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Graphical Abstract

Maternal obesity and increased cardiovascular risk in offspring: potential mechanisms
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Intrauterine exposure to maternal obesity leads to offspring cardiovascular dysfunction through mechanisms including sympathetic hyper-reactivity,
metabolic inflexibility, and mitochondrial dysfunction, as well as oxidative stress. Cardiovascular dysfunction originates in foetal life and persists into
postnatal life through persistent epigenetic modifications. Interventions and secondary challenges may occur pre- and post-natally, which may impact
progression to overt cardiovascular disease in adulthood. Created with BioRender.com.
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Abstract

Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates
of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal
models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular
phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It
also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current inter-
ventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are
highlighted.
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Key points

.

in offspring of obese pregnancy.

.

dysfunction at its origin in offspring of obese pregnancy.

* Exposure to maternal obesity during pregnancy results in increased risk of cardiovascular disease in offspring.

Maternal obesity-induced cardiovascular dysfunction in offspring has origins in utero.

Cardiovascular dysfunction in offspring of obese pregnancy arises and persists through sympathetic hyper-reactivity, mitochondrial dysfunc-
tion, metabolic inflexibility, and epigenetic modification via miRNAs.

Exposure to secondary insults during adulthood, such as dietary modifications, stress, and ageing, can reveal latent cardiovascular impairments

Interventions established during gestation, such as maternal exercise or antioxidant supplementation, may be key in preventing cardiovascular

Introduction

The World Health Organization describes obesity as a condition of epi-
demic proportions, with one in eight individuals and over 1.9 billion
adults worldwide living with obesi‘cy.1 This rising prevalence of obesity
matches a rising incidence of cardiovascular disease, which is now re-
sponsible for nearly 30% of all deaths in the UK.>™® Increased adiposity
leads to insulin resistance and hypertension, promoting a greater risk of
cardio-metabolic disorders in obese individuals.”®

The health implications of obesity rise exponentially to a much great-
er level of importance when considering maternal obesity.” Over half of
women in the UK are now overweight or obese during pregnancy.'®
This is of the gravest concern as obesity during pregnancy not only
has immediate detrimental effects on the mother but also on her chil-
dren, thereby propagating adverse health conditions onto the next gen-
eration.”’ Accumulating evidence derived from human studies and
experimental animal models shows that maternal obesity can markedly
increase the risk of cardiovascular disease in offspring,°° even when
the progeny is fed a healthy diet and in the absence of them becoming
obese.?® This highlights that it is something about the exposure of the
embryo or foetus to an obesogenic environment during gestation itself
that either triggers a foetal origin of cardiovascular dysfunction and/or
increases susceptibility to heart disease in the adult offspring, consistent
with the Developmental Origins of Health and Disease hypothesis.’’

In humans, the best evidence to support developmental origins of
cardiovascular health and disease in offspring of obese pregnancy
comes from studies in women who were obese during a first preg-
nancy, lost weight through bariatric surgery, and were leaner during a
second pregnancy.'*3%?? These studies show that siblings born before
bariatric surgery have signs of an increased cardiovascular risk com-
pared with those born after surgery.”‘n'33 Therefore, such studies
highlight that a different environment in the same womb can

programme a differential risk of heart disease in offspring of the same
family. This provides compelling evidence in humans that the environ-
ment experienced during critical periods of development directly influ-
ences long-term cardiovascular health. Therefore, when considering
strategies to reduce the burden of heart disease on every nation’s
health and wealth, there needs to be a greater focus on prevention ra-
ther than treatment (Figure 7).

This review summarizes the evidence derived from human clinical
studies and experimental animal models that reflects the impact of ma-
ternal obesity on the cardiac and vascular health of the adult offspring.
Mechanistically, the work describes how alterations in the intrauterine
environment during maternal obesity, such as foetal hypoxia and hyper-
3435 can lead to oxidative stress,***® mitochondrial dys-
function and metabolic inflexibility,***”*" contributing to sympathetic
hyper-reactivity?"**3¢*? and cardiovascular dysfunction®"*"38 in off-
spring. How postnatal diet, stress, or ageing may reveal or exacerbate
an underlying cardiovascular susceptibility originating in utero is also
highlighted. Finally, the review focuses on current interventions, such
as maternal exercise or dietary supplementation during pregnancy,
against the developmental programming of cardiovascular dysfunction
in offspring of obese pregnancy.

insulinaemia

Maternal obesity impacts offspring
cardiovascular function during the
postnatal period

