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Simple Summary: Obesity is a major health issue affecting both humans and animals, leading to
various related health problems. This study explored whether vitamin D and omega-3 fatty acids,
alone or together, could help manage obesity and its related disorders in rats. Over the course of
26 weeks, rats were first fed a diet high in fat and sugar to induce obesity. They were then given either
vitamin D, omega-3 fatty acids, both together, or no supplement at all. The results showed that vitamin
D helped improve their blood sugar levels and reduced liver damage, while omega-3 fatty acids
slowed weight gain, reduced fat, and improved gut health. When used together, these supplements
were even more effective in preventing weight gain and improving overall health. These findings
suggest that vitamin D and omega-3 fatty acids could be a promising approach to managing obesity
and its complications, not only in animals but potentially in humans as well. This research could lead
to better strategies for preventing and treating obesity, benefiting public health.

Abstract: Obesity is a global public health issue linked to various comorbidities in both humans and
animals. This study investigated the effects of vitamin D (VD) and omega-3 fatty acids (ω3FA) on
obesity, gut dysbiosis, and metabolic alterations in Wistar rats. After 13 weeks on a standard (S) or
High-Fat, High-Sugar (HFHS) diet, the rats received VD, ω3FA, a combination (VD/ω3), or a control
(C) for another 13 weeks. The HFHS diet led to increased weight gain, abdominal circumference,
glucose intolerance, insulin resistance, and gut dysbiosis. VD supplementation improved their
fasting blood glucose and reduced liver damage, while ω3FA slowed BMI progression, reduced
abdominal fat, liver damage, and intestinal permeability, and modulated the gut microbiota. The
combination of VD/ω3 prevented weight gain, decreased abdominal circumference, improved
glucose tolerance, and reduced triglycerides. This study demonstrates that VD and ω3FA, alone or
combined, offer significant benefits in preventing obesity, gut dysbiosis, and metabolic alterations,
with the VD/ω3 combination showing the most promise. Further research is needed to explore
the mechanisms behind these effects and their long-term potential in both animal and human
obesity management.

Keywords: obesity; vitamin D; omega-3 fatty acids; metabolic disorders; intestinal microbiota

1. Introduction

Obesity, a global public health crisis, affected approximately 18.5% and 14.0% of
women and men in 2022, respectively [1]. This issue also impacts pets such as dogs and
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cats, with their overweight and obesity rates ranging between 19.7 and 59.3% and 11.5 and
52.0%, respectively [2]. Linked to health issues like type II diabetes, osteoarthritis, and
cardiovascular diseases, obesity drastically diminishes the quality of life of both humans
and pets [3–7].

The high morbidity associated with obesity requires effective prevention measures.
Traditional approaches like lifestyle modifications are often unstainable, resulting in only
5–10% weight loss [8]. Pharmacological treatments carry risks, and many drugs have been
removed due to their severe side effects [9]. This underlines the need to explore natural
products as potential alternatives [10], requiring thorough evaluations to assess the balance
between their benefits and risks.

At the macronutritional level, diets limiting sugar intake are viable. For instance,
transitioning from a high-fat diet (HFD) to a low-carbohydrate diet in obese mice promoted
weight loss and improved glucose metabolism, especially with omega-3 fatty acid (ω3FA)
supplementation [11]. A similar diet in obese rats also caused weight reductions [12].
However, there is limited evidence of the long-term sustainability of such diets [13].

Micronutrient interventions could address deficiencies exacerbated by obesity, includ-
ing vitamin A, B, D, and carotenoid deficiencies [14]. VD benefits obesity management
through genomic and non-genomic VD receptor (VDR) activation [15]. Despite contradic-
tory results on weight gain [16–19], VD positively impacts inflammation [20] and insulin
sensitivity [21]. The VD/VDR complex may inhibit C/EBPβ, repressing adipogenesis [22],
and regulate fatty acid oxidation and mitochondrial metabolism [23]. VD supplementation
in obese rats under tertiary prevention increased antioxidant markers like glutathione
peroxidase and superoxide dismutase in adipose tissue [24] and alleviated adipose-tissue-
induced inflammation by inhibiting the TNF-α, IL-6, and MCP-1 gene expression in obese
mice [25]. VD supplementation has also been shown to improve insulin resistance (IR) in
obese, VD-deficient premenopausal women [26]. Emerging evidence suggests that ade-
quate VD levels have a positive impact on the gut microbiota, preventing the progression
of metabolic diseases [27]. Indeed, VD administration can interact with the intestinal mi-
crobiota, increasing beneficial bacteria such as Akkermansia and Coprococcus and decreasing
the Firmicutes phylum and the Blautia genus [28].

Another limited nutrient in obesity is omega-3 polyunsaturated fatty acids. These
ω3FAs reduced visceral adiposity in HFD rat models [29], partly by activating peroxisome
proliferator-activated receptors (PPARs) β/δ, which are involved in fatty acid oxidation [30].
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) regulate triglyceride lev-
els [31], reduce inflammation [32], and improve insulin sensitivity [33], primarily through
GPR120 and/or PPAR activation [32,34]. A ω3FA intervention alleviated dyslipidemia in
HFD rat models [35]. EPA inhibits IκB phosphorylation, suppressing the NF-κB signaling
pathway and consequently downregulating the expression of inflammation-related genes
like TNF-α [36]. ω3FAs increase mitochondrial biogenesis and fatty acid oxidation in
rodents, possibly through the activation of PPARα [37]. ω3FA supplementation may pro-
mote butyrate-producing bacteria in the intestinal microbiota, contributing to inflammation
regulation [38]. Moreover, supplementation in type II diabetic patients improves their
insulin sensitivity by reducing non-esterified free fatty acids [39]. Intake of omega-3 is
broadly associated with a reduction in the prevalence of obesity and related metabolic
diseases in humans [40].

VD and ω3FA co-supplementation could offer a synergistic approach to prevent-
ing obesity and its complications. Their complementary mechanisms of action suggest
substantial potential benefits. VD, through VDR activation, modulates inflammation, im-
proves insulin sensitivity, and regulates lipid metabolism, while ω3FAs, via PPARβ/δ
and GPR120 activation, promote fatty acid oxidation, reduce inflammation, and improve
triglyceride regulation. However, the combined effects of these nutrients have seldom
been explored in the context of the tertiary prevention of obesity induced by a high-fat,
high-sugar (HFHS) diet. Comprehensive research is essential to understand the potential
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interactions between VD and ω3FAs and to evaluate their combined efficacy in managing
obesity and its complications.

Given the roles of VD and ω3FAs in metabolic health, we hypothesize that their use
will significantly reduce HFHS-diet-induced obesity and improve the intestinal dysbiosis
and metabolic parameters in Wistar rats, with greater effects of the combined intervention.
Therefore, this study examines VD and ω3FA supplementation, both individually and in
combination, in the tertiary prevention of obesity and its complications in an HFHS-induced
obese rat model.

2. Materials and Methods
2.1. Animal Housing

Sixty-four 8-week-old male Wistar rats (Janvier Labs®, Le Genest-Saint-Isle, France)
were used after a one-week acclimation. They were healthy, with no genetic modifications,
and were not previously involved in any studies. Their environment adhered to the
European standard ETS 123, with a 12 h light/dark cycle, a temperature of 22 ◦C ± 2 ◦C,
and 50% hygrometry.

