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SUMMARY
Industrialization adversely affects the gut microbiome and predisposes individuals to chronic non-commu-
nicable diseases. We tested a microbiome restoration strategy comprising a diet that recapitulated key
characteristics of non-industrialized dietary patterns (restore diet) and a bacterium rarely found in industri-
alized microbiomes (Limosilactobacillus reuteri) in a randomized controlled feeding trial in healthy Cana-
dian adults. The restore diet, despite reducing gut microbiome diversity, enhanced the persistence of
L. reuteri strain from rural Papua New Guinea (PB-W1) and redressed several microbiome features altered
by industrialization. The diet also beneficially altered microbiota-derived plasma metabolites implicated in
the etiology of chronic non-communicable diseases. Considerable cardiometabolic benefits were
observed independently of L. reuteri administration, several of which could be accurately predicted by
baseline and diet-responsive microbiome features. The findings suggest that a dietary intervention tar-
geted toward restoring the gut microbiome can improve host-microbiome interactions that likely underpin
chronic pathologies, which can guide dietary recommendations and the development of therapeutic and
nutritional strategies.
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INTRODUCTION

Humans harbor complex microbiomes in their gastrointestinal

tract that make important contributions to host fitness, develop-

ment, and health.1 This symbiosis evolved over millions of years

under environmental and nutritional conditions that are substan-

tially different from those in modern industrialized societies.2,3

The lifestyle factors that are hallmarks of industrialization consti-

tute either hurdles to symbiont transmission and dispersal (e.g.,

cesarean sections, antibiotics) or lead to an undersupply of nutri-

ents to the gut microbiome (e.g., formula feeding, refined west-

ern diets).4,5 Although these factors have contributed substan-

tially to increased life expectancy through infectious disease

prevention and food security,6 they have been linked to an

increased risk of developing chronic non-communicable dis-

eases (NCDs) in epidemiological research.7–9 These connections

led to hypotheses proposing that the rise in NCDs, which have

reached epidemic proportions in several socio-economically

developed societies,10 might be caused, at least in part, by life-

style-induced disruptions of host-microbiome symbiosis.11,12

Investigations of the gut microbiome in non-industrialized

and industrialized human populations,13–16 over lifestyle gradi-

ents,17–19 and across generations of immigrants,20 as well as the

reconstruction of microbial genomes from paleofeces,21 have

consistently confirmed lifestyle-induced alterations of the gut mi-

crobiome. Industrialization has resulted in decreased gut micro-

biomediversity,13,15,22 loss of fiber-degrading and immunomodu-

latory microbes,22–25 increased pro-inflammatory microbial taxa

(e.g.,Bilophila),13,14 reduced fiber fermentation,22 and diminished

enzymatic capacity for plant-carbohydrate utilization and enrich-

ment of mucus-degrading organisms and enzymes.26 Mecha-

nistic work in mice showed that ‘‘western-style’’ diets deprived

of fiber led to starvation and subsequent extinction of commensal

microbes,27 as well as metabolic and immunological pathologies

driven by increased mucus degradation and inflammation.28,29

There is, therefore, strong rationale supported by epidemiology,

anthropology, and mechanistic animal research to restore the

gut microbiome and redress adverse effects of industrialization.

Proposals to restore the industrialized gut microbiome to

improve health have focused on providing adequate supply of

dietary fibers and lost microbes.12 However, such research in

humans is still scarce, and scientific and ethical concerns

have been raised about different aspects of microbiome res-

toration.30,31 For example, doubts exist on whether reversing

gut microbiome features to ancestral states will provide benefits

in industrialized environments and to what degree such

attempts are even possible.30 In this work, we explored the ef-

fects of a microbiome restoration strategy comprised of a bacte-

rium (Limosilactobacillus reuteri) rarely found in industrialized gut

microbiomes32 and a diet that shared key characteristics of non-

industrialized dietary patterns (Non-industrialized Microbiome

Restore [NiMe] diet, referred to as restore diet throughout the

publication). In a randomized controlled feeding trial in healthy

Canadian adults, we characterized the effects of the restoration

strategy on the persistence of L. reuteri (primary objective), gut

microbiome ecology and metabolism, and host metabolism

and risk markers of chronic diseases and identified microbiome

and metabolome features predictive of clinical outcomes.
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RESULTS

Design of a microbiome restoration strategy
The species L. reuteriwas selected as it is rarely found in indus-

trialized microbiomes,32 and was dominant in fecal micro-

biomes of rural Papua New Guineans but undetectable in US

control subjects.13 The species is further generally recognized

as safe and has well-established health-promoting effects.33–36

To test the hypothesis that an L. reuteri strain originating

from a non-industrialized population would display adaptations

toward a non-industrialized-type diet, we compared an

L. reuteri strain derived from rural Papua New Guinea

(‘‘PB-W1’’)37 with the L. reuteri-type strain isolated in Germany

(‘‘DSM 20016T’’).38 These two strains belong to distinct phylo-

genetic lineages and subspecies of L. reuteri and show an

average nucleotide identity (ANI) value of only 96.2%,39,40 indi-

cating genetic divergence.