Evidence from human studies

An association between maternal obesity and offspring cardiovascular
dysfunction postnatally is evident across many studies in humans
(Table 1 and Figure 2). Increased maternal body mass index (BMI) during
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Figure 1 Timeline for intervention and secondary challenges over the life-course in offspring of obese pregnancy. The diagram shows that the younger
we are the greater the impact that maternal obesity has upon us. Similarly, the opportunity for correction is greatest in younger life and diminishes
progressively as we grow older. Therefore, candidate interventions should start as early as possible during the developmental trajectory, rather
than waiting until disease is established. The diagram also shows that exposure to additional challenges in pre-natal and post-natal life, secondary to
obese pregnancy, exacerbates the offspring cardiovascular dysfunction. The degree of impact of maternal obesity during pregnancy, superimposed chal-
lenges, and interventions is greatest in early pre-natal life, where the environmental sensitivity of progeny is highest, and falls exponentially across the

offspring life-course. Key publications supporting statements are cross-referenced. Created with BioRender.com

pregnancy is associated with higher rates of hospital admissions due to
cardiovascular events in adult offspring aged between 31 and 64'>7®
and in a larger cohort aged between 27 and 76,"> with cardiovascular
disease risk also higher in young human offspring aged between 1 and
25." Studies in children born to obese mothers reveal structural and
functional cardiovascular alterations which likely drive this increased
disease risk. In young children, increased maternal BMI during preg-
nancy is associated with left ventricular hypertrophy'® and greater epi-
cardial adiposity.'” This is associated with diastolic dysfunction at 12
months of ages.”’

Vascular alterations are also present, with increased aortic root diam-
eter, arterial hypertrophy, and reduced arterial compliance in children of
obese pregnancy.“"”‘85 Together, these changes likely contribute to the
increased prevalence of hypertension in children and adolescents born to
mothers with obesity,13’18'7277‘/"81'86 showing a positive association be-
tween maternal pre-pregnancy BMI and offspring blood pressure even
in the first year of life? that persists into adulthood.””® Evidence
from human studies also indicates that cardiovascular disease risk in adult
offspringis related to the degree of maternal obesity, with increased rates
of cardiovascular disease only seen in offspring of mothers with obesity
Grade Il or higher (BMI over 35 kg/m?), which may be partly due to in-
creased risk of additional complications such as neonatal asphyxia.™

Evidence from animal studies

To further understand the cardiovascular phenotype of offspring of ob-
ese pregnancy, rodent, ovine, and non-human primate models of

maternal obesity have been generated, each showing different technical
and translational advantages and limitations, summarized in Table 2.
Across mammalian preclinical models, exposure to maternal obesity
during pregnancy leads to alterations in the heart structure and function
in the progeny (Table 1 and Figure 2). Rodent offspring of obese preg-
nancy show increased heart weight, 202308384
omyocyte size.?0?"2>268384 These alterations occur with the activation
of hypertrophic signalling pathways including the re-expression of foetal
genes®®®® and increased insulin signalling through AKT, ERK, and the
mammalian target rapamycin (mTOR).2** Cardiac hypertrophy with
greater myocardial collagen content has also been reported in adult off-
spring in an ovine model of maternal overnutrition.”

Maternal obesity also leads to systolic dysfunction in the adult off-
spring, with impaired cardiac output seen in mice”***#* and sheep.>®
Reductions in left ventricular developed pressure,21 fractional shorten-
ing,z‘mé"83 ejection fraction,2>**2%83 and heart rate**? all contribute to
a lower cardiac output in rodent offspring. However, there are several
discrepancies in heart rate and blood pressure changes in offspring of
obese pregnancy; juvenile sheep show a trend towards tachycardia at
2.5 months associated with hypertension, both of which are absent
at 9 years.”® In contrast, mouse offspring showing bradycardia at 1
and 3 months that reverses to tachycardia at 6 months, while showing
a hypertensive phenotype at all time points.'®>> These differences may
be age-dependent and influenced by a range of factors including species
differences. Systolic dysfunction is associated with impairments in car-
diomyocyte Ca** handling and activation of contractile proteins in
mouse offspring.”’ Diastolic dysfunction in mouse offspring of obese

with increased cardi-
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Table 1 Continued

Humans

References

Maternal phenotype

Child/adult offspring

Foetal/neonatal offspring

Offspring age

1 blood pressure in offspring born pre-bariatric surgery

9-15 years

Pre-bariatric surgery (obese): mean BMI

45 kg/m?

Post-bariatric surgery: mean BMI 27.6 kg/m2

77

Maternal BMI positively associated with offspring waist

9-15 years

Overweight/obese: BM| >25 kg/m?

circumference, and negatively associated with offspring

cardiorespiratory fitness

Control: BMI 18.5-24.9 kg/m?

No association between maternal BMI and offspring blood

pressure

12,15,78-80

1 risk of hospital admission for cardiovascular event

Adult: 27-76 years

Obese: BMI >30 kg/m?

1 systolic and diastolic blood pressure

Control: BMI 18.5-24.9 kg/m?*

There is extensive evidence of cardiovascular dysfunction in offspring of obese pregnancy, in both pre-natal and post-natal life, across pre-clinical rodent, sheep and non-human primate models, and studies in humans. Diet % in kcal.