The procedures followed good practices and the 3R strategy (Replacement, Reduction,
Refinement) and were approved by the ethics committee (APAFIS#33784-2021112413036973v3,
13 December 2021) of Pays de la Loire Nantes, France.

2.2. Study Design

The rats were divided into two groups (n = 32) and subjected to either a standard diet
(S; 3.84 Kcal/g) (3430 Kliba Nafag, Kaiseraugst, Switzerland) or an HFHS diet composed of
pellets (4.73 Kcal/g) (D12451 Research Diets®, Lynge, Denmark) and sweetened condensed
milk (3.22 Kcal/g) (Nestlé®, Nantes, France) ad libitum (Scheme 1).
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Scheme 1. Experimental design and groupings. Rats were initially divided into two dietary groups
(standard (S) and high-fat, high-sugar (HFHS)) for the first 13 weeks. Following this period, they
were further divided based on supplementation into six distinct groups: control (C), vitamin D (VD),
omega-3 (ω3), and vitamin D + omega-3 (VD/ω3). In total, eight experimental groups were formed,
each with n = 8 animals. The study spanned 26 weeks, with key procedures (oral glucose tolerance
test (OGTT), blood sampling (BS), abdominal circumference (AC) measurements, organ sampling
(OS), and the use of Ussing chambers (UC)) conducted at weeks 0 (W0), 13 (W13), and 26 (W26).

Both of these groups were subdivided into four experimental groups each (n = 8) after
they had received daily oral supplementations for 13 weeks: the control groups (C) received
mineral oil, the VD groups received 600 IU/kg/day of cholecalciferol (NeoBiotech, Xi’an,
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China), the ω3 groups received 300 mg/kg/day of fish oil (18% EPA/12% DHA) (Phospho-
Tech Laboratoires®, Saint-Herblain, France), and the VD/ω3 groups received both.

At week 0 (W0), week 13 (W13), and week 26 (W26), each rat underwent an oral
glucose tolerance test (OGTT), blood sampling, feces collection, and morphometric parame-
ter measurements.

At the end of the supplementation period, the animals were euthanized through an
overdose of intraperitoneal anesthetic (pentobarbital, Euthasol®, Fort Worth, TX, USA),
followed by the ex vivo procedures and organ collection.

These procedures were chosen for their capacity to reliably and reproducibly evaluate
the effects of nutritional supplements. The experimental procedures were standardized to
minimize potential biases, and the environmental conditions were kept constant to avoid
any external influences. All animals were included in the analysis, except those that did not
survive to the end of the experiment due to spontaneous death. No additional exclusion
criteria were applied.

2.3. Weight and Morphometric Measurements

Body weight (BW) and food/water consumption were monitored weekly. Abdominal
circumference (AC) and naso-anal length were measured at W0, W13, and W26. Body mass
index (BMI) was calculated as follows:

BMI (g/cm2) = BW (g)/Naso − anal length2 (cm2)

Feed efficiency (FE) was evaluated as follows [41]:

FE (%) = [BW Gain (g)/Caloric Intake (Kcal)] × 100

2.4. The Oral Glucose Tolerance Test

At W0, W13, and W26, the OGTT was performed. After a 4 h fast, fasting blood glucose
(FBG) was measured using a rodent glucometer (StatStrip Xpress®, Nova Biomedical,
Waltham, MA, USA) at the end of the tail, and each animal received an oral glucose dose
(2 g/kg). Their blood glucose levels were monitored at 15, 30, 45, 60, 90, and 120 min.
Given that prolonged fasting in nocturnal animals like rats is increasingly considered
suboptimal for metabolic studies, a 4 h fasting period was selected to minimize metabolic
and behavioral stress. Extended fasting in rodents can provoke a catabolic state, mobilizing
glucose reserves in a way that may interfere with glucose homeostasis assessments and
lead to confounding results. A shorter fasting period not only prevents weight loss but also
aligns better with the physiological state of the animals, providing stable baseline glycemia
for more reliable data [42–44].

The area under the curve (AUC) of their blood glucose levels over time was evaluated
using GraphPad Prism software (v.9.0.0). The homeostasis model assessment of insulin
resistance (HOMA-IR) scores were calculated as follows [45]:

HOMA-IR = [Fasting blood insulin (FBI; µIU/mL) × FBG (mmol/L)]/22.5

2.5. Blood Sampling

At W0, W13, and W26, after a 4 h fast, the rats were anesthetized with isoflurane (2%),
and their blood was collected from their tail tips. EMLA® cream (Lidocaine, Vidal, Paris,
France) was applied to prevent pain. The blood was centrifuged (3000× g, 4 ◦C, 10 min)
into heparin-containing tubes, followed by plasma aliquoting and storage at −80 ◦C. The
plasma was used for FBI (Laboniris, Nantes, France), leptin (RAB0335, Sigma Aldrich®,
St. Louis, MO, USA), adiponectin (DY3100-05, Bio-Techne®, Minneapolis, MN, USA), and
total 25(OH)D (VID21-K01, Eagle Biosciences Inc., Amherst, NH, USA) determination using
ELISA kits. Triglycerides (TGs), total cholesterol (TC), and high-density lipoprotein (HDL)
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were measured by the Nantes hospital center. The triglyceride–glucose (TyG) Index was
calculated as follows [46]:

TyG Index = ln[TG (mg/dL) × FBG (mg/dL)/2]

2.6. Microbiota

Fecal samples were collected at W0, W13, and W26 for the analysis of the intestinal
microbiota performed by Biofortis® (Saint-Herblain, France).

• DNA extraction:

DNA was extracted using the ZymoBIOMICS™ 96 MagBead DNA Kit (Zymo Research
Corp., Tustin, CA, USA), with mechanical and chemical cell lysis. DNA isolation was
performed on a KingFisher Flex automated station (ThermoFisher Scientific Inc., Waltham,
MA, USA). The DNA was quantified through fluorimetry using a Qubit 3.0 (ThermoFisher
Scientific Inc., Waltham, MA, USA).

• 16S metabarcoding analysis—library preparation and sequencing:

The V3-V4 region of the 16S rRNA gene was amplified through PCR using primers
341F and 785R [47]. The amplicons were cleaned using magnetic AMPure XP beads
(Beckman Coulter, Villepinte, France) before adding dual indices and sequencing adapters
using the Illumina Nextera XT Index kit (Illumina, San Diego, CA, USA). Each library was
cleaned, quantified through fluorimetry (using a Qubit® 2.0 Fluorometer, ThermoFisher
Scientific Inc., Waltham, MA, USA), normalized, and pooled. The pooled library was
denatured before sequencing (2 × 250 paired-end, v2 chemistry) using an Illumina MiSeq
(Illumina, San Diego, CA, USA).

• 16S metabarcoding analysis—data processing:

The sequences were analyzed using a pipeline developed by Biofortis based on
Dadaist2 software [48]. After demultiplexing the barcoded Illumina paired reads, single-
read sequences were paired, cleaned, and quality-filtered. Amplicon Sequence Variants
(ASVs) were obtained and taxonomically assigned to determine the bacterial commu-
nity profiles.

