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White adipose tissue (WAT) vs. brown adipose 

tissue (BAT) 
 

There are two major subtypes of adipose tissue, i.e., WAT 

and BAT, each with distinct functions, cellular structures, 

and origins. WAT originates from mesenchymal stem 

cells during development and consists of large, unilocular 

adipocytes. These cells contain a single lipid droplet and 

are found in areas like the abdomen, thighs, and around 

internal organs [1]. WAT functions primarily as an energy 

reservoir, storing excess calories in the form of 

triglycerides, but also plays a role in impairing healthful 

longevity by increasing obesity and its related metabolic 

disorders, such as insulin resistance, type 2 diabetes, and 

cardiovascular diseases [2, 3]. 

 

Brown adipose tissue (BAT) 

 

In marked contrast to WAT, BAT is becoming 

increasingly attributed to healthful aging. Brown 

adipocytes are smaller in size than white adipocytes 

with lipid droplets surrounding the nucleus. Brown 

adipocytes have mitochondria dispersed between the 

droplets, which give these cells their brown appearance. 

BAT is mainly located in the interscapular space of 

mice, and in humans it is found in the interscapular, 

supraclavicular, suprarenal, and para-aortic spaces. 

BAT originates from a lineage closely related to skeletal 

muscle cells, also derived from mesenchymal stem 

cells. BAT consists of smaller adipocytes with 

mitochondria, which produce heat through uncoupling 

protein 1 (UCP1) [4], resulting in the release of heat [1, 

5–8]. This provides the basis for the major role for 

BAT, thermogenesis, as a mechanism to maintain body 

temperature by helping maintain body temperature in 

cold environments. This function is especially critical in 

newborns, who have a higher proportion of BAT, but it 

persists in adults in smaller amounts, especially around 

the neck and shoulders [9]. Changes in BAT with aging 

reduce its effects on thermogenesis [10]. BAT is 
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ABSTRACT 
 

Brown adipose tissue (BAT), a major subtypes of adipose tissues, is known for thermogenesis and promoting 
healthful longevity. Our hypothesis is that BAT protects against impaired healthful longevity, i.e., obesity, 
diabetes, cardiovascular disorders, cancer, Alzheimer’s disease, and reduced exercise tolerance. While most prior 
studies have shown that exercise regulates BAT activation and improves BAT density, relatively few have shown 
that BAT increases exercise performance. In contrast, our recent studies with the regulator of G protein signaling 
14 (RGS14) knockout (KO) model of extended longevity showed that it enhances exercise performance, mediated 
by its more potent BAT, compared with BAT from wild type mice. For example, when the BAT from RGS14 KO 
mice is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, 
whereas BAT transplantation from WT to WT mice increased exercise performance, but only at 8 weeks after 
transplantation. The goal of this research perspective is to review the role of BAT in mediating healthful 
longevity, specifically exercise capacity. In view of the ability of BAT to mediate healthful longevity and enhance 
exercise performance, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality. 
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activated by norepinephrine, a hormone released during 

cold exposure and sympathetic nervous system 

activation. Norepinephrine binds to β-adrenergic 

receptors on brown adipocytes, stimulating the 

production of UCP1, which uncouples oxidative 

phosphorylation from ATP synthesis, allowing energy 

to be dissipated as heat [5]. Additionally, thyroid 

hormones are important for BAT activation and 

thermogenesis, enhancing the tissue’s ability to burn fat 

[11]. 

 

In addition, UCP1-independent thermogenic pathways 

have been found in beige adipocytes and muscles [12]. 

BAT also functions as a metabolic sink by oxidizing 

glucose and lipids, which produces heat. Since BAT 

burns calories to produce heat, its activation promotes 

weight loss, and enhances insulin sensitivity [13], which 

have therapeutic potential for obesity and diabetes [14]. 

BAT has also been shown to mediate healthful 

longevity [8, 15]. 

 

BAT mediating healthful longevity 
 

Studies have indicated that aging reduces BAT activity 

leading to thermal dysregulation and energy imbalance 

[16–18]. However, the effects of age on BAT mass have 

been inconsistent [19–21]. Some studies have reported 

that aging increases the amount of BAT [19, 20], 

whereas one study reported no change in BAT mass in 

rodents [21]. In addition, beige adipocyte formation 

declines with aging which may be caused by changes in 

the adipose tissue microenvironment [16, 22]. 

 

More recently, interest has extended to BAT’s role in 

mediating healthful aging, primarily from data in 

genetically altered mouse models. It has been reported 

that the enhanced BAT activity/function mediate 

healthful longevity in several longevity mouse models, 

e.g., protection against obesity [23, 24], diabetes [23, 

24], cardiovascular disorders [25–27], cancer [28–32], 

Alzheimer’s Disease [33], stroke [34, 35], exercise 

intolerance [36], and reduced blood flow [36–38]. 