E/A ratio, early/atrial ratio; FGF, fibroblast growth factor; HIF-1a,

hypoxia-inducible factor 1 alpha; HUVEC, human umbilical vein endothelial cell; IRS-1, insulin receptor substrate 1; LF:HF ratio, low frequency: high frequency ratio; LGA, large for gestational age (foetal weight); MAP, mean arterial pressure; mTOR,

mammalian target of rapamycin; MYH6/7, myosin heavy chain beta 6/7; NO, nitric oxide; NPPB, natriuretic peptide B; Pparg/a, nuclear peroxisome proliferator activated receptor.

Abbreviations: AGA, average for gestational age (foetal weight); Akt, protein kinase B; ACTAT, actin alpha 1; BMI, body mass index; Cd36, a plasma membrane fatty acid translocase;

pregnancy results from an increase in left ventricular end-diastolic pres-
sure,>"?” a reduced ratio of early-to-late left ventricular wall displace-

ment and mitral inflow,?>3”# together with longer isovolumetric

relaxation time.®

Vascular alterations have also been reported, with mesenteric artery
hypertrophy in adult rat offspring®” and thickening of the aortic intima
in non-human primate ostpring56 of obese pregnancy. Vascular dysfunc-
tion is evident, with a reduction in endothelium-dependent relaxation in
resistance arteries of adult mice offspring of obese pregnancy.®®** The ef-
fect on conduit arteries is less clear, with Macaque offspring of obese preg-
nancy showing increased aortic endothelial sensitivity to acetylcholine.>®
In contrast, thoracic aorta endothelium-dependent and independent
vasodilatation remained unaltered in adult mice offspring of obese preg-
nancy.?” This conflicting evidence may arise from species differences,
study of resistance versus conduit vessels, and/or due to investigation of
outcomes at different stages of maturity of the adult offspring. For in-
stance, Macaque offspring were studied during the juvenile period®® while
mouse offspring were studied as mature adults.”” Despite species and vas-
cular bed differences, it is clear that offspring exposed to maternal obesity
during gestation show alterations in vascular structure and function, which
may contribute to the development of cardiovascular disease later in
adulthood.

Maternal obesity impacts offspring
cardiovascular dysfunction during
the prenatal period

While impacts on adult offspring cardiovascular risk are well estab-
lished, there is now accumulating evidence suggesting that cardiovascu-
lar dysfunction in human offspring of obese pregnancy may originate
before birth (Figure 2).

Evidence from human studies

A reduction in bi-ventricular global strain is present in human foetuses of
obese mothers at 14 weeks of gestation.””*®"%* Tissue Doppler imaging
of foetal cardiac systolic and diastolic velocities and left ventricular ejec-
tion fraction reveals a reduction in all variables in human foetuses of ob-
ese mothers by 20-25 weeks, while an increased interventricular septum
thickness becomes evident by 32 weeks of gestation.>”*®"%* Basal foetal
heart rate and heart rate variability are increased from mid-gestation in
obese compared with healthy human pregnancies, associated with a re-
duction in the low frequency: high frequency (LF:HF) ratio.>” However,
echocardiography studies during stimulated conditions, such as during
parturition, revealed an increase in the foetal heart LF:HF ratio in obese
pregnancy61 and neonatal recordings show decreased heart rate
variability.70

Vascular dysfunction is also apparent in the human foetus of obese
pregnancy, with increased umbilical artery constriction to serotonin,®’
and impaired endothelium-dependent dilatation of the umbilical vein to
insulin, an effect associated with vascular insulin resistance and oxidative
and endoplasmic reticulum stress.®*¢* These changes occur with an in-
crease in the umbilical artery pulsatility index in offspring of obese wo-
men, measured at 32,°> but not at 37°° weeks of gestation. Impairments
in endothelium-dependent and independent vasodilatation have also
been reported in chorionic plate arteries of obese human preg-
nancy.68‘69 However, no difference was found in the foetal middle cere-
bral artery pulsatility index with obese pregnancy.®®
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Maternal Obesity

Foetal

Arterial
remodelling

Cardiac
hypertrophy

Diastolic
dysfunction

Systolic
dysfunction

Post-natal
' -
‘,Sympathetic v Hypertension
dominance

(13,18,72-76,79-82,86)

Ry

22,28,29,36,46)

(56)

- Endothelial
dysfunction

Figure 2 Cardiovascular phenotype of foetal and adult offspring of obese pregnancy in human and pre-clinical animal models. Maternal obesity induces

cardiac hypertrophy‘30,37.38,48,52.54,57,58.104

leading to sympathetic dominance,?'2>36:4%47:5659.61.70

arterial remodelling>® and systolic and diastolic dysfunction
endothelial dysfunction

38,104,44,48,49,52,57-59,61,70 in the foetal offspring,
16.17,36,42.56,85’ and hypertension79—82,13.18.22,28,29.36,46,53.72—76,86 in pOST.-

natal life. Key publications supporting statements are cross-referenced. Created with BioRender.com