2.7. Paracellular and Transcellular Intestinal Permeability Assessments

The paracellular and transcellular intestinal permeability was assessed using Ussing
chambers. Segments of the proximal duodenum, the distal ileum, the proximal colon,
and the distal colon were embedded into sliders (area = 0.4 cm2) and mounted onto the
Ussing chamber system (Physiologic Instruments, San Diego, CA, USA). The chambers
were filled with Krebs solution at 37 ◦C and supplied with carbogen (95% O2; 5% CO2).
HRP (5.10−6 M, P8250-25KU, Sigma Aldrich®, St. Louis, MO, USA) and FD4 (10−4 M,
FD4-1G, Sigma Aldrich®) were added to the mucosal side.

Paracellular permeability: Serosal samples were collected every 30 min over 270 min,
and the FD4 fluorescence (538 nm) was measured using a TriStar2 plate reader (Berthold
Technologies®, Bad Wildbad, Germany).

Transcellular permeability: The HRP concentration was determined through a colori-
metric reaction and read at 450 nm.

For both, the slope of the absorption (ng/mL/min) was calculated as the average
absorption over time.

2.8. Liver Histology

Following euthanasia, liver samples were immediately fixed in 4% paraformaldehyde
and embedded into paraffin, and 3.5 µm thick sections were stained with hematoxylin–
eosin–safran (HES). Samples were analyzed by a board-certified veterinary pathologist.
Non-alcoholic steatohepatitis (NASH) lesions were scored using a previously described
system [49,50], and briefly, the grade of steatosis (from 0 to 3), lobular inflammation (from



Biology 2024, 13, 1070 6 of 22

0 to 3), hepatocellular ballooning (from 0 to 3), and the grade of fibrosis (from 0 to 4) were
evaluated, and a mean score per animal was calculated.

2.9. Caecum and Adipose Tissue Analysis

Following euthanasia, the caecum and visceral adipose tissue (VAT)—perirenal, epi-
didymal, and mesenteric fat depots—were collected, blotted dry, and weighed. The adipos-
ity index (AI) was calculated as follows:

AI (%) = ∑VAT (g)/BW (g) × 100

The caecum/BW (%) ratio was calculated as follows:

Caecum/BW (%) = ∑ [Caecum weight (g)/BW (g)] × 100

2.10. Statistical Analyses

The sample size was calculated using BiostaTGV, based on the estimated variation
in leptin levels with or without treatment (delta of 35 with a standard deviation of 24 at
5% type I errors and 0.93 power), resulting in 8 animals per experimental group.

Due to the daily interactions between the principal experimenter and the animals, blind-
ing of the experimental in vivo procedures was not feasible. Nevertheless, to mitigate potential
bias, histological analyses and blood assays were conducted in a blinded manner.

Data on diet, supplementation, and their interactions were analyzed using Linear
Mixed-Effect (LME) models, with a random effect attributed to each rat. The normality
and independence of the residuals and random effects were validated according to the
recommendations for mixed-effect models [51]. Multiple post hoc comparisons were made
using Tukey’s test with adjustment for type I errors [52]. The data were analyzed with R
(v.4.3.1) using the nlme, multcomp, plyr, readxl, and tidyverse packages.

Parameters that did not conform to the LME criteria were analyzed using GraphPad
Prism (v.9.0.0). The data were assessed for normality using the Shapiro–Wilk test. The anal-
yses were adjusted accordingly for non-parametric data. Comparisons between two groups
used Student’s t-test or the Mann–Whitney test and an ANOVA or the Kruskal–Wallis test
for multiple groups in case of a parametric or non-parametric analysis, respectively.

The significance was set at p < 0.05, and results are presented as the mean ± Standard
Error of the Mean (SEM), with “n” representing the number of individuals in each group.

3. Results
3.1. Effects on Morphometric Parameters

Although the BW, BMI, and AC of the HFHS group were lower at W0, these parameters
were significantly higher at W13 in the HFHS group, as was the FE, compared to the S group
(p < 0.001) (Table 1). Moreover, the 13-week HFHS diet induced a significant weight gain,
with a 14.85% increase in the HFHS group at W13.

At W26, the HFHS+C, HFHS+VD, and HFHS+VD/ω3 groups had a higher BW, BMI,
and AC compared to their respective standard groups, but the HFHS+ω3 group did not.
The HFHS+VD/ω3 group showed reduced BW gain compared to its control counterpart
(HFHS+C). The BMI values increased more in the HFHS+C group than in the S+C (p < 0.01),
HFHS+VD (p < 0.05), HFHS+ω3 (p < 0.001), and HFHS+VD/ω3 (not significant) groups.
The HFHS+C group had a marked 12.91% increase in its AC values at W26, which was
higher than that in the S+C (p < 0.001), HFHS+VD/ω3 (p < 0.05), HFHS+ω3 (p < 0.001),
and HFHS+VD (p = 0.063) groups. Although no significant differences in the FE were
reported, a trend was noted between the S+C and HFHS+C groups (p = 0.059), with a
44.15% higher efficiency with the HFHS diet. All of the supplemented groups normalized
their FE. The AI differed significantly among the HFHS groups compared to their standard
counterparts. The HFHS+VD group showed a trend towards lower values compared to
HFHS+C (p = 0.095) (Table 2).
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Table 1. Effects of diets on morphometric parameters at W0 and W13.

S (n = 31) HFHS (n = 32)

BW W0 (g) 314.21 ± 3.55 300.47 ± 2.91 **
BW W13 (g) 547.45 ± 7.76 628.77 ± 10.77 ***

BW Gain W0–W13 (%) 74.31 ± 3.61 109.03 ± 4.70 ***
BMI W0 (g/cm2) 0.595 ± 0.008 0.551 ± 0.004 ***

BMI W13 (g/cm2) 0.724 ± 0.009 0.751 ± 0.008 *
BMI Evolution W0–W13 (%) 22.17 ± 3.87 36.46 ± 2.81 ***

AC W0 (cm) 14.25 ± 0.12 13.75 ± 0.12 **
AC W13 (cm) 17.40 ± 0.11 18.49 ± 0.22 ***

AC Evolution W0–W13 (%) 22.29 ± 2.30 34.57 ± 2.82 ***
FE (%) W0–W13 2.36 ± 0.11 3.44 ± 0.14 ***

Body weight (BW), body mass index (BMI), abdominal circumference (AC), and feed efficiency (FE) were measured
at the beginning (W0) and in the middle (W13) of this study. Values are presented as means ± SEM for each group.
Statistical significance was determined using LME models with post hoc Tukey’s tests. * p < 0.05, ** p < 0.01, and
*** p < 0.001.

Table 2. Effects of supplementations on morphometric parameters at W13 and W26.