We designed a complementary diet (restore diet) based

on foods regularly consumed in rural Papua New Guinea but

available in Canada (e.g., beans, sweet potato, rice, cucumber,

and cabbage)13 and foods that contained high amounts of raffi-

nose and stachyose (e.g., Jerusalem artichokes, peas, and on-

ions),41,42 which are growth substrates of L. reuteri.43 The diet

shared key characteristics with non-industrialized dietary pat-

terns that likely mimic ancestral diets44: primarily plant-based,

devoid of dairy and wheat, limited in highly processed foods,

low glycemic index and energy density, and amounts of dietary

fiber (22 g per 1,000 kcal) that exceed recommendations. The

restore diet provided approximately 60% of total energy from

carbohydrate, 15% from protein, and 25% from fat, which falls

within the acceptable macronutrient distribution ranges.45

A human trial to characterize the effects of the gut
microbiome restoration strategy
We conducted a randomized controlled feeding trial in healthy

adults (n = 30) to test the effects of our microbiome restoration

strategy on gut microbiome and host metabolism (Figure 1A).

Our objective was to simultaneously determine (1) if L. reuteri

could be re-established in the gut microbiome in a western

cohort and the effects on the host, (2) the effects of the restore

diet independent of L. reuteri supplementation, and (3) potential

beneficial interactions between L. reuteri and the restore diet.

Participants were randomized to consume either the restore

diet for 3 weeks, which involved standardized meals based on

a 4-day rotating menu (Table S1; example depicted in Figure S1)

adjusted to maintain individual caloric requirements, or remain

on their usual diet for 3 weeks and advised to maintain usual di-

etary intake, which was monitored by repeated 24-h dietary re-

calls (Table S2). After a 3-week washout, subjects were crossed

over to the other diet period for 3 weeks, followed by a final

3-week washout. In a parallel-arm design, participants were ran-

domized to receive a single inoculum of either �1010 viable cells

of L. reuteri PB-W1 or DSM 20016T or a placebo (maltodextrin)

on the fourth day of each diet period (days 4 and 46 of the trial).

From January 2019 to January 2020, 266 individuals were

screened, and 42 were assessed for eligibility (see STAR

Methods for inclusion and exclusion criteria). Of the latter, only

one individual had detectable levels of L. reuteri in feces,
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Figure 1. Experimental test of microbiome restoration strategy in healthy adults

(A) Depiction of randomized controlled trial design and sample type collection.

(B) CONSORT diagram of the study flow.

(C and D) Changes in (C) fiber and (D) energy intake within each diet period are shown in bar plots, with mean ± SD; paired t tests with p < 0.05. See also Figure S1

and Tables S1–S4. BL, baseline of each diet period; Day21, day 21 of each diet period; DSM 20016T, L. reuteri-type strain; PB-W1, L. reuteri strain from rural

Papua New Guinea.
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confirming that L. reuteri is rare in western cohorts.32 The 41 in-

dividuals without detectable L. reuteri were randomized, and

30 participants (aged 28.2 ± 6.7 years, body mass index [BMI]

23.8 ± 2.6 kg/m2 [mean ± SD]; baseline characteristics in

Table S3) completed the intervention andwere included in statis-

tical analyses, while 11 subjects withdrew either for personal rea-
sons (n = 7), low compliance (n = 2), or unwillingness to tolerate

GI symptoms (n = 2) (Figure 1B). On average, fiber intake

doubled during the restore diet compared with participants’

usual diets (Figure 1C), while saturated fat was significantly

reduced (Table S2), but there were no significant changes to en-

ergy intake (Figure 1D).
Cell 188, 1–22, March 6, 2025 3
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Figure 2. Effects of the restore diet on L. reuteri persistence and microbiome diversity indices and variation

(A) Cell numbers of L. reuteri in fecal samples determined by quantitative culture. Data presented as Log10 of cells per g of feces, and within each day of the

intervention, different letters indicate significant differences based on repeated-measures two-way ANOVA with p < 0.05.

