly investigate how associations were influenced 
by using more refined criteria rather than comparing obesity to all other 
categories in main models.

2.6. Analytic sample

Initially, there were 7,038 individuals with OPE data measured in 
pregnancy, of which 6,893 were singleton pregnancies. Among these, 
5,335 had at least one measurement of child height and weight collected 
within 30 days of each other between ages six months and 10 years, 
which allowed for the calculation of BMI. We excluded 23 children with 
biologically implausible extreme z-score BMI data (CDC, 2023; CDC, 
2019). Of the remaining 5,312 ECHO children, we removed 105 moth-
er–child pairs for child weight and/or height being self-reported, parent- 
reported, or from unknown sources, leaving 5,207 pairs. To maintain 
sample independence, if multiple children of the same mother partici-
pated in ECHO, we retained only the eldest child resulting in the 
removal of 75 younger siblings and a sample size of 5,132 children. 
Lastly, we excluded any ECHO study site contributing fewer than 30 
participants at any single age group, resulting in a final sample size of 
5,087 unique mother–child pairs. Among these, 3,827 children had a 
BMI measure during infancy, 3,921 during early childhood, and 2,541 
during middle childhood; 1,772 children had BMI measures in all three 
age groups (see flowchart in Supplemental Figure S2). The included 
ECHO study sites, number of participating mother–child pairs, years of 
study recruitment, and their geographic enrollment locations are listed 
in Supplemental Table S1. Source of child growth (EHR vs. study 
measured) by individual ECHO sites is shown in Supplemental Table S2.

3. Results

The characteristics of all study participants and by age group are 

provided in Table 1. Mothers on average were 30.2 ± 5.7 years of age at 
time of delivery and had an average pre-pregnancy BMI of 26.9 ± 6.7 
kg/m2 with 25% of the sample having obesity before pregnancy. Nearly 
half of mothers had attained at least a college education and 51% were 
non-Hispanic White, 20% non-Hispanic Black, 19% Hispanic, and a 
smaller subset of 5% being non-Hispanic Asian. Across age groups, there 
were 16–21% of children with obesity (Table 1). Characteristics were 
similar to those with OPE concentrations available in ECHO but who 
were excluded from the analysis based on inclusion criteria (N = 1,937, 
Supplemental Table S3).

Three metabolites were detected in at least 80 % of samples: BDCPP 
(87%), DBUP/DIBP (96%), and DPHP (99%). An additional three me-
tabolites were detected in 50–80% of samples: BBOEP (66%), BCETP 
(69%), and BCPP (52%). Three metabolites were detected in less than 
50 % of the samples and were not included in the analysis: BMPP (36%), 
BEHP (30%), and DPRP (26%). The highest median concentration was 
observed for DPHP (0.92 µg/L), followed by BDCPP (0.89 µg/L). Full 
distributions of the OPEs are shown in Table 2 and by each ECHO study 
site in Supplemental Figure S2. The percent of children with obesity 
within each tertile of BDCPP, DBUP/DIBP and DPHP as well as category 
of BBOEP, BCETP, and BCPP are shown in Supplemental Tables 4 and 5, 
respectively. OPE distributions by age groups were similar to those 
observed in the full unique sample (Supplemental Table S6). Metabolites 
were weakly correlated with each other (Spearman R = − 0.07 to 0.26, 
Supplemental Figure S3). OPE distributions were similar to those with 
OPE concentrations available in ECHO but who were excluded from the 
analysis based on inclusion criteria (N = 1,937, Supplemental Table S7).

3.1. Associations of gestational DBUP/DIBP, BDCPP, and DPHP 
exposure with childhood obesity

Results for obesity risk at each age group across tertiles of DBUP/ 
DIBP, BDCPP, and DPHP exposure are shown in Fig. 1; whereas Sup-
plemental Figure S4 reports the association between continues levels of 
DBUP/DIBP, BDCPP, and DPHP and childhood obesity. The cut points 
for tertiles are shown in Supplemental Table S8.