S+C
(n = 7)

S+VD
(n = 8)

S+ω3
(n = 8)

S+VD/ω3
(n = 8)

HFHS+C
(n = 8)

HFHS+VD
(n = 7)

HFHS+ω3
(n = 7)

HFHS+VD/ω3
(n = 6)

BW W13 (g) 547.00 ± 10.33 535.55 ± 22.02 b 568.78 ± 13.62 538.44 ± 11.91 d 605.85 ± 15.81 655.49 ± 27.25 b 621.14 ± 16.93 632.61 ± 24.22 d

BW W26 (g) 637.03 ± 11.72 a 610.41 ± 28.39 b 633.76 ± 18.85 627.49 ± 17.42 d 699.24 ± 25.22 a 722.03 ± 30.76 b 698.44 ± 25.03 693.63 ± 24.47 d

BW Gain
W13–W26 (%)

12.28 ± 1.04 11.94 ± 1.47 13.09 ± 0.89 15.28 ± 1.76 d 14.14 ± 1.90 10.76 ± 0.57 11.95 ± 2.23 8.90 ± 1.13 d

BMI W13
(g/cm2)

0.733 ± 0.021 0.697 ± 0.016 0.742 ± 0.017 0.725 ± 0.016 0.726 ± 0.017 0.762 ± 0.020 0.758 ± 0.012 0.760 ± 0.016

BMI W26
(g/cm2)

0.754 ± 0.012 a 0.729 ± 0.021 b 0.757 ± 0.017 0.748 ± 0.021 d 0.837 ± 0.014 a 0.812 ± 0.027 b 0.781 ± 0.021 0.824 ± 0.020 d

BMI Evolution
W13-W26 (%)

5.71 ± 2.26 a 4.56 ± 1.95 3.27 ± 2.63 3.40 ± 2.92 15.58 ± 2.00 a,e,f 7.23 ± 1.18 e 1.85 ± 3.11 f 9.57 ± 1.14

AC W13 (cm) 17.56 ± 0.19 17.05 ± 0.26 17.76 ± 0.16 17.25 ± 0.22 d 17.75 ± 0.42 18.56 ± 0.51 18.85 ± 0.45 18.79 ± 0.35 d

AC W26 (cm) 17.99 ± 0.24 a 17.43 ± 0.46 b 17.99 ± 0.27 17.91 ± 0.31 d 20.00 ± 0.37 a 19.17 ± 0.48 b 18.46 ± 0.25 19.10 ± 0.28 d

AC Evolution
W13-W26 (%)

0.82 ± 1.43 a 1.63 ± 1.77 2.02 ± 2.07 3.89 ± 1.76 12.91 ± 2.23 a,f,g 4.77 ± 1.94 −2.37 ± 2.36 f 2.74 ± 1.73 g

FE (%)
W13-W26

0.77 ± 0.06 0.78 ± 0.10 0.87 ± 0.06 0.97 ± 0.09 1.11 ± 0.16 0.79 ± 0.04 0.88 ± 0.18 0.84 ± 0.08

AI (%) 4.16 ± 0.18 a 3.96 ± 0.19 b 4.18 ± 0.24 c 4.40 ± 0.30 d 6.07 ± 0.25 a 5.01 ± 0.20 b 5.51 ± 0.30 c 5.64 ± 0.36 d

Body weight (BW), body mass index (BMI), abdominal circumference (AC), feed efficiency (FE), and adiposity
index (%) were measured in the middle (W13) and at the end (W26) of this study, as were their changes between
these two time points. Values are presented as means ± SEM for each group. Statistical significance was
determined using LME models with post hoc Tukey’s tests. Letters indicate significant differences (p < 0.05) for
data within the same row. a: S+C vs. HFHS+C; b: S+VD vs. HFHS+VD; c: S+ω3 vs. HFHS+ω3; d: S+VD/ω3 vs.
HFHS+VD/ω3; e: HFHS+C vs. HFHS+VD; f: HFHS+C vs. HFHS+ω3; g: HFHS+C vs. HFHS+VD/ω3.

3.2. Effects on Glucose Homeostasis

The OGTT showed a 22.42% higher AUC and elevated FBG and FBI levels and HOMA-
IR scores in the HFHS group at W13 compared to the S group (p < 0.05; p < 0.001; and
p < 0.01, respectively) (Table 3).

At W13, all of the HFHS groups had higher AUCs in the OGTT than their stan-
dard matched groups (p < 0.001). After the 13-week supplementation, the HFHS+VD,
HFHS+ω3, and HFHS+VD/ω3 groups significantly reduced AUCs compared to those of
the HFHS+C group (p < 0.001) (Table 4).

At W26, only the HFHS+C group maintained higher FBG levels compared to its standard
counterpart; it also had higher levels than the HFHS+VD (p < 0.05) and HFHS+VD/ω3
(p = 0.093) groups. The FBI levels and HOMA-IR scores increased in the HFHS+VD/ω3 group
compared to those in its standard counterpart (p < 0.01). The HOMA-IR scores tended to be
higher in HFHS+C group compared to those in its standard counterpart (p = 0.059) (Table 4).
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Table 3. Effects of diets on glucose homeostasis at W0 and W13.

S (n = 31) HFHS (n = 32)

AUC in the OGTT W0 16,791 ± 238 15,880 ± 140 **
AUC in the OGTT W13 15,222 ± 186 18,635 ± 218 ***

FBG W0 (mg/dL) 102.6 ± 1.7 103.5 ± 1.6
FBG W13 (mg/dL) 95.2 ± 1.2 107.6 ± 1.2 ***

FBI W0 (µg/L) 0.955 ± 0.068 0.964 ± 0.082
FBI W13 (µg/L) 1.242 ± 0.115 1.856 ± 0.221 *
HOMA-IR W0 6.01 ± 0.46 6.01 ± 0.53

HOMA-IR W13 7.33 ± 0.73 12.26 ± 1.47 **
Area under the curve in the oral glucose tolerance test (AUC in the OGTT), fasting blood glucose (FBG), fasting
blood insulin (FBI), and homeostasis model assessment of insulin resistance (HOMA-IR) scores were measured or
calculated at the beginning (W0) and in the middle (W13) of this study. Values are presented as means ± SEM for
each group. Statistical significance was determined using LME models with post hoc Tukey’s tests. * p < 0.05,
** p < 0.01, and *** p < 0.001.

Table 4. Effects of supplementations on glucose homeostasis at W13 and W26.

S+C
(n = 7)

S+VD
(n = 8)

S+ω3
(n = 8)

S+VD/ω3
(n = 8)

HFHS+C
(n = 8)

HFHS+VD
(n = 7)

HFHS+ω3
(n = 7)

HFHS+VD/ω3
(n = 6)

AUC in the
OGTT W13 15,244 ± 446 a 15,344 ± 357 b 15,144 ± 317 c 15,160 ± 417 d 18,877 ± 310 a 17,903 ± 306 b 18,770 ± 399 c 18,902 ± 605 d

AUC in the
OGTT W26 14,637 ± 500 a 15,275 ± 332 15,236 ± 350 15,234 ± 334 20,183 ± 515 a,e,f,g 16,615 ± 427 e 16,495 ± 408 f 16,345 ± 338 g

FBG W13
(mg/dL) 97.9 ± 3.2 a 95.0 ± 1.4 b 95.1 ± 2.4 c 93.1 ± 2.5 d 110.0 ± 2.8 a 107.8 ± 2.5 b 105.9 ± 2.0 c 106.6 ± 2.7 d