(legend continued on next page)
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Safety and tolerability of the microbiome restoration
strategy
Supplementation of L. reuteri PB-W1 and DSM 20016T had no

detectable effects on safety-related laboratory measures (e.g.,

complete blood count, electrolytes) (Table S4). Although

consuming the restore diet increased creatinine from 73.0 ±

14.4 to 76.4 ± 13.6 mmol/L (false discovery rate [FDR]-adjusted

p = 0.029, linear mixed models; see STAR Methods section sta-

tistical analyses) and reduced estimated glomerular filtration rate

from 107.4 ± 16.8 to 104.0 ± 16.8 mL/min/1.73m2 (p = 0.027),

these values as well as all other safety-related laboratory mea-

sures remained within normal ranges.

Compared with the usual diet, the restore diet softened stool

consistency (p = 0.006, generalized estimating equations [GEE]

models) and increased the number of daily bowel movements

(p = 0.021) (Figure S2A), indicating a reduction in gut transit time

likely due to increased fiber intake.46,47 The restore diet increased

gastrointestinal symptoms (i.e., stomach aches, abdominal ten-

sion, and flatulence; p < 0.01 at all time points, GEE models; Fig-

ure S2A), which were the only intervention-related adverse events

in thestudy.TherewerenodetectableeffectsofL. reuteri inoculum

on any of these parameters (Figure S2B). Other participant-re-

ported outcomes, including perceived stress, mood, and physical

activity, remained unchanged (data not shown). There were no

serious adverse events related to the intervention.

Persistence and survival of L. reuteri strains
L. reuteri became detectable in feces by culture and quantitative

PCR (qPCR) 2 days after consuming either PB-W1 or DSM

20016T but not in the placebo group (Figures 2A and S3A). PB-

W1 reached higher numbers (7.64 ± 0.11 and 7.85 ± 0.15 Log10
of cells/g of feces based on culture and qPCR, respectively) than

DSM 20016T (6.36 ± 0.11 and 6.66 ± 0.20 Log10 of cells/g for cul-

ture and qPCR, respectively) 2 days after administration in both

diet periods (p < 0.001 for both culture and qPCR, paired t tests)

(Figures 2A and S3A). The abundance of both L. reuteri strains

declined and became undetectable 12–17 days post-administra-

tion in all but one participant, in whom PB-W1 stably colonized

for the entirety of the trial, albeit at a low abundance (Figure S3B).

The restore diet enhanced the abundance of PB-W1 but not

DSM 20016T 4 (6.61 ± 0.24 versus 5.78 ± 0.37, p = 0.02 based
(B) Survival of L. reuteri, represented as the ratio of cell numbers estimated using

each diet period (i.e., 2, 4, and 8 days after L. reuteri administration). This timefram

16 (12 days after L. reuteri administration). Within the same day, paired t tests wer

periods for L. reuteri PB-W1 and DSM 20016T, separately; p < 0.05.

(C) Changes in Shannon index between each subject’s microbiota at baseline an

(D–I) (D) Changes of observed features (richness) between baseline and differe

(repeated-measures two-way ANOVA), and CAZymes (repeated-measures two-w

between different days of each diet period and subject’s baseline), estimated bas

(I) ECs (repeated-measures two-way ANOVA for F–I).

(J) PCoA of microbial communities using ASV-based Bray-Curtis dissimilarity ma

(K–M) (K) PERMANOVA based on Bray-Curtis dissimilarity matrices was conduc

dividuality, diet, bowel movement frequency, and stool consistency) on the micr

and SGBs) and functions (pathways, CAZymes, and ECs) explained by (L) individ

box plots or mean ± SEM. See also Figures S2 and S3. ASVs, amplicon sequenc

enzymes; DSM 20016T, L. reuteri-type strain; ECs, level-4 enzyme commission

New Guinea; N.S., not significant; PCoA, principal-coordinate analysis; PERMA

genome bins.
on culture) and 8 (3.90 ± 0.35 versus 2.40 ± 0.24, p = 0.02 based

on culture) days post-administration, and PB-W1 cell numbers

were significantly higher than DSM 20016T at these time points

(p < 0.001 for both days based on culture; p = 0.003 and 0.02

for 4 and 8 days after administration based on qPCR)

(Figures 2A and S3A). Given that detectable effects of the diet

on PB-W1 were stronger with culture (live bacteria) as compared

with qPCR data (both live and dead bacteria), we hypothesized

that the restore diet enhanced the survival of PB-W1. In fact,

the ratio of culture versus qPCR counts was significantly higher

for PB-W1 on the restore diet (p = 0.02 and 0.05, 2 and 4 days

after administration, respectively; paired t tests) but not for

DSM 20016T (Figure 2B). Overall, these results indicate higher

ecological performance and survival of PB-W1 compared with

DSM 20016T, which is further enhanced by the restore diet, but

only temporal persistence with one single exception.