Gestational exposure to DBUP/DIBP, when analyzed in tertiles, 
showed no associations with obesity in infancy. In early childhood when 
compared with the first tertile (T1), the second tertile (T2) was inversely 
associated with the risk of obesity (T2 vs. T1: RR 0.88; 95 % CI 0.78, 
1.00). However, this association was attenuated for the third tertile (T3 
vs T1: 0.98; 95 % CI: 0.82, 1.16). In contrast, in middle childhood the 
second tertile was associated with an increased risk of obesity (T2 vs T1: 
1.14; 95 % CI: 1.02, 1.28), whereas this positive association was atten-
uated for the third tertile (T3 vs T1:1.11; 95 % CI: 0.97, 1.27). Gesta-
tional exposure to DBUP/DIBP, when modeled continuously, exhibited 
no association with the risk of obesity in any age group (Infancy: 1.02 
per doubling of exposure; 95 % CI: 0.96, 1.09; Early Childhood: 0.99 per 
doubling of exposure; 0.93, 1.06; Middle Childhood: 1.02 per doubling 
of exposure; 95 % CI: 0.96, 1.09).

For BDCPP when modeled as tertiles, evidence of non-linear associ-
ations was observed, the second tertile was associated with a higher risk 
of obesity in infancy (T2 vs T1: 1.14; 95 % CI: 1.07, 1.21), which was 
attenuated for the third tertile (T3 vs T1: 1.02; 95 % CI: 0.90, 1.17). In 
early childhood, no association with obesity risk was observed in asso-
ciation with BDCPP (T2 vs. T1: 1.03; 95 % CI: 0.91, 1.17; T3 vs T1: 1.17; 
95 % CI: 0.91, 1.51;). In middle childhood, the second tertile of BDCPP 
was inversely associated with childhood obesity risk (T2 vs. T1: 0.85; 95 
% CI: 0.80, 0.91) whereas the inverse association was attenuated for the 
third tertile (T3 vs T1: 0.91; 95 % CI: 0.77, 1.07). Gestational exposure 
to BDCPP, when modeled continuously, showed no association with 
increased risk of obesity in infancy (1.01 per doubling of exposure; 95 % 
CI: 1.00, 1.02) or early childhood (1.01 per doubling of exposure; 95 % 
CI: 0.99, 1.04). However, consistent with the analysis by tertiles, an 
inverse association was observed for the risk of obesity in middle 
childhood (0.98 per doubling of exposure; 95 % CI: 0.96, 0.99).
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Gestational exposure to DPHP, when modeled by tertiles or contin-
uously, showed no association with the risk of obesity in any age group 
(Fig. 1 and Supplemental Figure S4).

3.2. Associations of gestational BBOEP, BCETP, and BCPP, with 
childhood obesity

Gestational exposures to BBOEP, BCETP, and BCPP, modeled as non- 
detected (reference), low exposure (detected but lower than the me-
dian), and high exposure (median and above), were not associated with 
childhood obesity in infancy, early childhood, or middle childhood 
(Fig. 2).

3.3. BKMR OPE mixture results with childhood obesity

Five of the nine OPEs (BDCPP, DBUP/DIBP, DPHP, BCETP, and 
BBOEP), were detected in more than 60% of samples and were included 
in BKMR models (Infancy n = 3,166, Early Childhood n = 3,368, Middle 
Childhood n = 2,325). PIPs for individual OPEs across all age groups 
were generally similar (Supplemental Table S9). In middle childhood, 
BDCPP had the highest PIP suggesting a potentially greater contribution 
to the mixture than the other OPEs. Exposure-response function plots 
generated from BKMR analyses were similar to results of individual 
modeled OPEs. BKMR exposure–response function plots for middle 
childhood obesity depicted a curvilinear inverse association for BDCPP 
(Fig. 3), similar to the tertile analysis. Fig. 3 showed a relatively null 
association for DBUP/DIBP, BCETP and DPHP, and a suggestive positive 
association for BBOEP and obesity risk in middle childhood. For infancy, 

Table 1 
Characteristics of 5,087 mother–child pairs participating in the Environmental 
influences on Child Health Outcomes (ECHO) program in the full sample and by 
age groups.