FBG W26
(mg/dL) 95.7 ± 3.5 a 93.2 ± 3.4 97.1 ± 2.7 94.6 ± 2.5 112.4 ± 1.8 a,e 98.8 ± 4.0 e 104.6 ± 1.8 101.0 ± 3.2

FBI W13
(µg/L) 1.070 ± 0.185 1.344 ± 0.243 1.479 ± 0.248 1.052 ± 0.230 1.571 ± 0.199 2.379 ± 0.773 1.706 ± 0.194 1.768 ± 0.364

FBI W26
(µg/L) 3.949 ± 0.446 4.171 ± 0.744 4.598 ± 0.547 4.211 ± 0.612 d 4.969 ± 0.685 5.949 ± 0.644 4.434 ± 0.545 6.982 ± 0.901 d

HOMA-IR
W13 6.44 ± 1.16 7.77 ± 1.34 8.78 ± 1.67 6.21 ± 1.56 10.58 ± 1.30 15.72 ± 5.13 11.13 ± 1.28 11.63 ± 2.51

HOMA-IR
W26 23.26 ± 2.82 23.07 ± 3.79 27.47 ± 3.36 24.10 ± 3.37 d 34.28 ± 4.82 33.92 ± 4.14 28.12 ± 3.17 43.24 ± 5.91 d

Area under the curve in the oral glucose tolerance test (AUC in the OGTT), fasting blood glucose (FBG), fasting
blood insulin (FBI), and homeostasis model assessment of insulin resistance (HOMA-IR) scores were measured or
calculated in the middle (W13) and at the end (W26) of this study. Values are presented as means ± SEM for each
group. Statistical significance was determined using LME models with post hoc Tukey’s tests. Letters indicate
significant differences (p < 0.05) for data within the same row. a: S+C vs. HFHS+C; b: S+VD vs. HFHS+VD;
c: S+ω3 vs. HFHS+ω3; d: S+VD/ω3 vs. HFHS+VD/ω3; e: HFHS+C vs. HFHS+VD; f: HFHS+C vs. HFHS+ω3;
g: HFHS+C vs. HFHS+VD/ω3.

3.3. Effects on Lipid Profiles

The 13-week HFHS diet increased TGs by 30.12% (p < 0.05), decreased HDL by 15.58%
(p < 0.05), and increased the TyG Index (p < 0.01) (Table 5).

Table 5. Effects of diets on lipid profile at W0 and W13.

S (n = 31) HFHS (n = 32)

TC W0 (mmol/L) 2.07 ± 0.06 2.04 ± 0.05
TC W13 (mmol/L) 2.28 ± 0.09 2.10 ± 0.07
TGs W0 (mmol/L) 1.54 ± 0.09 1.34 ± 0.10
TGs W13 (mmol/L) 1.56 ± 0.09 2.03 ± 0.17 *
HDL W0 (mmol/L) 1.38 ± 0.04 1.40 ± 0.04

HDL W13 (mmol/L) 1.44 ± 0.06 1.23 ± 0.05 *
TyG Index W0 8.80 ± 0.06 8.64 ± 0.07

TyG Index W13 8.74 ± 0.06 9.06 ± 0.09 **
Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) levels were measured and the
triglyceride–glucose (TyG) Index was calculated at the beginning (W0) and in the middle (W13) of this study.
Values are presented as means ± SEM for each group. Statistical significance was determined using LME models
with post hoc Tukey’s tests. * p < 0.05, ** p < 0.01.
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At W26, the HFHS+VD/ω3 group exhibited a significant decrease in its TG levels
compared to those in the HFHS+C group (p < 0.05). The TyG Index was significantly
different between the HFHS+ω3 and HFHS+VD/ω3 groups (Table 6).

Table 6. Effects of supplementations on lipid profile at W13 and W26.

S+C
(n = 7)

S+VD
(n = 7)

S+ω3
(n = 8)

S+VD/ω3
(n = 8)

HFHS+C
(n = 8)

HFHS+VD
(n = 7)

HFHS+ω3
(n = 7)

HFHS+VD/ω3
(n = 6)

TC W13
(mmol/L) 2.33 ± 0.17 2.37 ± 0.24 2.17 ± 0.12 2.27 ± 0.16 1.89 ± 0.08 2.21 ± 0.21 2.06 ± 0.13 2.24 ± 0.11

TC W26
(mmol/L) 2.44 ± 0.17 2.41 ± 0.19 1.73 ± 0.14 2.00 ± 0.18 2.08 ± 0.17 2.44 ± 0.22 2.07 ± 0.20 1.83 ± 0.12

TGs W13
(mmol/L) 1.37 ± 0.18 1.58 ± 0.23 1.54 ± 0.13 1.75 ± 0.16 1.54 ± 0.24 2.25 ± 0.40 2.34 ± 0.42 1.99 ± 0.30

TGs W26
(mmol/L) 1.15 ± 0.12 0.97 ± 0.10 0.83 ± 0.14 0.92 ± 0.11 1.72 ± 0.14 g 0.93 ± 0.15 0.88 ± 0.15 0.69 ± 0.04 g

HDL W13
(mmol/L) 1.48 ± 0.10 1.48 ± 0.15 1.37 ± 0.08 1.43 ± 0.12 1.15 ± 0.07 1.23 ± 0.17 1.20 ± 0.11 1.35 ± 0.07

HDL W26
(mmol/L) 1.47 ± 0.12 1.42 ± 0.12 1.13 ± 0.09 1.27 ± 0.12 1.32 ± 0.11 1.53 ± 0.13 1.39 ± 0.14 1.27 ± 0.07

TyG Index
W13 8.61 ± 0.17 8.73 ± 0.14 8.76 ± 0.08 8.85 ± 0.11 8.83 ± 0.18 9.15 ± 0.22 9.20 ± 0.17 9.07 ± 0.16

TyG Index
W26 8.46 ± 0.13 8.25 ± 0.11 8.10 ± 0.13 8.19 ± 0.15 9.03 ± 0.10 f,g 8.25 ± 0.16 8.24 ± 0.14 f 8.01 ± 0.07 g

Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) levels were measured and the
triglyceride-glucose (TyG) Index was calculated in the middle (W13) and at the end (W26) of this study. Values
are presented as means ± SEM for each group. Statistical significance was determined using LME models with
post hoc Tukey’s tests. Letters indicate significant differences (p < 0.05) for data within the same row. f: HFHS+C
vs. HFHS+ω3; g: HFHS+C vs. HFHS+VD/ω3.

3.4. Effects on Inflammation

At W0, the leptin or adiponectin levels showed no significant differences between
the S and HFHS groups. After 13 weeks, the leptin levels increased significantly in the
HFHS group (p < 0.001), showing a marked 563% difference in comparison with those in
the S group. The adiponectin levels were higher in the HFHS group (p < 0.01), although
their evolution remained unchanged (Figure 1).
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Figure 1. Effects of diets on adipokine secretion at W0 and W13. (A) Leptin (pg/mL) and
(B) adiponectin (ng/mL) levels were measured at the beginning (W0) and in the middle (W13)
of this study. Values are presented as means ± SEM for each group, and n = 31–32. Statistical signifi-
cance was determined using LME models with post hoc Tukey’s tests. ** p < 0.01 and *** p < 0.001.