 

In addition, there are models with enhanced BAT 

function or extra BAT amount by BAT transplantation 

that exhibit aspects of healthful longevity. WT mice 

receiving BAT from another WT BAT mouse exhibit 

improved exercise capacity, protection against obesity 

and diabetes and cancer [36, 39–41]. It has also been 

suggested that low levels of BAT in humans are 

associated with obesity and glucose intolerance, 

whereas those with higher BAT levels maintain lower 

body weight and more healthful aging [42]. 

 

One example of a genetic model demonstrating that 

BAT enhances exercise performance is that of RGS14 

KO mice, a healthful lifespan model, mediated by 

increased BAT [8]. Survival is significantly enhanced in 

the RGS14 KO mouse, with females living longer than 

males, similar to human data (Figure 1A, 1B). In 

addition, the old RGS14 KO mice do not show the 

phenotype of aging WT mice, i.e., body atrophy, loss of 

hair and greying of hair color (Figure 1C). These 

features of healthy aging can be recapitulated in WT 

mice with transplants of BAT from RGS14 KO mice at 

a young age (Figure 1C). The RGS14 KO mice have 

increased density of BAT with smaller BAT cell size 

(Figure 2). 

 

BAT and exercise 
 

Exercise regulating BAT 

 

Enhanced exercise capacity is not only a feature of 

healthful aging, but also is a therapy for aging patients 

and patients with cardiovascular disease. Exercise is a 

healthy way to reduce body weight by activating the 

sympathetic nervous system, accelerating the 

decomposition of fat, and promoting the utilization and 

consumption of energy in skeletal muscle [43–45]. 

During aging, it is known that progressive loss of 

exercise capacity relates to loss of skeletal muscle mass 

and tissue function [46]. Decreased muscle mito-

chondrial function contributes to the loss of skeletal 

muscle function during aging [47–51]. Regular exercise 

or exercise training protects against decreased muscle 

function during aging [52, 53], frailty status [54, 55], 

and neurodegeneration [56, 57]. 

 

Numerous studies have suggested that exercise may 

play a role in regulating BAT activation. Exercise 

boosts the expression of UCP1 and genes associated 

with mitochondria biogenesis, thereby improving 

BAT’s heat production capacity [5]. For instance, swim 

training in rodents over six to eight weeks increased 

UCP1 protein levels in BAT [58, 59]. Similarly, 

treadmill exercise in rodents for 6–8 weeks increased 

BAT activity and cytochrome oxidase activity, oxygen 

consumption rates and BAT-specific gene markers, e.g., 

UCP1, FGF21, and PGC1α [60, 61]. However, 

conflicting findings also exist, with some studies 

suggesting that exercise may reduce the thermogenic 

effect of BAT. In rats, six to eight weeks of moderate-

intensity treadmill exercise led to decreased UCP1 

expression in BAT and a reduction in total BAT mass 

[62, 63]. Human studies also showed inconsistent 

results regarding the role of exercise on BAT 

modulation, with some indicating that high-intensity 

physical activities can increase BAT density [64], while 

others reporting that exercise decreases glucose uptake 

in BAT [65–67]. While most of these studies have 

shown that exercise increases BAT, relatively few have 
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Figure 1. RGS14 KO model of longevity. (A) Kaplan-Meier survival curves for RGS14 KO and WT mice showed significantly augmented 

survival in RGS14 KO mice. (B) Maximum lifespan was significantly greater in RGS14 KO mice than in WT mice for both males and females. 
In addition, medium and maximum lifespan were greater in female RGS14 KO mice than in male RGS14 KO mice. (C) Furthermore, 
24 month old RGS14 KO mice did not show the aging phenotype normally present in WT mice of similar age, including body atrophy, loss of 
hair and greying of fur color. In support of the key role of BAT in aging, old WT RGS14 KO BAT recipient mice, which had BAT transplanted at 
3–4 months of age, had the appearance of healthful aging similar to the old RGS14 KO mice. A representative example of each is shown in 
panel C. For median lifespan analysis, a Mood’s Median Test, was used to determine differences in median lifespan. A Student’s t-test was 
used to test differences in maximum lifespan. *p < 0.05 vs. WT, #p < 0.05 vs. male. Reprinted from Vatner DE, et al Aging Cell. 2018; 17(4). 

 

 
 

Figure 2. Increased BAT cell numbers in RGS14 KO mice. RGS14 KO mice exhibited smaller brown adipocytes (A, B), and increased 

number of brown adipocytes (A, C) than WT control mice. *p < 0.05. Reprinted from Vatner DE, et al Aging Cell. 2023; 22(4). 
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shown that BAT increases exercise performance [36, 

41, 68]. 

