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There are key differences between the central nervous
system (CNS) (brain and spinal cord) and peripheral ner-
vous system (PNS), such as glial cell types, whether there
is protection by the blood-brain barrier, modes of synap-
tic connections, etc. However, there aremany more simi-
larities between these two arms of the nervous system,
including neuronal structure and function, neuroimmune
and neurovascular interactions, and, perhaps most es-
sentially, the balance between neural plasticity (including
processes like neuron survival, neurite outgrowth, syn-
apse formation, gliogenesis) and neurodegeneration
(neuronal death, peripheral neuropathies like axonopathy
and demyelination). This article brings together current
research evidence on shared mechanisms of nervous
system health and disease between the CNS and PNS,
particularly with metabolic diseases like obesity and dia-
betes. This evidence supports the claim that the two
arms of the nervous system are critically linked and that
previously understudied conditions of central neurode-
generation or peripheral neurodegeneration may actually
be manifesting across the entire nervous system at the
same time, through shared genetic and cellular mecha-
nisms. This topic has been critically underexplored due to
the research silos between studies of the brain and stud-
ies of peripheral nerves and anoveremphasis on the brain
in neuroscience as a field of study. There are likely shared
and linked mechanisms for how neurons stay healthy
versus undergo damage and disease among this one ner-
vous system in the body—providing new opportunities
for understanding neurological disease etiology and fu-
ture development of neuroprotective therapeutics.

As someone trained with a PhD in Neuroscience who has
taught undergraduate and graduate courses in this field, I

know firsthand how singularly focused we (neurologists,
neuroscientists, psychiatrists, and neurological surgeons)
are on the brain and how little we acknowledge an integral
role of the peripheral nervous system (PNS) in neurological
health and disease. The seminal neuroscience textbook by
Kandel, Schwartz, Jessell, and colleagues, Principles of Neu-
ral Science (1), covers the neuromuscular junction and so-
matosensation but devotes zero chapters to the rest of the
PNS, as one key example of overlooking the PNS in the
neuroscience field. Similarly, the largest scientific confer-
ence in the world, hosted by the Society for Neuroscience,
features mostly research on the brain with relatively little
representation of findings in the PNS. We have known
about the existence of a PNS since the third century BCE,

ARTICLE HIGHLIGHTS

• The central nervous system (CNS) (brain and spinal
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when physician-philosopher Herophilus of Chalcedon dem-
onstrated that nerves connected the brain to the interior
of organs, and not just the vasculature, as was the common
thought at that time (2). He also used a holistic approach
to the treatment of neurological disorders that included
the whole nervous system and distinguished between sen-
sory and motor nerves as subtypes in the PNS. As I will lay
out in this article, emerging evidence increasingly indicates
that neurological diseases and disorders that impact the
central nervous system (CNS) (brain and spinal cord) tend
to also have effects in the PNS and vice versa. We can no
longer think of brain disorders as solely brain disorders
when we have not investigated PNS involvement—because
when we do look, both arms of the nervous system tend to
be implicated (as outlined in the examples in Table 1). This
is especially important for studies of neurometabolism, or
the system- and cellular-level cross talk between the ner-
vous system and metabolic regulation, especially since the
orchestration of neurometabolism underlies much of the

study of energy balance homeostasis and diseases like obe-
sity and diabetes.

CNS AND PNS: SIMILARITIES AND DIFFERENCES

Essentially all the same cell types that are important for
brain function (neurons; immune cells including brain
macrophages, microglia, and more; blood and lymphatic/
glymphatic vasculature; and glial cells like astrocytes and
oligodendrocytes) are also cell types important for periph-
eral nerve function (where neurons and their long axons
extend into tissues and organs, with support from vasculature,
neuroimmune cells, and glial support cells, including numer-
ous types of Schwann cells) (3) (Fig. 1). The same neuropepti-
des we investigate in the hypothalamic control of appetite and
energy expenditure pathways (e.g., neuropeptide Y [NPY], pi-
tuitary adenylate cyclase–activating polypeptide [PACAP], cal-
citonin gene–related peptide [CGRP], andmanymore) are also
expressed in the peripheral nerves that innervate our adipose