The observed leptin pattern persisted at W26. The evolution of the leptin levels over
time showed a lesser increase in leptin levels between the HFHS+C group and both the S+C
and HFHS+VD groups. The evolution of leptin was also reduced, but not to the level of
significance, in the HFHS+ω3 and HFHS+VD/ω3 groups compared to the HFHS+C group.
The adiponectin levels at W26 were higher in the HFHS+VD/ω3 group than its standard
counterpart (Table 7).
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Table 7. Effects of supplementations on adipokine secretion at W13 and W26.

S+C
(n = 7)

S+VD
(n = 7)

S+ω3
(n = 8)

S+VD/ω3
(n = 8)

HFHS+C
(n = 8)

HFHS+VD
(n = 7)

HFHS+ω3
(n = 7)

HFHS+VD/ω3
(n = 6)

Leptin W13
(pg/mL)

19.48 ± 8.67 a 42.31 ± 16.68 b 19.21 ± 7.45 c 45.46 ± 21.03 d 118.62 ± 28.83 a 217.57 ± 52.08 b 169.53 ± 32.53 c 215.15 ± 55.11 d

Leptin W26
(pg/mL)

85.37 ± 17.10 a 99.41 ± 9.88 b 115.86 ± 15.25 c 130.28 ± 37.67 d 377.71 ± 32.24 a 297.00 ± 48.32 b 297.72 ± 29.24 c 357.49 ± 52.96 d

Leptin Evolu-
tion W13–W26

(pg/mL)
62.20 ± 13.45 a 51.05 ± 15.05 89.82 ± 13.45 84.82 ± 25.16 259.08 ± 44.06 a,e 86.86 ± 25.64 e 127.73 ± 27.20 134.34 ± 67.19

Adiponectin
W13 (ng/mL)

7383 ± 331 6861 ± 270 7140 ± 287 7352 ± 239 7217 ± 190 7454 ± 204 7970 ± 197 8088 ± 187

Adiponectin
W26 (ng/mL)

6522 ± 257 6588 ± 287 6970 ± 267 7178 ± 172 d 7353 ± 319 6827 ± 589 7497 ± 352 8062 ± 298 d

Adiponectin
Evolution
W13-W26
(ng/mL)

−427 ± 290 −391 ± 203 −113 ± 390 −175 ± 206 136 ± 198 −574 ± 579 −373 ± 340 −95 ± 137

Leptin, adiponectin, and their evolution were measured in the middle (W13) and at the end (W26) of this study.
Values are presented as means ± SEM for each group. Statistical significance was determined using LME models
with post hoc Tukey’s tests. Letters indicate significant differences (p < 0.05) for data within the same row. a: S+C
vs. HFHS+C; b: S+VD vs. HFHS+VD; c: S+ω3 vs. HFHS+ω3; d: S+VD/ω3 vs. HFHS+VD/ω3; e: HFHS+C vs.
HFHS+VD.

3.5. Plasma Calcidiol Levels

Evaluation of their plasma calcidiol levels showed no significant difference between
the S and HFHS groups at W0 or W13 (Figure 2). However, by W26, the groups treated
with VD and VD/ω3 demonstrated significant increases in their calcidiol levels. Specifically,
the calcidiol levels in the HFHS+VD group increased from W13 to W26, which were sta-
tistically significantly different compared to those in the HFHS+C group. In contrast, the
HFHS+VD/ω3 group showed a lesser and non-significant increase of 35.13% (Table 8).
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Table 8. Effects of supplementations on plasma calcidiol levels at W13 and W26.

S+C
(n = 7)

S+VD
(n = 7)

S+ω3
(n = 8)

S+VD/ω3
(n = 8)

HFHS+C
(n = 8)

HFHS+VD
(n = 7)

HFHS+ω3
(n = 7)

HFHS+VD/ω3
(n = 6)

Calcidiol W13
(ng/mL) 92.93 ± 3.01 85.22 ± 8.26 64.92 ± 8.50 80.58 ± 7.33 86.33 ± 6.53 75.62 ± 8.90 71.21 ± 5.38 88.83 ± 4.17

Calcidiol W26
(ng/mL) 75.45 ± 6.62 h,i 117.09 ± 1.81 h 80.02 ± 7.64 117.88 ± 2.79 i 77.63 ± 5.45 e,g 120.02 ± 2.60 e 70.84 ± 6.94 118.75 ± 4.26 g

Calcidiol
Evolution

W13-W26 (%)
−19.00 ± 6.40 55.47 ± 19.87 43.72 ± 15.18 57.84 ± 20.25 −5.00 ± 11.14 e 90.10 ± 34.96 e 7.18 ± 19.57 35.13 ± 12.69

Calcidiol and its evolution were measured in the middle (W13) and at the end (W26) of this study. Values are
presented as means ± SEM for each group. Statistical significance was determined using LME models with post
hoc Tukey’s tests. Letters indicate significant differences (p < 0.05) for data within the same row. e: HFHS+C vs.
HFHS+VD; g: HFHS+C vs. HFHS+VD/ω3; h: S+C vs. S+VD; i: S+C vs. S+VD/ω3.
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3.6. Hepatic Steatosis Assessment

The histopathology analysis showed a NASH score of 1.79 ± 0.24 in the HFHS+C
group, which was significantly higher compared to the score of 0.00 in its standard counter-
part (p < 0.001). This score was reduced to 0.36 ± 0.17 by VD supplementation (p < 0.001)
and to 0.64 ± 0.25 by ω3FA supplementation (p < 0.01). The HFHS+VD/ω3 group showed
a decrease to 0.92 ± 0.29, although not a significant one, compared to that in the HFHS+C
group and remained different from its standard counterpart, which had a score of 0.00
(p < 0.05) (Figure 3).
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for each group. Statistical significance was determined using the Kruskal–Wallis test with post hoc
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3.7. Caecum Morphology

After 26 weeks of the HFHS diet without supplementation, caecum atrophy was ob-
served compared to the condition in the standard counterparts (p < 0.01). In the HFHS+ω3
and HFHS+VD/ω3 groups, caecum atrophy was partially reversed, but it was not in the
HFHS+VD group (Figure 4).
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3.8. Intestinal Permeability Assessments

The FD4 assessment revealed reduced paracellular permeability in the duodenum and
both colonic segments in the HFHS+ω3 group compared to the HFHS+C group (p < 0.05).
The HFHS+VD group exhibited reduced the permeability in the duodenum and distal
colon sections, although not significantly (Figure 5).
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No significant differences in transcellular permeability were observed (Figure 6).
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3.9. Intestinal Microbiota

At W0, the HFHS group showed higher diversity, but by W13, it had decreased
significantly (Figure 7A). At W26, the HFHS+C, HFHS+VD, and HFHS+VD/ω3 groups
remained more diverse than their standard groups, and the HFHS+ω3 group showed a
slight, but not significant, increase in diversity compared to HFHS+C (Figure 7B).
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are presented as means ± SEM for each group, and n = 31–32 at W0 and W13, while n = 6–8 at W26.
Statistical significance was determined using LME models with post hoc Tukey’s tests. ** p < 0.01,
*** p < 0.001.