Characteristic Full Sample 
N ¼ 5,087 
n(%)

Infancy 
0.5–1.9 yrs 
N ¼ 3,827 
n (%)

Early 
Childhood 
2.0–4.9 yrs 
N ¼ 3,921 
n (%)

Mid 
Childhood 
5.0–10.0 yrs 
N ¼ 2,541 
n (%)

Maternal age, 
years

   

Mean (SD) 30.2 (5.7) 30.1 (5.7) 30.2 (5.6) 30.1 (5.6)
<25 912 (17.9) 676 (17.7) 693 (17.7) 437 (17.2)
25–29 1266 (24.9) 994 (26.0) 992 (25.3) 674 (26.5)
30–34 1694 (33.3) 1282 (33.5) 1328 (33.9) 860 (33.8)
>=35 1215 (23.9) 875 (22.9) 908 (23.2) 570 (22.4)
Maternal 

education
   

High school 
degree, GED, 
or equivalent 
or lower

1490 (29.3) 1163 (30.4) 1150 (29.3) 619 (24.4)

Some college, 
no degree

821 (16.1) 606 (15.8) 603 (15.4) 402 (15.8)

Bachelor’s 1324 (26.0) 998 (26.1) 1032 (26.3) 741 (29.2)
Master’s and 

above
1155 (22.7) 794 (20.7) 915 (23.3) 598 (23.5)

Missing 297 (5.8) 266 (7.0) 221 (5.6) 181 (7.1)
Maternal race 

and 
ethnicity

   

Non-Hispanic 
Asian

264 (5.2) 208 (5.4) 227 (5.8) 114 (4.5)

Non-Hispanic 
Black

1030 (20.2) 816 (21.3) 894 (22.8) 581 (22.9)

Hispanic All 970 (19.1) 744 (19.4) 600 (15.3) 230 (9.1)
Non-Hispanic 

Multiple 
Race

153 (3.0) 111 (2.9) 129 (3.3) 101 (4.0)

Non-Hispanic 
Other

40 (0.8) 19 (0.5) 33 (0.8) 21 (0.8)

Non-Hispanic 
White

2606 (51.2) 1908 (49.9) 2029 (51.7) 1484 (58.4)

Missing 24 (0.5) 21 (0.5) 9 (0.2) 10 (0.4)
Pre- 

pregnancy 
body mass 
index, kg/ 
m2

   

Mean (SD) 26.9 (6.7) 27.1 (6.9) 27.0 (6.8) 27.1 (6.9)
Underweight, 
< 18.5

151 (3.0) 122 (3.2) 123 (3.1) 74 (2.9)

Normal 
Weight, 
18.5–24.9

2185 (43.0) 1619 (42.3) 1678 (42.8) 1106 (43.5)

Overweight, 
25.0–29.9

1264 (24.8) 929 (24.3) 976 (24.9) 640 (25.2)

Obese ≥ 30.0 1255 (24.7) 992 (25.9) 987 (25.2) 663 (26.1)
Missing 232 (4.6) 165 (4.3) 157 (4.0) 58 (2.3)
Parity    
Nulliparous 2226 (43.8) 1661 (43.4) 1735 (44.2) 113 (44.6)
Multiparous 2713 (53.3) 2055 (53.7) 2115 (53.9) 1391 (54.7)
Missing 148 (2.9) 110 (2.9) 71 (1.8) 17 (0.7)
Any tobacco 

use during 
pregnancy

   