Table 1—Examples of neurological diseases that impact both the brain/CNS and PNS arms of the body’s one nervous
system
Disease/condition Brain/CNS impacts PNS impacts

Multiple sclerosis The most common cause of neurological
disability in young adults

Demyelination, changes to nerve conductance
(34,35)

Parkinson disease Cognitive impairment (36) Prevalence of peripheral neuropathy reported at
4.8%–55.0%, GI issues; small fiber damage
from a-synuclein, potential involvement in gait/
motor symptoms (37)

Alzheimer/APOE variants Numerous CNS effects (38) APOE and neuromuscular disease (39), tau in
peripheral tissues (40), amyloid roles in
peripheral nerves (41)

Long COVID “Brain fog,” cognitive dysfunction, lethargy (42) Dysautonomia, peripheral neuropathy (43)

Diabetes Changes to brain structure, cognitive dysfunction
(44)

Diabetic peripheral neuropathy (45)

Chemotherapy Brain fog; deficits in attention, memory, and
executive functioning; fatigue (46)

CIPN (47)

Obesity Increased dementia (48–52) Peripheral neuropathy (53), including adipose
neuropathy (54,55)

Aging Cognitive dysfunction, increased risk for
neurological disease, memory impairment (56)

Peripheral neuropathy, prevalence of which is
estimated to be 7% among elderly (57)

Epilepsy Cognitive impairment (58) Neuropathy implicated (59)

Mental illness Brain neuroplasticity and mental health (60) Anxiety and depression with small fiber
neuropathy (61), emotional impacts of
neuropathic pain (62), ANS dysfunction with
schizophrenia (63)

Huntington disease Neurodegeneration (64) Involvement of sensory DRG neurons (65)

TBI, SCI Cognitive impairment (66) TBI and peripheral nerve impacts (67,68), SCI
and peripheral nerve impacts (69,70)

ALS Brain involvement (71) Motor neuron involvement and destruction of
peripheral nerve terminals (72)

Stroke Central neurodegeneration and role of adult brain
stem cells (73)

Neuropathy symptoms (74)

ALS, anterior lateral sclerosis; ANS, autonomic nervous system; CIPN, chemotherapy-induced peripheral neuropathy; DRG, dorsal
root ganglia; GI, gastrointestinal; SCI, spinal cord injury; TBI, traumatic brain injury.
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tissues, but are vastly understudied there despite the likeli-
hood that they exert metabolic effects across multiple tissues
outside the brain (4,5) (Fig. 2). In support of this idea, numer-
ous human genes have been implicated through genome-wide
association studies for metabolic diseases like obesity and dia-
betes as clearly important for the nervous system and neuro-
nal functions (6), implicating dysregulation of the nervous
system’s energy balance homeostasis in the development of
obesity. However, it is glaring that mechanistic investigations
of these genes have almost solely been focused on their in-
volvement in brain processes, with potential functions in pe-
ripheral nerves ignored, despite similar expression of these
genes in the PNS. For example, brain-derived neurotrophic
factor (BDNF), its receptor TrkB, Calca, and many more genes
associated with human obesity are expressed in both the brain
and in peripheral nerves, but have almost exclusively been
studied in the brain. Relatedly, results of several studies with
investigation of proteins that can act as axon outgrowth sig-
nals (Sema7a and Slit2 as prime examples) have implicated
their importance in adipose tissue functions, but in these stud-
ies measurements of tissue innervation, neurite density, or
nerve function, that likely were contributing to the adipose
phenotypes, were completely ignored (7,8).