The Firmicutes-to-Bacteroidetes (F/B) ratio increased significantly by W13 in the
HFHS group, although no significant increase was observed for the S group (Figure 8A).
By W26, only the HFHS+VD group exhibited a significant difference from its standard
counterpart (Figure 8B).

The heatmaps revealed shifts in the microbial populations. In the standard group,
there was a reduction in Prevotella between W0 and W13 (Figure 9A). Conversely, the
HFHS group showed stimulation of the Akkermansia population, a significant rise in the
Blautia genus (exhibiting a 17-fold increase), a decrease in Alistipes, the disappearance of
Butyricicoccus, and the near-complete disappearance of Prevotella (reduced by 99.7%), with
the emergence of Lactococcus. At W26, the HFHS+VD group displayed a 65.8% reduction
in Blautia compared to the HFHS+C group (Figure 9B). The HFHS+ω3 group showed
increases in Alistipes, Duncaniella, and, notably, Prevotella, as well as decreases in Clostridium
sensu stricto and Lactococcus (decreased by 55.1%) compared to the HFHS+C group. The
HFHS+VD/ω3 group demonstrated an increase in Blautia and a marked 71.9% decrease in
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Clostridium sensu stricto compared to the HFHS+C group. Notably, this latter group was the
only group to completely lose its Sporobacter population.
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4. Discussion

This study explored the tertiary prevention of obesity and its complications through
the combination of omega-3 fatty acid and vitamin D supplementation in HFHS-diet-
induced obesity in Wistar rats. Following a 13-week HFHS diet, which successfully induced
obesity, supplementation was administered for another 13 weeks. Our findings support
the hypothesis, demonstrating that combined omega-3 and vitamin D supplementation
significantly reduced obesity-related complications, including improvements in metabolic
parameters and gut health.

Our findings demonstrate that the HFHS diet led to a weight gain of about 15% at W13,
classifying the rats as moderately obese [53]. This may have involved a dysregulated energy
metabolism, as the obese rats showed an increased FE despite no relative hyperphagia.
Intestinal hyperpermeability associated with impairment of the tight junction proteins
may be one possibility that could account for the increased FE in diet-induced obesity
models [54]. In agreement with this suggestion, previous studies have reported that an
increased FE may occur in obese rats without a change in their caloric intake [41,55]. The
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HFHS diet’s excess calories result in weight gain and fat mass accumulation [56], which is
consistent with the observed alterations in morphometric parameters like AC and BMI.

Our study clearly demonstrated an elevated TyG Index in the animals on the 13-week
HFHS diet, suggesting IR associated with dyslipidemia. Additionally, glucose metabolism
disruption was evident, with increased FBG levels, hyperinsulinemia, and elevated HOMA-
IR scores, confirming IR, consistent with similar metabolic alterations previously reported
in rats on HFHS diets of various durations, ranging from 6 to 12 weeks [57–60].

The HFHS diet’s excess caloric absorption led to increased lipogenesis, TG storage,
and circulating TG levels, correlating with an increased FE and adipocyte hypertrophy,
as previously described [61,62]. Our results demonstrate the coexistence of dyslipidemia
and IR, which have frequently been reported to be associated [63]. Although we did not
address the mechanism behind these alterations, the overexpression of SREBP-1c, known
to activate fat cell differentiation and lipid accumulation [64], may be considered one
potential mechanism that could account for the increased TG levels and IR observed in the
current study.

Intestinal dysbiosis is a common obesity disorder [65], with high-fat diets significantly
altering gut microbiota composition and reducing bacterial richness and diversity. High
fat ingestion has been reported to induce strong changes in microbiota composition, affect-
ing the richness and diversity of bacterial species [66]. We observed that the HFHS diet
increased the F/B ratio, which is generally ascribed to reduced Bacteroidetes and elevated
Firmicutes [64], a pattern linked to obesity [67,68]. This shift may enhance plasma LPS levels,
contributing to endotoxemia [69], as dysbiosis disrupts the intestinal barrier, increasing
permeability and LPS translocation via LPS-producing bacteria [70]. These changes in
the microbiota likely contribute to HFHS-diet-induced dyslipidemia and IR, as seen in
prior diet-induced obesity (DIO) studies [71,72]. Akkermansia and Blautia, recognized for
their roles in reducing inflammation and obesity [73], were found to be more abundant
in our DIO model, which matches the findings of other studies [74–76] and may reflect
an adaptive response to metabolic disturbances. Their beneficial effects, supported by
previous studies [77,78], include producing butyrate and deoxycholic acid, which combat
obesity-related inflammation. Lactococcus, another key genus, possesses probiotic and
anti-inflammatory properties [79], though its elevated abundance in high-fat diets has been
associated with increased leptin levels [76]. Conversely, several genera, including Alistipes
and Butyricicoccus, are negatively correlated with obesity markers like BMI, triglycerides,
and fasting blood glucose, with the latter also producing beneficial butyrate [80–82]. Pre-
votella, linked to low-fat, high-fiber diets, presents a complex relationship with obesity,
with studies reporting conflicting changes in its abundance [75,83,84], possibly due to the
genetic diversity within the genus [85]. These findings underscore the intricate interplay
between the gut microbiota and metabolic health in obesity.

In our study, the obesity and obesity-related disorders observed at W13 persisted
until W26. This included elevated BW, BMI, AC, inflammation, and intestinal dysbiosis,
highlighting the long-term impact of the HFHS diet on metabolic health. We revealed
a significant increase in VAT in the HFHS+C group, substantiated by a high AI. This is
in line with the statement that VAT is more biologically and metabolically active than
subcutaneous adipose tissue [86].

Our study demonstrates that VD supplementation significantly improves several
metabolic and physiological parameters under an HFHS diet, which seems to be correlated
with calcidiol levels. Although the HFHS diet did not induce VD deficiency in the sup-
plemented rats, consistent with previous research showing no change in serum 25(OH)D
levels but higher 1,25(OH)2D levels in obese mice [87], the VD supplementation still pro-
vided notable benefits. This aligns with the literature indicating that obesity alters VD
metabolism, with elevated PTH and disrupted regulation of 1,25(OH)2D due to changes
in VD-metabolizing enzymes [88]. Thus, VD supplementation enhances calcidiol status
and mitigates some metabolic disturbances associated with obesity, despite the absence
of vitamin D deficiency. The VD levels observed in our study, approximately 120 ng/mL
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in the vitamin-D-supplemented rats, slightly exceed the reference range of 20–100 ng/mL
but remain well below the intoxication threshold of >150 ng/mL [89]. In our study, VD
supplementation did not lead to a significant reduction in weight gain compared to that in
the HFHS+C group but did result in a slight reduction in abdominal circumference and fat
accumulation. VD was found to normalize FE, suggesting improved metabolic efficiency or
reduced lipid absorption. The improvement in FE and the reduction in abdominal circum-
ference indicate that VD may help limit fat accumulation and indirectly enhance glucose
homeostasis. These findings are consistent with the existing literature linking VD deficiency
to increased adiposity and impaired glucose metabolism [90,91]. The improvement in
glucose homeostasis and the reduction in abdominal circumference observed in our work
further support VD’s role in mitigating obesity-related metabolic disturbances.