No 4383 (86.2) 3249 (84.9) 3380 (86.2) 2296 (90.4)
Yes 350 (6.9) 279 (7.3) 289 (7.4) 239 (9.4)
Missing 354 (7.0) 300 (7.8) 252 (6.4) 6 (0.2)
Infant sex    
Female 2490 (48.9) 1786 (46.7) 1935 (49.3) 1264 (49.7)
Male 2597 (51.1) 2041 (53.3) 1986 (50.7) 1277 (50.3)
Year of birth    
Median (IQR) 2012 

(2010–2016)
2012 
(2010–2016)

2012 
(2010–2015)

2011 
(2010–2013)

2006–2010 1466 (28.8) 1255 (32.8) 1272 (32.4) 924 (36.4)
2011–2015 2310 (45.4) 1441 (37.7) 1845 (47.1) 1495 (58.8)

Table 1 (continued )

Characteristic Full Sample 
N ¼ 5,087 
n(%) 

Infancy 
0.5–1.9 yrs 
N ¼ 3,827 
n (%) 

Early 
Childhood 
2.0–4.9 yrs 
N ¼ 3,921 
n (%) 

Mid 
Childhood 
5.0–10.0 yrs 
N ¼ 2,541 
n (%)

2015–2020 1311 (25.8) 1131 (29.6) 804 (20.5) 122 (4.8)
Child mean 

age, years
N/A 1.0 (0.3) 3.2 (1.0) 7.5 (1.5)

Child BMI    
Underweight N/A 76 (2.0) 111 (2.8) 46 (1.8)
Normal N/A 2304 (60.2) 2591 (66.1) 1656 (65.2)
Overweight N/A 661 (17.3) 607 (15.5) 397 (15.6)
Obese N/A 786 (20.5) 612 (15.6) 442 (17.4)

Note: Weight distributions and age cannot be provided for the entire sample as 
some children may be represented in only certain age groups or in all age groups 
of outcome assessment. If > 1 BMI was available, the highest after cleaning was 
used for analysis. Child BMI: Underweight less than 5th percentile, Normal 
Weight 5th percentile to less than the 85th percentile, Overweight 85th 
percentile to less than the 95th percentile, Obesity 95th percentile or greater.

Table 2 
Organophosphate esters (OPEs) limit of detection and urinary concentrations of 
OPEs across percentiles among 5,087 pregnant women in the Environmental 
influences on Child Health Outcomes (ECHO) consortium.

Analyte LOD 
µg/ 
L

Percent above 
LOD

5th 
µg/ 
L

25th 
µg/L

50th 
µg/L

75th 
µg/L

95th 
µg/L

DBUP_DIBP 0.04 95.7 0.07 0.12 0.19 0.3 0.87
DPHP 0.03 99.5 0.26 0.55 0.92 1.82 8.51
BDCPP 0.02 86.9 ND 0.34 0.89 1.75 5.31
BCPP 0.02 51.6 ND ND 0.08 0.74 3.34
BCETP 0.02 68.9 ND ND 0.52 1.66 9.04
BBOEP 0.02 66.1 ND ND 0.05 0.09 0.25
BMPP 0.01 35.5 ND 0.01 ND 0.03 0.13
BEHP 0.02 29.8 ND ND ND 0.04 0.54
DPRP 0.03 25.6 ND ND ND 0.03 0.33

ND = Not Detected, LOD = Limit of Detection
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BDCPP, BBOEP, and BCETP exhibited suggestive positive associations 
with obesity risk, while DBUP/DIBP and DPHP suggested a null or flat 
association (Supplemental Figure S5). For early childhood obesity risk, 
DBUP/DIBP suggested an inverse association, whereas DPHP and 
BBOEP, indicated suggestive positive associations, and BDCPP and 
BCETP had flatter associations (Supplemental Figure S6). Bivariate 

exposure-outcome relations of one OPE exposure with childhood obesity 
showed mostly parallel lines and curves, showing little evidence of 
interaction between OPEs in the mixture in all age groups (Supplemental 
Figures S7-S9).