Evidence from animal studies

Evidence derived from preclinical animal models, including rodent, sheep,
and non-human primates, show cardiac structural alterations in offspring
of obese pregnancy in prenatal life, which match the hypertrophy seen in
adulthood (Table 1 and Figure 2). Maternal obesity leads to increased heart
weight in foetal mice®” and neonatal rats.*>*® The late-gestation foetal ba-
boon shows increased cardiomyocyte proliferation and myocardial fibrosis
in obese pregnancy, indicative of pathological hypertrophy.>* Similarly,
foetal sheep exposed to maternal obesity show increased left ventricular
weight and wall thickness with higher cardiomyocyte cross-sectional area,
activation of hypertrophic signalling, and evidence of cardiac fibrosis.*8>2
Evidence derived from preclinical animal models also supports impair-
ments in cardiac function in foetal life during obese pregnancy. Foetal
mice of obese pregnancy show systolic and diastolic dysfunction, with
lower values for ejection fraction and fractional shortening, increased
time spent in isovolumetric contraction and relaxation, and a reduction
in the early atrial to ventricular (E:A) filling ratio.** Foetal sheep cardio-
myocyte contractility is also reduced in obese pregnancy, associated
with impaired Ca®* handling and an increased proportion of slow-twitch
myosin heavy chains, resulting in impaired systolic function. >
Relatively few animal studies have explored the prenatal origin of vas-
cular dysfunction in offspring of obese pregnancies, in part due to the
practical size limitations of evaluating vascular reactivity of resistance cir-
culations in foetal rodents. Placental vascular density is reduced during
pregnancy in obese mice and sheep mothers,**'% and foeto-placental
blood flow is impaired in the obese Japanese macaques.® Arterial hyper-
trophy is also evident, with an increased aortic wall thickness and in the
aortic collagen:elastin ratio in the foetus of over-nourished ewes.>?
Therefore, the available literature supports that obese pregnancy leads
to alterations in the vascularization of tissues and in vascular structure in

foetal life. However, the impact of maternal obesity on foetal vascular
function appears entirely unknown, warranting further investigation.

Mechanisms of cardiovascular
dysfunction in offspring of obese
pregnancy

Animal models have been indispensable to identify causal mechanisms
of cardiovascular disease programming by maternal obesity. Although
several mechanisms have been proposed, the most prevalent leading
to a persistent offspring phenotype can be summarized in four broad
areas: sympathetic hyper-reactivity, mitochondrial dysfunction and
metabolic inflexibility, oxidative stress, and epigenetic dysregulation in-
cluding via miRNAs (Figure 3).

Sympathetic hyper-reactivity

Sympathetic dominance in the cardiovascular system of adult offspring of
obese pregnancy can be seen in many forms, including increased cardiac
and vascular sensitivity to sympathetic agonists.”"*¢** There is also greater
dose-dependent arterial pressure response to alpha-adrenergic agonists in
adult offspring of obese rat pregnancy.?> Sympathetic hyper-reactivity of
the peripheral vasculature can precipitate cardiovascular dysfunction as en-
hanced basal sympathetic tone and arterial hypertrophy independently
promote an increase in peripheral vascular resistance, thereby increasing
arterial blood pressure.'”” Therefore, sympathetic hyper-reactivity contri-
butes to the offspring hypertensive phenotype observed across several
animal models of obese pregnancy.?2282%36463386 |y creased arterial blood
pressure also leads to a greater cardiac afterload, resulting in increased car-
diac work. While an enhanced sympathetic drive helps to maintain cardiac
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Figure 3 Mechanisms mediating cardiovascular dysfunction in offspring of obese pregnancy. Exposure to maternal obesity in utero leads to sympathetic

21,22,36 20,26,37 20,36

hyper-reactivity, metabolic inflexibility , and oxidative stress

in the offspring, maintained through persistent epigenetic regulation,

52,120,122

and eventually leading to overt cardiovascular dysfunction. Key publications supporting statements are cross-referenced. Created with BioRender.com

output, it is known to be unsustainable, eventually becoming a hallmark of
early-stage heart failure, 198107

Anincreased LF:HF ratio of foetal heart rate variability during parturition
has been reported in pregnancies with increased maternal BMI in humans,
consistent with a foetal origin of cardiac sympathetic dominance.®’
However, a reduction in LF:HF has been measured during mid-to-late ges-
%% and no difference was found in the cardiac autonomic regulation
of 5—6-year-old children born to obese compared with healthy weight
mothers."® This suggests that underlying sympathetic hyper-reactivity in
the offspring heart resulting from maternal obesity may only be revealed
in the presence of a superimposed challenge, such as during labour and de-
livery. However, detailed studies of the impacts of maternal obesity on
foetal cardiovascular function during acute stressful conditions, such as
during acute hypoxia, acute asphyxia, or acute hypotension, which trigger
foetal sympathetic compensatory responses, await investigation.