As similar as the structure-function relationships are be-
tween the CNS and PNS, important differences remain as
well. One difference is the relative lack of protection in the
PNS, without the blood-brain and blood–cerebrospinal
fluid interfaces/barriers in the CNS, leaving the PNS with

less protection from peripheral toxins, inflammatory signals,
and damaging metabolites that can lead to glucotoxicity or
lipotoxicity with diabetes or obesity. Similarly, the PNS is
also directly exposed to the circulating hormones, nutrients,
immune cells, and many more blood and lymphatic compo-
nents that allow interorgan communication and a more di-
verse fuel supply. Another distinction is that the neuronal
cell bodies in the PNS are housed in specialized structures
called ganglia that are synaptically connected to the CNS,
where nearby Schwann cells, other glial cells, and immune
cells reside. Some are “intrinsic” ganglia that sit directly on
top of organs like the intestine, heart, and pancreas (Fig. 2),
while other neuronal cell bodies are in spinal ganglia (e.g.,
dorsal root ganglia or sympathetic chain ganglia), which are
sometimes at long distances from their axon terminals in tis-
sues like skin and muscle (of note, the longest axon in the
human body is the sciatic nerve, which can measure>1 m in
length) (9). This creates long distances for cell survival signals
that originate at the cell body to reach the termini of PNS ax-
ons, a challenge not faced by neurons in the brain. In the
brain, axons, dendrites, and cell bodies are housed in rela-
tively close proximity, forming shorter neural circuits that
are nearby to support cells like glia. Furthermore, myelin
chemistry is largely similar between the CNS and PNS, but
there are differences in composition (10).

Finally, the brain’s synapses are nearly all classical synap-
ses (presynaptic neuron to postsynaptic neuron), whereas in
the PNS we know too little about specialized nerve terminals

Figure 1—Comparison of nervous system components between brain and PNS. The brain and PNS have many similarities as well as sev-
eral differences in cellular components, axonal length, protection by the blood-brain barrier versus a less restrictive endoneurium blood-
nerve barrier in PNS, and more. CSF, cerebrospinal fluid; DRG, dorsal root ganglia.
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and junctions, aside from the well-characterized skin nerve
ending structures and the neuromuscular junction (Fig. 2).
Only recently was a synaptic structure first described in adi-
pose tissues, the neuro-adipose nexus (NAN) (11–13) for ex-
ample, despite the critical role of adipose nerves in the
control of metabolic health and adipose tissue functions
(14,15). Nerve terminal structures are far better character-
ized in muscle and skin (Fig. 2). The NAN features axon ter-
minals with presynaptic protein markers and synaptic vesicle
markers and is comprised of both tyrosine hydroxylase–
expressing fibers and calcitonin gene–related peptide (CGRP)
fibers, indicating that NANs may be a mix of sensory and
sympathetic nerve endings. Similar to the neuromuscular
junction, the NANs are myelinated leading up to the start of
the terminal structure. NANs are relatively infrequent in the
tissue, and typically appear at the tissue surface, but are
found in nearly all mouse adipose depots. They increase in
number with obesity and aging, as we demonstrated recently,
potentially in response to inflammation in the tissue (14,15).

OPPORTUNITIES FOR NEW WORK IN THE PNS

Many who conduct biomedical research focused on pe-
ripheral tissues and organs tend to ignore the presence of

a peripheral nerve supply that may impact tissue functions.
For example, individuals in my laboratory continue to
meet colleagues who are surprised that adipose tissues are
innervated, and not just clusters of lipid-laden adipocytes
that communicate with the brain solely through the hor-
mone leptin or other adipokines, when we know from surgi-
cal, chemical, genetic, and viral denervation experiments that
adipose nerves are important for the tissue’s function and
provide bidirectional neural communication with the brain.
Unlike circulating factors, a peripheral nerve–mediated com-
munication route is swift and directed and can impact a sin-
gle tissue or organ without systemic effects.