Fig. 1. Adjusted associations of gestational BDCPP, DBUP/DIBP, and DPHP tertiles with childhood obesity in infancy, early childhood and middle childhood. Note: 
Regression models reflect multiple imputation by chained equations (MICE) for covariates and were adjusted for urinary dilution, ECHO site, maternal age at birth, 
maternal race/ethnicity, maternal educational attainment, pre-pregnancy BMI, maternal smoking in pregnancy, parity, and child’s year of birth. Infancy 0.5–1.9 
years, Early Childhood 2.0–4.9 years, Middle Childhood 5.0–10.0 years. Obesity defined ≥ 95th percentile. DPHP, diphenyl phosphate; DBUP/DIBP, composite of 
dibutyl phosphate and di-isobutyl phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate.

Infancy (N=3,827) Early Childhood (N=3,921) Mid Childhood (N=2,541)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
BCPP
BCETP
BBOEP

Fig. 2. Adjusted associations of gestational BBOEP, BCETP, and BCPP with childhood obesity in infancy, early childhood and middle childhood. Note: Regression 
models reflect multiple imputation by chained equation (MICE) for covariates and were adjusted for urinary dilution, ECHO site, maternal age at birth, maternal 
race/ethnicity, maternal educational attainment, pre-pregnancy BMI, maternal smoking during pregnancy, parity, and child’s year of birth. Infancy 0.5–1.9 years, 
Early Childhood 2.0–4.9 years, Middle Childhood 5.0–10.0 years. Obesity defined ≥ 95th percentile. BCETP, bis(2-chloroethyl) phosphate; BBOEP, bis(butoxyethyl) 
phosphate; BCPP, bis(1-chloro-2-propyl) phosphate; LOD Limit of Detection. <LOD (value not detected), Low Exposure (Detected but less than median), High 
Exposure (Median and above).
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3.4. Associations of BDCPP, DBUP/DIBP, and DPHP with childhood 
obesity by child sex

When assessing whether child sex modified the association between 
gestational OPE exposure and childhood obesity across different age 

groups, potential differences by sex in some age groups were observed 
(Fig. 4). Among females, the second tertiles of both BDCPP and DPHP 
were associated with increased risk of obesity in infancy for (T2 vs. T1: 
1.22; 95 % CI: 1.03, 1.44 and 1.23; 95 % CI: 1.06, 1.42, respectively). 
Among males these associations were decreased (BDCPP T2 vs. T1: 1.10; 

Fig. 3. Exposure response function for each organophosphate esters (OPE) from Bayesian kernel machine regression models in middle childhood.

Infancy Early Childhood Mid Childhood

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Male
Female

Fig. 4. Adjusted associations of gestational BDCPP, DBUP/DIBP, and DPHP tertiles with childhood obesity in infancy, early childhood and middle childhood by child 
sex. Note: Regression models reflect multiple imputation by chained equations (MICE) for covariates and were adjusted for urinary dilution, ECHO site, maternal age 
at birth, maternal race/ethnicity, maternal educational attainment, pre-pregnancy BMI, maternal smoking in pregnancy, parity, and child’s year of birth. Infancy 
0.5–1.9 years, Early Childhood 2.0–4.9 years, Middle Childhood 5.0–10.0 years. Obesity defined ≥ 95th percentile. DPHP, diphenyl phosphate; DBUP/DIBP, 
composite of dibutyl phosphate and di-isobutyl phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate. T = Tertile.
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95 % CI: 0.94, 1.28 and DPHP 0.98; 95 % CI: 0.82, 1.17). When 
modeling the metabolites continuously, a significant interaction by sex 
was detected in middle childhood for both BDCPP (Pinteraction = 0.02) 
and DPHP (Pinteraction = 0.01). Upon stratifying the models by child sex, 
BDCPP showed a slightly stronger inverse association with obesity risk 
in middle childhood (0.97 per doubling of exposure; 95 % CI: 0.95, 0.99) 
in boys than in girls (0.99 per doubling of exposure; 95 % CI: 0.98, 0.99). 
Similarly, for DPHP, sex-stratified models revealed a null association 
with risk of obesity in female children compared to lower risk in male 
children (females: 1.01 per doubling of exposure; 95 % CI: 0.97, 1.05; 
males: 0.96 per doubling of exposure; 95 % CI: 0.91, 1.01). No other 
significant interaction terms were observed with child sex at other age 
groups within continuous models (Supplemental Figure S10).