tation,

Mitochondrial dysfunction and metabolic
inflexibility

Mouse offspring exposed to maternal obesity during gestation show in-
creased cardiac insulin signalling® and a reduction in mitochondrial oxy-
gen consumption26
may be increased dependence on glycolytic pathways for ATP generation.
Cardiac mitochondria show circular morphology and a disorganized align-
ment relative to sarcomeres, which may result in poorer coupling of ATP
production with consumption.26 However, -month-old mouse offspring
of obese pregnancy show a reversed cardiac metabolic phenotype with

at 2 months of age. These data suggest that there

increased mitochondrial fatty acid oxidation and a reduction in glucose
uptake.37 This cardiac phenotype in adulthood may be an indication of
metabolic inflexibility arising due to hyperinsulinaemia resulting from per-
ipheral insulin resistance.” Interestingly, a metabolic shift with increased
dependence on fatty acid metabolism is characteristic of the cardiac
phenotype in animal models of diabetic cardiomyopathy.'"®

The literature also supports that alterations in cardiac metabolism in off-
spring of obese pregnancy may originate in foetal life. Oleate oxidation is
increased in foetal primary cardiomyocytes along with higher cardiac ex-
pression of lipid metabolism-related genes in foetal mice of obese preg-
nancy.>”*° Maternal obesity results in increased cardiac lipid deposition
in neonatal rats, likely secondary to changes in myocardial lipid metabolism
and h>/perlipidaemia.3°'38 Metabolic inflexibility is evident at this early stage,
presenting a contrasting phenotype to adult offspring, with reductions in
cardiac insulin signalling in the foetal sheep*” and fibroblast growth factor
(FGF)-activated PI3K/Akt signalling in the neonatal rat* during exposure
to obese gestation. Mitochondrial fragmentation and reduced cardiomyo-
cyte oxygen consumption in the neonatal rat also support that metabolic
capacity is impaired and that this may be contributing to the reduced car-

diac contractile function in offspring of obese pregnancy.’®*°

Oxidative stress

Mouse offspring of obese pregnancy show increased lipid peroxidation
consistent with excess superoxide production, which limits basal and
acetylcholine-induced nitric oxide production in the femoral artery.>
This shift in vascular oxidant tone results in endothelial dysfunction
that becomes exacerbated over time, consistent with an increase in
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vascular oxidative stress in offspring of obese pregnancy.*® Cardiac oxi-
dative stress is also evident in mouse offspring exposed to maternal
obesity. Increased cardiac lipid peroxidation correlates with a reduction
in the mitochondrial superoxide dismutase (MnSOD), and an upregula-
tion of catalase levels.”® These alterations in expression of antioxidant
enzymes are similar to those described in heart failure, and they are
linked with impaired myocardial mitochondrial metabolism.""""2

Excess generation of reactive oxygen species (ROS) and increased
HIF-10 target gene expression levels have both been reported in the
hearts of foetal mice exposed to maternal obesity.>*** As ROS gener-
ation is reported to stabilize HIF-1q, this is consistent with elevated oxi-
dative stress.>*** Neonatal rats of obese pregnancy also show higher
levels of cardiac lipid peroxidation.*® Damage to mitochondrial metab-
olism due to oxidative stress further exacerbates existing perturbation
of cardiac energy balance, with reduced flexibility of ATP production
pathways and poorer coupling of myocardial ATP production and
use. Therefore, oxidative stress creates and exacerbates impairments
in systolic and diastolic dysfunction in offspring of obese pregnancy.

Epigenetic regulation by miRNAs

Alterations in epigenetic signals, including DNA methylation, histone
modifications, and miRNA expression, may provide a mechanism for
persistent offspring cardiovascular dysfunction from foetal life into adult-
hood."3"* Of particular interest are miRNAs, as their epigenetic dys-
regulation can modulate networks of genes in a coordinated fashion.""
MiRNAs are small non-coding RNAs that base-pair to specific sequences
within the 3’ untranslated region of mMRNA-target transcripts and act to
decrease mRNA stability and/or block translation."'® Foetal cardiac
miRNA expression is dysregulated by maternal high-fat feeding in non-
human primates>*'%® and in genetically obese-prone mice.""” Predicted
targets of miRNAs dysregulated in the foetal baboon heart are p53,
PPAR-y, and HIF-1a, which are known to play key roles in cell cycle regu-
lation, metabolism, and oxidative stress signalling, thus providing a mech-
anistic framework by which dysregulated miRNA expression could lead
to increased risk of cardiovascular disease.>*'% MiIRNA dysregulation
has been shown to persist into adulthood, with miRNA-15b increased
in the myocardium of adult mouse offspring and in the serum of human
offspring exposed to obesity during pregnancy.''® MIRNA-15b is re-
leased in response to ischaemia-reperfusion of mouse hearts ex vivo,
with increased release in hearts of offspring from obese pregnancy.''®
MIRNA-15b overexpression reduces cardiomyocyte mitochondrial
outer membrane stability and fatty acid oxidation in vitro, demonstrating
arole of mRNA-15b in cardiac metabolism."*® Programmed changes in
cardiac miRNAs are consistent with a growing body of evidence suggest-
ing that mMiRNAs play an important role in the pathogenesis of cardiovas-
cular disease (see’"”). The mechanisms by which an in utero obesogenic
environment leads to permanent changes in miRNA expression are un-
known but could involve programmed changes in DNA methylation and
histone modifications of DNA regions regulating miRNA transcription.
In addition to contributing to programming mechanisms, miRNAs could
also be exploited as disease biomarkers'*° and therapeutic targets.'