We included L. reuteri inoculum as a fixed factor in down-

stream analyses of the gut microbiome using linear mixed

models or repeated-measures two-way ANOVA, but these ana-

lyses did not detect any significant effects of L. reuteri inoculum

on gut microbiome composition, diversity, or functional features

(data not shown).

Impact of the restore diet on the gut microbial
community
The restore diet reduced measures of gut microbiota alpha-

diversity, assessed using both 16S rRNA gene amplicon

sequencing (based on amplicon sequence variants [ASVs]) and

whole metagenome sequencing (WMS, based on species-level

genome bins [SGBs]): Shannon index (p < 0.001 based on

ASVs, linear mixed model; p = 0.003 based on SGBs,

repeated-measures two-way ANOVA) (Figures 2C and S3C),

number of observed features (p < 0.001 for both ASVs and

SGBs) (Figures 2D and S3D), and Pielou’s evenness (p < 0.001

based on ASVs; p = 0.024 based on SGBs) (Figure S3E). The

reduction in alpha diversity occurred within the first 4 days of

the restore diet and was stably maintained throughout the diet

period (Figures 2C, 2D, and S3E). Reductions in alpha diversity

were also observed for predicted functional features derived

from WMS, e.g., the number of observed pathways (p = 0.013,

repeated-measures two-way ANOVA) and carbohydrate-active
quantitative culture to qPCR in fecal samples collected on days 6, 8, and 12 of

e was chosen because L. reuteri became undetectable in most samples by day

e applied to compare the survival status between the restore diet and usual diet

d during the two diet periods, estimated based on ASVs (linear mixed model).

nt days of each diet period, based on ASVs (linear mixed model), pathways

ay ANOVA). Intra-individual (within-subject) Bray-Curtis distance (i.e., distance

ed on (E) ASVs (linear mixed model), (F) SGBs, (G) pathways, (H) CAZymes, and

trices (each color represents a different participant).

ted with 1,000 permutations to evaluate the effects of various factors (i.e., in-

obial community structure. Variation in microbial compositional profiles (ASVs

uality and (M) the restore diet; ** p % 0.001, PERMANOVA. Data presented as

ing variants; BL, baseline of each diet period; CAZymes, carbohydrate-active

categories; LoD, limit of detection; PB-W1, L. reuteri strain from rural Papua

NOVA, permutational multivariate analysis of variance; SGBs, species-level
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enzymes (CAZymes) (p < 0.001) (Figure 2D), while Shannon in-

dex and Pielou’s evenness of these functional features did not

significantly change (Figures S3C and S3E). Indices of alpha di-

versity for level-4 enzyme commission categories (ECs) were not

altered by the diet intervention (Figures S3C–S3E).

The restore diet significantly altered the overall gut microbial

community, assessed by comparing beta diversity (Bray-Curtis

distance) differences between treatment time points to baseline,

which was detectable for both ASVs (p < 0.001, linear mixed

model; Figure 2E) and SGBs (p < 0.001, repeated-measures

two-way ANOVA; Figure 2F). Diet-induced differences of beta di-

versity betweenbaseline andday 4 of the restore diet periodwere

negatively correlatedwith baseline richness (number of observed

ASVs; rs =�0.38, p = 0.04, Spearman’s rank correlation). This in-

dicates that a more diverse baseline microbiota is more resistant

to diet-induced changes, which agreeswith the diversity-stability

hypothesis48 and several previous studies that assessed gut mi-

crobiota responses to diet interventions.49–51 Temporal data

derived from 16S rRNA gene amplicon sequencing revealed

that microbiota community shifts occurred within the first

4 days and were stably maintained throughout the restore diet

(Figure 2E). Higher beta diversity differences induced through

the restore diet were also detected for functional features (path-

ways [p = 0.011, repeated-measures two-way ANOVA], CA-

Zymes [p = 0.040], and ECs [p = 0.030]) (Figures 2G–2I). The

restorediet further increased inter-subject dissimilarity (assessed

asBray-Curtis distancebetween individuals) ofmicrobial compo-

sitional profiles (p < 0.001 for both ASVs and SGBs; Wilcoxon

signed-ranks test) and some functional features (p = 0.014 for

pathways and p < 0.001 for ECs) but not CAZymes (Figure S3F).