3.5. Sensitivity analysis for associations of OPEs and childhood obesity

In sensitivity analyses restricted to the 1,772 children who had BMI 
assessed in all three age groups considered in this study, results 
remained comparable to those obtained using all available data 
(Supplemental Figures S11-S13). When conducting leave-one-site-out 
sensitivity analyses to assess whether results were driven by individual 
ECHO study sites, the directions of associations remained consistent for 
metabolites at each age group (Supplemental Figure S14). Results also 
remained consistent across all models when the risk for obesity was 
assessed in comparison to normal weight (i.e., excluding children with 
overweight) and when the risk for overweight was assessed in com-
parison to normal weight (Supplemental Table S10).

4. Discussion

This study conducted an innovative investigation on in utero expo-
sure to various OPEs measured in maternal urine during pregnancy and 
their associations with childhood obesity across different age groups, 
addressing an important but understudied public health issue. The study 
utilized data from the nationally representative and racially and ethni-
cally diverse ECHO consortium in the US. Although gestational exposure 
to several OPE metabolites did not show strong evidence of association 
with childhood obesity, gestational exposure to DBUP/DIBP was asso-
ciated with increased obesity risk whereas gestational exposure to the 
second tertile of BDCPP was associated with an inverse association with 
obesity risk in middle childhood. However, a non-monotonic dos-
e–response relationships emerged for these metabolites. In addition, 
notably U-shaped and inverted U-shaped patterns with the child obesity 
risk were observed for DBUP/DIBP and BDCPP across the age groups. 
We also observed a small potential increase in risk of obesity in girls 
compared to boys for BDCPP and DPHP exposure. When assessing five 
OPEs concurrently through BKMR, no association with obesity at any 
age group was observed overall. However, the findings overall remained 
consistent with the directions observed in individual model assessments. 
Other studies looking at OPE exposures and childhood outcomes have 
detected non-linear inverted U-shaped relationships between gesta-
tional OPE exposure and neurobehavioral outcomes(Hernandez-Castro 
et al., 2023) and birth outcomes (Oh et al., Jan 2024). Further research is 
needed to elucidate the underlying mechanisms driving these non-linear 
associations and their implications for public health interventions tar-
geting obesity and related metabolic disorders.

Prenatal exposure to OPEs may impact fetal programming, poten-
tially contributing to health issues in childhood and adulthood, aligning 
with the Developmental Origins of Health and Disease (DOHaD) hy-
pothesis (Haugen et al., 2015). While some early literature suggests 
prenatal OPE exposure may lead to lower infant birthweight, (Crawford 
et al., 2020; Luo et al., 2020; Luo et al., 2021) and gestational DBUP/ 
DIBP exposure to higher odds of preterm birth and DPHP exposure with 
lower birthweight within the ECHO consortium (Oh et al., Jan 2024), 
little is known about their influence on long-term childhood weight and 
obesity. The only other longitudinal study known to date that assessed 