Secondary insults reveal latent
cardiovascular susceptibility in
offspring of obese pregnhancy

Offspring of obese pregnancy can show evidence of sympathetic hyper-
reactivity, mitochondrial dysfunction, oxidative stress, and epigenetic

dysregulation as the most prevalent or persistent phenotype, even dec-
ades after birth. However, overt cardiovascular dysfunction is not al-
ways seen. It is possible that such aspects of the cardiovascular
phenotype in these offspring may enhance sensitivity to secondary in-
sults that unveil latent susceptibility to future cardiovascular risk.
Increasing evidence supports this concept, and focuses on alterations
in diet, stress and ageing as likely secondary stressors (Figure 7).

Post-weaning diet

Cardiac hypertrophy and inflammation are present in lambs exposed to
maternal obesity during gestation only after a 12-week feeding chal-
lenge, compared with lambs of control pregnancy exposed to the
same feeding challenge.51 While exposure to maternal obesity during
gestation leads to cardiac hypertrophy and reduced ejection fraction
in 8-week-old mouse offspring, the development of myocardial fibrosis
and hypertension is only present at this stage in offspring exposed to an
obesogenic post-weaning diet.?> Vascular dysfunction is also evident in
macaque offspring of obese pregnancy dependent on post-weaning
diet, with offspring on a control diet showing enhanced endothelium-
dependent vasodilatation in the aorta, an effect which is reversed in
offspring fed a high-fat diet.>® Importantly, in these pre-clinical studies,
cardiovascular dysfunction is identified as compared with offspring of
control pregnancy also exposed to the same altered post-weaning
diet, demonstrating that maternal obesity leads to a heightened suscep-
tibility to cardiovascular dysfunction induced by a dietary chal-
lenge.>*"5¢ 15 week-old mouse offspring of obese pregnancy are
hypertensive with impaired basal vascular nitric oxide production only
when exposed to a high fat post-weaning diet.*® However, these
changes were comparable to offspring of control pregnancy with high-
fat post-weaning diet.>® An obesogenic post-weaning diet has also been
shown to suppress the compensatory upregulation of myocardial fatty
acid oxidation in offspring of obese pregnancy, and to increase expres-
sion of uncoupling proteins.'*? Similarly, platelet hyperactivation is only
observed in male mouse offspring of obese pregnancy which were also
exposed to a high fat post-weaning diet."? Therefore, a superimposed
dietary challenge exacerbates cardiac dysfunction in adult offspring of
obese pregnancy through structural, inflammatory, and metabolic
pathways.

Possible mechanisms for increased sensitivity to a post-weaning diet-
ary challenge in offspring of obese pregnancy include dysregulation of
appetite control, poor nutrient handling, and metabolic inflexibility.
Mouse offspring of obese pregnancy are hyperphagic,*? increasing sus-
ceptibility to diet-induced obesity. Mouse offspring of obese pregnancy
also show increased serum insulin levels in the absence of hypergly-
caemia, indicative of insulin resistance, resulting in greater metabolic
vulnerability.*> For instance, mouse offspring of obese pregnancy
show exacerbated hyperinsulinaemia following exposure to a high-
fat/high-sugar post-weaning diet.”> Mouse offspring of obese pregnancy
also show myocardial metabolic inflexibility, with increased depend-
ence on fatty acid oxidation over glucose metabolism.”

Combined, hyperphagia and dysregulated glucose handling exacer-
bate disruption to the metabolic and endocrine milieu with a dietary
challenge, imposing additional challenges to a heart that already has re-
duced flexibility in the metabolic pathways available for myocardial ATP
production.

Stress

Maternal obesity may also prime offspring to show dysregulated cardiovas-
cular responses to stress, revealing a heightened vulnerability to cardiac
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injury. Mouse offspring of obese pregnancy show enhanced myocardial fi-
brosis, systolic and diastolic dysfunction compared with offspring of
healthy pregnancy in response to a 2-week stress challenge.® Similarly,
mouse offspring from A’-mutant obese dams showed significantly higher
infarct size than control offspring following an ischaemia-reperfusion chal-
lenge,"** indicating reduced coronary reserve to maintain cardiac function
with the superimposed challenge. A plausible mechanism for enhanced
sensitivity to stress is sympathetic hyper-reactivity. Rodent offspring of ob-
ese pregnancy show elevated cardiac and vascular sensitivity to adrenergic
agonists, which may result in a greater increase in peripheral and coronary
vascular resistance in the presence of stress, leading to increased cardiac
afterload and poorer myocardial perfusion, alongside enhanced stimula-
tion of cardiac hypertrophy.2'2*#2

Ageing

The onset of maternal obesity-induced hypertension is known to be
age-dependent across a range of animal models (Table 7). Mouse off-
spring of obese pregnancy show no difference in systolic blood pressure
at 4-6 months, but by 7-12 months show a significant elevation com-
pared with age-matched controls.?”'?? In contrast, juvenile sheep off-
spring exposed to maternal obesity during gestation show
hypertension, which appears to resolve during adulthood.>® However,
echocardiography reveals the progression of significant impairments
in systolic function in ageing sheep offspring of obese pregnancy com-
pared with ageing offspring of control pregnancy.” Ageing in mouse off-
spring of obese pregnancy has also been associated with the
development of both systolic and diastolic dysfunction.’”* These pre-
clinical studies highlight that it is the interaction between developmental
exposure to maternal obesity and ageing which mediates cardiovascular
dysfunction due to heightened susceptibility, not seen in aged offspring
of control pregnancy.