 

BAT regulating exercise 

 

There are fewer studies examining the role of BAT 

regulating exercise than exercise regulating BAT. One 

example of a genetic model demonstrating that BAT 

can enhance exercise performance is that of RGS14 KO 

mice, a healthful lifespan model, mediated by increased 

BAT 8. Whereas the RGS14 KO mouse exhibits 

increased exercise capacity, similarly, RGS14 KO BAT 

transplanted to WT mice demonstrate an increased 

maximal running distance and work to exhaustion, 

which corresponds to the enhanced exercise capacity of 

RGS14 KO mice (Figure 3A–3D). The enhanced 

exercise capacity observed in WT mice with RGS14 

KO BAT transplants was observed at three days after 

BAT transplantation, whereas BAT transplantation from 

WT to WT mice also resulted in increased exercise 

performance, not at 3 days, but only at 8 weeks after 

transplantation [36] (Figure 3E–3H). Another study 

found that BAT transplantation prevents the impaired 

glucose tolerance, the increase in left ventricle mass, 

and exercise intolerance following myocardial 

infarction [41]. In addition, BAT transplantation 

significantly reversed the reduction in physical activity 

in high fat diet-fed mice [68]. 

 

There are multiple mechanisms mediating the enhanced 

exercise capacity in RGS14 KO mice. Most 

importantly, RGS14 KO mice demonstrate increased 

hind limb perfusion (Figure 4A), also found in RGS14 

KO BAT recipients, but lost in RGS14 KO BAT donors 

 

 
 

Figure 3. Increased exercise capacity in RGS14 KO mice. RGS14 KO mice ran longer distances (A) with increased work to exhaustion 

(B) compared to WT littermates. BAT transplantation from RGS14 KO mice to WT mice led to a reversal of phenotype, such that RGS14 KO 
BAT recipients exhibited improved running distance (C) and greater work to exhaustion (D) compared to RGS14 KO BAT donors, at 3 days 
after RGS14 KO BAT transplantation. In contrast, there was no improvement in running distance and work to exhaustion at 3 days after 
transplantation of BAT from C57BL6/J WT mice to other C57BL6/J WT mice (E, F). It required 8 weeks to achieve enhanced running distance 
and work to exhaustion in C57BI/6J WT mice with BAT transplantation from other C57BL6/J WT mice (G, H). *p < 0.05. Reprinted from 
Vatner DE, et al Aging Cell. 2023; 22(4). 
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Figure 4. Enhanced exercise by RGS14 KO mice is mediated by BAT and angiogenesis/arteriogenesis increasing hindlimb 
blood flow. Non-linear contrast imaging was used to measure hindlimb blood flow. The average data are presented as % of WT perfusion, 

which is represented as 100% (A). Hindlimb blood flow was higher in RGS14 KO mice compared to WT mice, and higher in WT mice that 
received RGS14 KO BAT, at 3 days after transplantation (A, B), while RGS14 KO BAT donors lost their enhanced hindlimb perfusion, with 
results similar to WT mice (A). WT BAT recipients showed greater hindlimb perfusion at 8 weeks after transplantation of BAT from C57BL6/J 
WT mice to other C57BL6/J WT mice (A). Angiogenesis (reflected by capillary density) and arteriogenesis (reflected by arteriole density) 
were both increased in skeletal muscle of RGS14 KO mice (B, C) and RGS14 KO BAT recipients (D, E), which correlated with increased VEGF 
in skeletal muscle (F) and BAT (G). Increased angiogenesis (D) and arteriogenesis (E) were not observed in RGS14 KO BAT donors. Results 
are expressed as Mean ± SEM, *p < 0.05. Reprinted from Vatner DE, et al Aging Cell. 2023; 22(4). 

 

 
 

Figure 5. Mechanisms mediating enhanced exercise capacity in RGS14 KO and its uniquely powerful BAT. Multiple mechanisms 

mediated the enhanced exercise capacity in RGS14 KO mice. The most important mechanism is BAT, which mediates SIRT3, MnSOD, 
MEK/ERK and VEGF pathways. These mechanisms regulate exercise capacity by improved mitochondrial function, protection against 
oxidative stress and improved blood flow/angiogenesis. Reprinted from Vatner DE, et al Aging Cell. 2023; 22(4). 
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(Figure 4A) and increased capillary and arteriolar 

density (Figure 4B, 4C). The increase capillary and 

arteriolar density was also observed in RGS14 KO BAT 

recipients and lost in RGS14 KO BAT donors (Figure 

4D, 4E). A key mechanism mediating the increased 

perfusion and vascular density was VEGF (Figure 4F), 

observed in RGS14 KO skeletal muscle and BAT 

(Figure 4G). At the cellular level, the mechanisms 

mediating the RGS14 KO and RGS14 KO BAT 

enhanced exercise capacity include increases in SIRT3, 

MEK/ERK, MnSOD, and mitochondrial function, 

which decrease oxidative stress. All these mechanisms 

are illustrated in Figure 5. 

 

In view of the data demonstrating that the RGS14 KO 

mouse exhibits many features of healthful aging, one of 

which is enhanced exercise capacity, mediated by BAT, 

and that RGS14 KO BAT is more powerful than WT 

BAT, it becomes increasingly important to develop a 

pharmacological analog of RGS14 KO BAT that can be 

translated to the clinics to promote enhanced exercise 

capacity and healthful aging in patients. 
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