OPE exposure in pregnancy and childhood obesity was conducted by 
Chen et al. in a Shanghai, China population of 733 mother–child pairs, 
with obesity assessed at 0.5, 1.0, 4.0, and 6.0 years of age (Chen et al., 
2023). Of the eight OPE assessed during pregnancy, BBOEP and BDCPP, 
were also included in the current analysis. Median dilution-corrected 
values were higher in the ECHO pregnant population for BDCPP (0.11 
µg/L) compared to the Shanghai population but slightly lower for 
BBOEP (0.06 µg/L). In the Chen et al. study, neither BDCPP nor BBOEP 
were significantly associated with the risk of obesity at any age but as-
sociations tended to be positive (Chen et al., 2023). However, Chen et al. 
found possible effect modification by breastfeeding duration for BDCPP, 
with those who were breastfed less than four months of age having an 
increased risk of obesity in early childhood compared to those who were 
breastfed longer (Chen et al., 2023). We were not able to assess possible 
effect modification by breastfeeding duration due to lack of data avail-
ability, however, this data is actively being collected as part of the 
ECHO-wide protocol and will allow assessment in the future. BKMR 
models for the full mixtures in Chen et al. supported the individual re-
sults and the overall OPE mixture tended to be associated with higher 
adiposity measures for BDCPP and BBOEP in the mixture.

A study using the National Health and Nutrition Examination Survey 
(NHANES: 2013–2014) assessed the cross-sectional relationships of five 
OPEs and childhood obesity among 784 children aged 6–19 years (Boyle 
et al., 2019). Overall, DPHP (median 1.43 μg/L), BCPP (median 0.20 μg/ 
L), and BDCPP (median 1.56 μg/L) concentrations were higher in these 
children than in pregnant individuals in the present analysis, which 
spans a broader range of years (2006–2020). In NHANES, children’s 
levels of BDCPP and DPHP had non-significant inverse associations with 
obesity. BCPP, which was only modeled as detected vs. non-detected, 
showed a non-significant positive association (Boyle et al., 2019). 
Given the cross-sectional design the authors speculated that OPEs 
potentially accumulating in adipose tissue (Sousa et al., 2023) could 
result in reduced urinary biomarker concentrations, potentially leading 
to the observed inverse association with childhood obesity (Boyle et al., 
2019).

We are in the early stages of understanding the biological mecha-
nisms linking OPE exposure to obesity. While laboratory investigations 
on OPEs and metabolic outcomes are scarce, existing evidence suggests 
potential links with adiposity. For instance, in vitro studies have indi-
cated that OPEs like tributyl phosphate (TBUP) and tris(2-butoxyethyl) 
phosphate (TBOEP) exhibit high peroxisome proliferator-activated re-
ceptor gamma (PPARγ) ligand binding potential at high doses, indi-
cating a possible role fetal programming and in promoting obesity 
development (Fang et al., 2015; Green et al., Mar 2017). Furthermore, 
animal studies have demonstrated that exposure to flame retardant 
mixtures containing OPEs during prenatal and early postnatal stages can 
lead to increased body weight in both male and female rats (Patisaul 
et al., 2013). Additionally, in vitro exposure to these mixtures has been 
shown to trigger adipocyte differentiation, suggesting a potential role of 
OPEs in adipogenesis (Pillai et al., 2014). The primary metabolite of Tris 
(1,3-dichloro-2-propyl) phosphate (TDCPP) is BDCPP, and TDCPP has 
shown sex-specific adiposity, fasting hyperglycemia, and insulin resis-
tance in male mice (Tenlep et al., 2023). This study specifically found 
that TDCPP activated farnesoid X receptor (FXR) and pregnane X re-
ceptor (PXR), while it inhibited the androgen receptor (AR) (Tenlep 
et al., 2023). Cross-sectional epidemiologic studies in adults have found 
that higher levels of OPEs were associated with concurrent obesity, 
central obesity, hyperglycemia and metabolic syndrome (Boyle et al., 
2019; Hoffman et al., 2017; Li et al., 2024; Luo et al., 2020; Romano 
et al., 2017).