While several studies highlight the impact of exposure to secondary
insults postnatally, superimposed challenges in the prenatal environ-
ment may also play a significant role in exacerbating maternal
obesity-induced cardiovascular dysfunction in offspring. For instance,
a study in rats showed that uterine artery ligation in obese pregnancy
results in increased relative heart weight and exacerbated alterations
in arterial wall structure in 60-day-old offspring.'* Therefore, the inter-
action between maternal obesity and other intrauterine challenges may
also be important in determining offspring cardiovascular health.
However, our analysis highlights a gap in the literature of studies inves-
tigating the interaction between an in utero obesogenic environment
and common stressors in foetal life, such as foetal hypoxia or excess
foetal glucocorticoid exposure.

Interventions against the
developmental programming of
cardiovascular dysfunction in
offspring of obese pregnancy

Independent of whether secondary insults occur pre- or post-natally,
their occurrence can reveal latent susceptibilities, leading to the expres-
sion of overt cardiovascular dysfunction in adult offspring of obese
pregnancy later in life. This highlights the need for intervention, while
also providing potential windows of opportunity for preventative ther-
apy (Figure 7). To date, interventional strategies have focussed primarily
on either maternal exercise or dietary supplementation during obese
pregnancy.

Maternal exercise

In mice, maternal exercise ameliorated maternal hyperinsulinaemia,
prevented foetal hyperinsulinaemia, and normalized placental HIF-1a.
expression.®* These changes occurred with attenuation of cardiac
hypertrophy and systolic dysfunction in 8-week-old adult offspring of
obese pregnancy subjected to a maternal exercise intervention.?*
Maternal exercise also alters the vasculature, improving placental vascu-
larization in obese mouse pregnancy,*® and reversing vascular endothe-
lial dysfunction in 23 week-old mouse offspring exposed to maternal
obesity and a western diet |:>ost—weaning.27 Evidence from mouse mod-
els indicates that maternal exercise is an effective intervention to pre-
vent cardiovascular disease programming, with protective effects
observed in offspring even when using mild maternal exercise regimes
that do not result in the normalization of maternal weight. Exercise in-
terventions that improve the maternal metabolic phenotype, despite
no effect on maternal BMI, may prevent the development of oxidative
stress and metabolic inflexibility in the offspring cardiovascular system,
leading to a reduced cardiovascular risk in offspring. This is an important
message to convey to overweight women, that despite having no effect
on their body weight, exercise during pregnancy still benefits the cardi-
ometabolic health of their offspring.

Lifestyle interventions, such as maternal exercise, have been trialled
in human subjects with no significant improvement in neonatal cardiac
structure or function.'*® However, a recent systematic review of ran-
domized controlled trials highlighted that maternal lifestyle interven-
tions, such as diet and physical activity, reduced cardiac remodelling
and improved systolic and diastolic function in children exposed to ma-
ternal obesity in pregnancy.'” Interestingly, maternal lifestyle interven-
tions did not have any effects on offspring blood pressure across
trials,"’ consistent with the persistence of offspring hypertension in
a mouse model of maternal obesity with exercise intervention during
pregnancy.>* However, with poor adherence to physical activity guide-
lines in pregnant women,"? alternative intervention strategies will likely
need to be considered.

Offspring and maternal dietary

supplementation

Intervention through offspring dietary supplementation with glucose-
lowering berberine has been shown to improve cardiac function, to-
gether with improved cardiac mitochondrial function in mouse offspring
exposed to gestational diabetes.'**'*° However, evidence points to-
wards a foetal origin of cardiac dysfunction in obese pregnancy, and so
prevention by maternal treatment during pregnancy compared with
postnatal intervention may increase the effectiveness of the approach,
providing optimal protection against offspring cardiovascular dysfunc-
tion (Figure 7). Several studies have reported that maternal antioxidant
treatment is effective in protecting against cardiovascular dysfunction
in offspring exposed to hypoxic pregnancy by attenuating oxidative
stress in the placenta and the foetal cardiovascular system,8100.131-13¢
Therefore, as offspring exposed to maternal obesity also show oxidative
stress, maternal antioxidant therapy may provide an effective interven-
tion against the programming of cardiovascular dysfunction in offspring
of obese pregnancy. For example, antioxidant treatment of obese mice
rescues oocyte mitochondrial dysfunction'®” and oxidative stress.'*®
Treatment of obese mice with the antioxidant pyrroloquinoline quinone
from conception and throughout lactation increased adult offspring oxi-
dative defences and metabolic ﬂexibility.139 Whether the beneficial ef-
fects of maternal antioxidant treatment during obese pregnancy
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Figure 4 MitoQ: a mitochondria-targeted antioxidant. MitoQ is composed of a lipophilic triphenylphosphonium cation covalently attached to a ubi-
quinol antioxidant."**~2 The lipophilic cations facilitate free movement of MitoQ through phospholipid bilayers, while the triphenylphosphonium cat-
ion concentrates MitoQ ~1000 fold within the mitochondria, driven by the large mitochondrial membrane potential."**~'* MitoQ is reduced by the
respiratory chain to its active ubiquinol form once inside the mitochondrial matrix.'**~"*2 This activated ubiquinol form of MitoQ inhibits lipid perox-
idation, ameliorating mitochondrial damage.'**~"*? Created with BioRender.com