Now that advanced tissue clearing and microscopy
techniques have evolved, antibodies have improved, and
more nerve reporter mouse lines are available for experi-
ments, investigation of tissue and organ innervation pat-
terns has revealed a robust network of vagal and spinal
afferents and efferents that enable bidirectional neural
communication between the brain and peripheral tissues,
including those important for metabolic health (Fig. 2).
The broad categorization of nerve subtypes (e.g., vagal
and spinal sensory, motor, autonomic/sympathetic) likely
underrepresents even more subdivisions of axonal sub-
types, with their own orchestration of neurotransmitter
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Figure 2—Innervation of metabolic tissues and organs and impacts of metabolic disease–associated peripheral neuropathy: white adipose tis-
sue (brown adipose is similar but not shown), heart, skin (where thermal sensation begins for cold-stimulated thermogenesis), muscle, gut/intes-
tine, pancreas, and liver are all metabolically important innervated organs. These tissues and organs have a diverse nerve supply that enables
bidirectional neural communication with the brain and results in release of numerous neurotransmitters, neuropeptides, and neuromodulators.
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and neuropeptide signals, or individualized responses to
the plasticity-inducing cues from axon outgrowth signals
and neurotrophic factors. Newer single-cell -omics studies
of ganglia are revealing some of this neuronal diversity in
the PNS (16–18). With emphasis more recently, the func-
tion of sensory nerves is an important new horizon for
neuroscience research because we know that the body’s
interoceptive and exteroceptive sensations of chemical,
mechanical, heat, and other signals are integral for our
cognitive experience of the world, and there is strong evi-
dence that PNS function impacts brain health, including
mental health (19,20). For example, patients with periph-
eral neuropathy report cognitive impairment and depres-
sion (Table 1).

Neuropeptides are likely understudied due to their small
size and short half-life and because of the difficulty in cap-
turing them with use of traditional methods like Western
blots or proteomics. Other challenges include the persis-
tent lack of reliable antibodies for G-protein–coupled re-
ceptors, such as the adrenergic receptors that respond to
catecholamines like norepinephrine (NE). Lastly, an impor-
tant research and gene therapy goal is the targeting of viral
vectors to the PNS while avoiding off target transduction
in the brain and spinal cord, which our group has been op-
timizing for adipose nerves and others have optimized for
gut and pancreatic nerves.

THE PNS: RELEVANCE IN OBESITY AND DIABETES

Diabetes and obesity are prime examples of diseases with
whole nervous system involvement. For example, body
weight homeostasis is regulated by a complex interplay
among nutrients, circulating neuroendocrine hormones that
are released from peripheral tissues to act in the brain and
other tissues, and coordination by the peripheral nerves in-
nervating the gut, adipose, pancreas, and more. Even the re-
lease of hormonal signals from endocrine tissues is largely
under PNS control; as a recent example, the release of intes-
tinal incretin hormones was found to be under sympathetic
nerve control (21), and the question of whether obesity-
associated peripheral neuropathy may impede these neuro-
endocrine signals in the gut remains unexplored. Glucose
regulation is also not a purely cell-autonomous process of
glucose-stimulated insulin release from b-cells in the pan-
creas. It involves neuronal sensors of nutrient status, pan-
creatic nerves that control glucose homeostasis, and the
action of intestinal incretin hormones that improve diabetes
and whole-body metabolic health.

The most effective treatments for human obesity have
consistently impacted the nervous system, from bariatric
surgery to appetite suppressants and the newer broad-acting
glucagon-like peptide 1 (GLP-1) and GIP dual agonists. In-
deed, GLP-1 and GIP receptors are expressed both in the
brain and in peripheral nerves (22,23). By contrast, treat-
ments for metabolic disease that prompt rapid weight
loss can have unintended negative consequences on the

peripheral nerves, causing neuropathies instead of pre-
venting them (24).

For decades investigators have worked to capitalize on
the antiobesity and antidiabetes functions of thermogenic
brown adipocytes, e.g., increasing their number or activity
to drive more energy expenditure and clearance of glucose
and lipids from the circulation. To maintain this caloric
drive, brown adipocytes expressing uncoupling protein 1
(UCP1) need neuronal stimulation (primarily via NE), and
without these nerve signals they can revert back to a less en-
ergetically active state (“whitening”). Recent work focused
on human-derived brown adipocytes as a cell-based therapy
underscored the importance of peripheral nerves for meta-
bolic health. The researchers demonstrated that human
preadipocytes treated with forskolin (a sympathomimetic)
increased UCP1 expression and maintained this UCP1 ther-
mogenic activity when transplanted into the body because
the stimulated cells released neurotrophic factors like BDNF
to promote the cell transplant’s neural innervation (25–28).
Brown adipose therapies are often critiqued because of this
need for sympathetic drive, which can be detrimental if
stimulated at a whole-body level (29) but targeted to a tissue
transplant is likely to be less problematic, since this mimics
physiological sympathetic drive to brown fat. The next ner-
vous system challenge will be overcoming the compensatory
appetite increase that can result when the body goes into a
state of negative energy balance, regardless of the body’s
need to dispense of excess adipose for health reasons. Again,
this cross talk between the brain and peripheral tissues and
organs is bidirectional: changes in the periphery can drive af-
ferent neural activity to the brain, which can then trigger
stimulation of efferent nerve signals back out to the periph-
ery. Losing weight drives increased appetite, at any body
weight, potentially via these afferent signals. This neural
cross talk has also repeatedly been observed in studies with
denervation of adipose depots, for example. Denervation of
one depot tends to lead to compensatory changes to inner-
vation of another depot in the body (or increased activity of
remaining nerves in the denervated tissue), underscoring
the redundant coordination that ensures our brain can con-
tinuously communicate with our fat storage organs through
peripheral nerves, and utilize those stored lipids (14).