VD positively influences gut and liver health in DIO models, prompting our investiga-
tion into whether its anti-obesity effects involve gut- and liver-dependent mechanisms. VD
supplementation slightly reduced intestinal permeability, suggesting enhanced gut barrier
integrity, which may have contributed to a reduced abdominal circumference by limiting
lipid absorption. This aligns with findings in VDR− mice showing VD’s role in maintaining
intestinal barrier integrity [92]. Additionally, the HFHS+VD group exhibited a blunted
leptin increase, indicating potential improvements in leptin sensitivity, likely mediated by
VD’s anti-inflammatory effects, which include downregulating pro-inflammatory cytokines
(TNF-α, IL-6) and inhibiting NADPH oxidase [93–96]. However, VD did not significantly
alter the F/B ratio, suggesting its benefits are not linked to alleviating gut dysbiosis. Beyond
its intestinal effects, VD supplementation reduced hepatic steatosis, pointing to a potential
protective mechanism via hepatic VDR activation, which may alleviate NASH. The ob-
served reduction in triglyceride levels supports this hypothesis, as VD likely enhances lipid
degradation by promoting lipolysis and fatty acid β-oxidation through PPAR-α signaling,
consistent with prior research [97,98].

Our study also aimed to investigate whether ω3FA supplementation could prevent
obesity-related metabolic disturbances, focusing on its effects on BMI, AC, and FE. ω3FA
supplementation did not lead to a significant reduction in overall weight gain compared
to that in the HFHS+C group. However, it significantly limited increases in BMI and
abdominal circumference and tended to normalize the FE. These results suggest that ω3FA
can reduce central obesity and improve metabolic efficiency, consistent with findings that
ω3FA can impact adiposity and energy expenditure [99,100]. Furthermore, the activation of
GPR120 by ω3FA induces thermogenesis, enhancing energy expenditure [99]. Additionally,
we observed improved glucose tolerance and a slight normalization of FBG levels, indicat-
ing enhanced glucose homeostasis and insulin sensitivity. This aligns with the literature
showing ω3FA’s role in improving insulin sensitivity and metabolic function [101].

ω3FA supplementation also led to reduced hepatic steatosis, suggesting that ω3FA
improves liver health by reducing fat accumulation and enhancing lipid metabolism. This
finding is supported by evidence that ω3FA can enhance hepatic lipid oxidation and inhibit
lipogenesis [99,100] and aligns with findings that an 8-week fish oil treatment in HFD mice
could reduce hepatic steatosis [102].

Similarly to VD, the ω3FA supplementation improved the metabolic parameters in
the rats fed the HFHS diet. ω3FA reduced intestinal permeability, supporting gut barrier
integrity and potentially reducing systemic inflammation. While it did not significantly alter
the Firmicutes-to-Bacteroidetes (F/B) ratio, ω3FA positively affected the gut microbiota by
increasing beneficial genera such as Alistipes and Prevotella and decreasing Clostridium sensu
stricto. These changes suggest that ω3FA helps manage obesity-related disturbances by
modulating the gut microbiota. Additionally, flaxseed oil, rich in alpha-linolenic acid, has
been shown to reduce colonic damage in DSS-induced colitis by improving oxidative status
and modulating inflammatory factors while partially restoring the integrity of the intestinal
epithelial barrier [103]. This further underscores the potential of ω3FA to influence gut
health and reduce inflammation through multiple mechanisms.
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VD/ω3 co-supplementation showed greater improvements in certain parameters
compared to individual supplementation. It significantly reduced BW gain, decreased
the TG levels at week 26, and notably lowered the abundance of Clostridium sensu stricto
compared to the HFHS+C group. The reduction in Clostridium sensu stricto, linked to obesity
and elevated plasma leptin levels [76,80], suggests a gut-flora-mediated mechanism in
limiting BW gain. The additive effects of co-supplementation on BW gain and TG reductions
may have resulted from the complementary actions of VD and ω3FA, both known to
enhance lipolysis and fatty acid β-oxidation [97–99]. However, co-supplementation did not
outperform individual supplementation in improving the other metabolic parameters, such
as FE or glucose tolerance. The mild to moderate benefits observed in the weight and TG
reductions may not have been sufficient to counteract broader obesity-related disturbances.
Potential nutrient–nutrient interactions at the kinetic level between VD and ω3 may have
limited their combined effectiveness to only specific parameters. Further studies are needed
to clarify these interactions and their impact on metabolic health.

To understand the effects of VD/ω3 co-supplementation better, we measured the
plasma 25(OH)D levels at week 26 in the HFHS+VD and HFHS+VD/ω3 groups. The
plasma 25(OH)D levels increased more significantly in the HFHS+VD group, while the
HFHS+VD/ω3 group showed only a smaller, non-significant rise. This suggests that
ω3FA, at the dose studied, negatively modulates plasma VD levels, potentially limiting the
combined supplementation’s effectiveness compared to that of the individual treatments.
The underlying mechanisms behind the reduced plasma VD levels in the HFHS+VD/ω3
group were not directly examined but may involve impaired metabolism or defects in VD’s
absorption. Supporting this, studies have shown that ω3FA co-supplementation reduces
the ratio of 25(OH)D to its catabolite 24,25(OH)D, indicating altered VD metabolism [104].
Additionally, ω3FA may limit VD’s absorption by forming mixed micelles in the intestinal
lumen, further affecting VD’s bioavailability [105,106].

This study has several limitations. The dose and duration of VD and ω3FA supple-
mentation may not have been sufficient to detect subtle or long-term effects. A pilot study
would have been relevant to optimizing these parameters. Additionally, we did not per-
form a detailed analysis of the physicochemical properties of the VD/fish oil mixture (i.e.,
chemical composition, stability, and interactions), which may have affected the outcomes
by potentially altering the bioavailability or efficacy of the supplements. Future research
should explore higher doses and longer supplementation periods to determine whether
these adjustments would result in greater benefits. Moreover, a comprehensive analysis of
the chemical composition, stability, and interactions within the VD/ω3 mixture is essential
to understand their potential additive or antagonistic effects and to ensure the reliability
and reproducibility of our experimental outcomes.

5. Conclusions

In conclusion, this study highlights the significant benefits of long-term supplemen-
tation with VD and ω3FA, alone and in combination, in managing obesity and its comor-
bidities in HFHS-diet-induced obesity in Wistar rats. Our results confirmed that 13- and
26-week HFHS diets induced obesity in rats, characterized by dyslipidemia, impaired
glucose regulation, intestinal dysbiosis, and altered leptin levels. While both individual
supplementations of VD and ω3FA had beneficial effects, co-supplementation was particu-
larly effective in preventing weight gain, reducing TGs, and decreasing Clostridium sensu
stricto, which is associated with obesity and leptin production (Scheme 2).

Thus, we believe that long-term VD/ω3 co-supplementation may have implications
for the tertiary prevention of obesity and related disorders. Further studies are needed to
explore the cellular mechanisms and kinetic interactions between VD and ω3FA to optimize
their use in the framework of nutritional interventions targeting experimental DIO.
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