extend to protection against the programming of cardiovascular dys-
function in offspring remains to be tested.

A key limitation of translating antioxidant therapies to human popula-
tions lies in identifying a safe, but effective dose. For example, the mater-
nal supplementation with the antioxidant vitamin C during rat pregnancy
has been shown to be protective against cardiovascular dysfunction of
adult rat offspring exposed to chronic hypoxia in utero, however, the
dose used was over 50 times the dose given to pregnant women in clin-
ical trials.’® Therefore, there is an urgent need to identify alternative
antioxidant therapies with increased human translational potential.
Mitochondria are a major site of ROS production, therefore targeting
these organelles should be one of the most effective antioxidant strat-
egies. However, conventional antioxidants are ineffective because
they cannot penetrate the mitochondria. A mitochondria-targeted ubi-
quinone that overcomes the problem of direct delivery to the mito-
chondria has now been developed (Figure 4). MitoQ is composed of a
lipophilic triphenylphosphonium cation covalently attached to a ubiqui-
nol antioxidant."**™"*? Lipophilic cations can easily move through
phospholipid bilayers without requiring a specific uptake mechanism.
Therefore, the triphenylphosphonium cation concentrates MitoQ sev-
eral hundred-fold within the mitochondria, driven by the large mito-
chondrial membrane potential."**"*? Only within the mitochondria,
MitoQ is reduced by the respiratory chain to its active ubiquinol form,
which is a particularly effective antioxidant that prevents lipid peroxida-
tion and mitochondrial damage."*®"*? The benefits of MitoQ have been
revealed in a range of in vivo studies in rats and mice and have also been
assessed in two Phase Il human trials."**~"*” In contrast to vitamin C and
other conventional antioxidants, MitoQ demonstrates no pro-oxidant
activity at high doses'® and long-term administration to mice* and

to human patients in Phase Il trials, including one that lasted 12 months
and revealed no toxicity.'**'*” However, the antioxidant benefits of
MitoQ in protecting the foetal and adult cardiovascular system in off-
spring of obese pregnancy remain to be investigated.

Concluding remarks

There is extensive evidence derived from human studies and preclinical
animal models for the programming of an increased risk of cardiovascu-
lar disease in offspring exposed to maternal obesity in utero (Table 1 and
Figure 2). Cardiovascular susceptibility in offspring has an early origin,
with many aspects of the cardiac dysfunctional phenotype emerging
in foetal life across mammalian species. This suggests that candidate in-
terventions should start as early as possible during the developmental
trajectory, rather than waiting until disease is established and has be-
come irreversible. The effects of novel treatments like mitochondria-
targeted antioxidant therapy during obese pregnancy in preclinical ani-
mal models should be explored. The literature also highlights a limited
understanding of how vascular structure and function is altered in off-
spring of obese pregnancy before birth. Large mammalian animal mod-
els permitting functional assessment of foetal vascular reactivity in
resistance circulations must be employed to address this gap in our
knowledge. This review also addressed key programming mechanisms
linking maternal obesity with offspring cardiovascular dysfunction, in-
cluding sympathetic hyper-reactivity, the development of oxidative
stress, mitochondrial dysfunction, metabolic inflexibility, and epigenetic
dysregulation via miRNAs. Data also support that exposure to a sec-
ondary insult in adult life, or even the process of ageing, often reveals
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latent impairments in the cardiovascular system in offspring of obese
pregnancy. It is likely that secondary insults occurring prenatally in off-
spring of obese pregnancy may also exacerbate latent susceptibility to
cardiovascular dysfunction. Therefore, further research is required to
understand how maternal obesity may impact the foetal cardiovascular
defence to common acute stresses in utero, such as acute foetal hyp-
oxia, acute foetal asphyxia, or acute foetal hypotension. In turn, further
research is also required to understand how longer-term intrauterine
complications in adverse pregnancy, such as chronic foetal hypoxia or
excess foetal glucocorticoid exposure, may interact with maternal
obesity to affect cardiovascular function in offspring.
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