Taken together, the PNS is an integral, yet often over-
looked, component of metabolically relevant organs includ-
ing the heart, intestine, liver, adipose, pancreas, muscle, and
many more (Fig. 2). While autonomic and motor nerves in
the PNS are better understood, as evidenced by our deep un-
derstanding of NE-releasing sympathetic nerves in adipose
tissue, we know far less about the afferent sensory nerves—
those involved in interoception, somatosensation, and
nociception in the body. It is laudable that the National In-
stitutes of Health (NIH) has prioritized work in pain condi-
tions (30) and interoception (as part of the Blueprint for
Neuroscience Research [31]) to help close this gap in knowl-
edge about peripheral nerve functions, but more still needs
to be done. As a country we have devoted enormous
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resources to brain research (e.g., the NIH Brain Research
through Advancing Innovative Neurotechnologies [BRAIN]
Initiative [32]) and Alzheimer disease (at NIH alone, more
than $3.7 billion in expenditures for research on this disease
annually, according to the Alzheimer’s Association [www.alz
.org/]). However, peripheral neuropathy is the number one
manifestation of neurodegenerative disease in humans (33),
and despite impacting 30 million Americans or more, work
in peripheral neuropathy is relatively underfunded across all
agencies and foundations. Since neuropathy overall has
been understudied, we are still learning which tissues are
impacted in the number one cause (diabetes/obesity) (Fig.
2)—not to mention the dozens of other neuropathy causes,
including long COVID, aging, chemotherapy, and more.

PERSPECTIVE: ONE NERVOUS SYSTEM

When you are attuned to it, there is clear evidence underscor-
ing the interconnectedness in our one nervous system: the
brain, brainstem, spinal cord, ganglia, cranial nerves, periph-
eral nerves, and tissue nerve terminals that work in a single
coordinated physiological system. Data on neurological dis-
eases and disorders are revealing that those conditions for-
merly considered “brain only” also involve the PNS and vice
versa (Table 1). Similarly, have we overlooked treatments
and therapies that target the spinal cord, such as neuromod-
ulation with spinal cord stimulation, that may also impact
the brain and peripheral nerves? Or have we neglected inves-
tigating drugs for brain disorders (antidepressants, seizure
medications) that may also improve PNS function and neu-
ropathy? My guess is, yes, we have—if we are not concert-
edly looking for PNS effects, we certainly will not find them.

SUMMARY: KEY UNANSWERED QUESTIONS

As covered in this article, mounting evidence now encour-
ages neuroscientists to consider both arms of the nervous
system in investigations of diseases and treatments. The
nervous system is a single, interconnected physiological
system that responds to internal and external signals to
regulate numerous metabolically relevant processes in
many tissues and organs that are important for obesity, di-
abetes, aging, and cardiometabolic health. Myriad areas of
biomedical investigation remain to be fully explored re-
lated to the PNS and the interconnectedness of the ner-
vous system in health and disease, including the nerve
subtypes present in tissues/organs and their responses to
local neurotrophic factors, the actions of various nerve
products on different cell types in the tissue, the cross talk
between arms of the PNS at the tissue or ganglia/spinal
levels, the impact of peripheral neuropathy on tissues be-
yond the skin, and the structure/function relationships for
nerve terminal structures in different tissues/organs.
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