The present study has several strengths. It represents the largest 
investigation to date to assess the association between urinary OPE 
biomarkers measured during pregnancy and childhood obesity across 
multiple early life age groups, extending up to 10 years of age. Our study 
included a diverse sample, incorporating harmonized data from 14 
pregnancy studies across the United States. This diversity not only 
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captures geographic variation but also encompasses a wide range of 
sociodemographic backgrounds, including racial and ethnic identities 
and education levels. Furthermore, OPE biomarkers were measured by a 
single laboratory using standardized protocols, minimizing variability, 
and ensuring consistency in measurement across all study participants. 
This meticulous approach enhances the reliability and comparability of 
results, strengthening the validity of the study findings. We also had 
access to high-quality covariates of interest with relatively low miss-
ingness (<7%) that were harmonized across ECHO sites. We conducted 
Multiple Imputation by Chained Equations (MICE) for covariates to 
reduce the likelihood of introducing selection bias into our analysis, 
rather than running complete case models. Additionally, we utilized a 
clinically relevant endpoint of obesity to enhance the applicability of our 
findings in real-world settings. Our large sample size also allowed ex-
amination of associations by child sex, an important effect modifier. 
Finally, an innovative strength of the study was the evaluation of OPE 
mixtures using BKMR methods to account for OPEs concurrently, 
considering the simultaneous exposures encountered in real-life 
settings.

Our study also has certain limitations that may affect the interpre-
tation of our findings. We recognize that OPEs are rapidly metabolized 
in the body, (Hou et al., 2020) and our study only included one mea-
surement per participant across two trimesters in pregnancy. OPE ex-
posures may fluctuate throughout pregnancy and thus a single 
measurement may not accurately capture an individual’s typical expo-
sure levels, we were also unable to determine the influence of OPE 
exposure in early pregnancy which may have a stronger influence on 
fetal programming (Haugen et al., 2015). However, reproducibility, as 
measured by interclass correlations, of certain OPEs across pregnancy 
have been moderate to high (Romano et al., 2017; Hoffman et al., 2014). 
Future studies should include numerous timepoints in pregnancy for 
urine collection and prioritize early pregnancy. Furthermore, although 
our study included a wide range of OPEs, examined in previous epide-
miologic literature, some were not measured as there are 12 established 
and characterized OPEs and upwards of 83 emerging OPEs (Ye et al., 
2023), which may have implications for the comprehensiveness of our 
analysis and the potential for associations with unmeasured OPEs that 
may influence childhood obesity risk. Despite our efforts to adjust for 
potential confounding variables, as in all observational studies, there 
remains the possibility of residual confounding from unmeasured or 
inadequately controlled factors that may influence the association be-
tween gestational OPE exposure and childhood obesity such as diet ex-
posures or breastfeeding. However common covariates included in 
previous studies on OPE exposure in pregnancy and obesity were also 
included in this assessment. There may also be effect modification and 
mitigation of this association by healthy eating and physical activity 
during childhood, which should be explored in future studies given their 
role in obesity. The assessment of childhood obesity was conducted at 
various time points during early life age groups, which allows for the 
examination of obesity trends over time but may not capture changes in 
obesity status beyond the assessed time points. Finally, our sample size 
varied across age groups, due to children not being old enough to be 
included in the sample or loss to follow-up within ECHO study sites. 
However, results were consistent when limiting analyses to children 
with measurements at all age groups.

5. Conclusions

We found limited evidence of associations between gestational 
exposure to the OPEs assessed in this study and childhood obesity risk. 
Associations also varied in direction, as gestational exposure to DBUP/ 
DIBP was associated with an increased obesity risk, whereas gestational 
exposure to BDCPP showed an inverse association with obesity risk in 
middle childhood. Overall, our findings suggest a complex interplay 
between gestational OPE exposure and childhood obesity. Future 
research should aim to assess a broader range of OPE metabolites, 

employ mixture analyses, and focus on populations with known elevated 
exposures. It should also include greater coverage of exposure across 
gestation, repeated measurements during pregnancy, and mechanistic 
animal studies.
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