To determine the relative contribution of diet in shaping gutmi-

crobiota as compared with other relevant factors (e.g., individu-

ality and transit time52,53), we generated a Bray-Curtis distance

matrix and projected it in two dimensions via principal-coordi-

nate analysis (PCoA) (Figure 2J). Permutational multivariate anal-

ysis of variance (PERMANOVA) revealed that the restore diet

significantly altered global microbial community composition

(p = 0.001, R2 = 0.015), but microbiota continued to cluster by in-

dividual (p = 0.001, R2 = 0.774), meaning that diet explained only

1.5%ofmicrobiota variation in the overall participant cohort (Fig-

ure 2K). Therefore, diet standardization did not reduce inter-indi-

vidual variation of gut microbiota, which agrees with previous

research.54,55 However, the effect of diet was at least 5 times

larger than that of markers of transit time (0.2% of variation ex-

plained by bowel movement frequency and 0.1% by stool con-

sistency; Figure 2K).

Interestingly, diet explained 22.6%–58.6% (p = 0.001–0.009)

of microbiota variation within each individual (Figure 2K). These

findings suggest a strong individualized effect of the restore

diet on gut microbiota composition. In addition, the contribution

of ‘‘individuality’’ on beta diversity variation was 62.8%–66.9%

(p = 0.001) for microbiome functional features (Figure 2L), while

the impact of ‘‘diet’’ was 1.7%–2.5% (p = 0.001; Figure 2M).

This suggests that, although functional redundancy reduces

the importance of individuality in explaining microbiome func-

tional variations compared with composition, the gut micro-

biome remains significantly individualized even if viewed through

functional lenses, and the effect of diet is comparatively small.
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Impact of the restore diet on relative abundance of gut
microbial taxa and encoded functions
More than half of the detectable ASVs (122 out of 205 ASVs) were

significantly altered during the diet intervention (FDR-adjusted

p < 0.05, linear mixed models) (Table S5). Hierarchical clustering

revealed that average values of all samples collected during the

restore diet period clustered separately from those collected

during the usual diet period and the baselines of each diet period

(Figure 3A). These findings suggest that despite the large individ-

uality detected above (Figures 2J and 2K), average relative abun-

dances of individual microbial taxa still showed significant diet-

induced changes.

Several putative health-promoting species (Figure 3B) and

genera (Figure 3C), including the genus Bifidobacterium with

three Bifidobacterium species (B. adolescentis [ASV70 and

ASV187], B. longum [ASV73 and ASV144], and B. pseudocate-

nulatum [ASV111 and ASV153]), the genus Faecalibacterium

and the species F. prausnitzii (ASV6, ASV10, ASV72, and

ASV95), Roseburia hominis (ASV49 and ASV188), and Lachno-

spira sp. (ASV23, ASV30, and ASV37) were enriched during

the restore diet period (FDR-adjusted p < 0.05). Average relative

abundances of putative pro-inflammatory bacterial taxa, such

as Bilophila wadsworthia (ASV21), Alistipes putredinis (ASV127

and ASV171),Mediterraneibacter torques (synonym of Rumino-

coccus torques; ASV167), and Parabacteroides merdae (ASV9,

ASV130, and ASV183), were reduced (Figure 3B). The dominant

changes were confirmed through analysis of SGBs (Table S5).

Although the overall effects of the restore diet on microbial

taxa were statistically significant and effect sizes were often

large, effects and their magnitude were highly individualized.

For example, diet-induced changes of the relative abundance

of Bifidobacterium varied from �12% to 760% when compared

with baseline, enriching the genus to more than 15% relative

abundance in seven subjects. In addition, although Alistipes

and Bacteroides were overall significantly decreased during

the restore diet period, around 30% of the participants showed

increases in these genera (Figure S4). Many taxa reduced by

the restore diet are considered BloSSUM taxa (bloom or

selected in societies of urbanization/modernization),14 while

taxa typically associated with non-industrialized populations

were not enriched by the restore diet, such as Segatella copri

(data not shown).

The average relative abundance of 63 microbial pathways (12

increased and 51 decreased), 95 ECs (36 increased and 59

decreased), and 11 CAZymes (6 increased and 5 decreased)

were altered by the restore diet (FDR-adjusted p < 0.05, linear

mixed models) (Table S5). The restore diet increased the total

abundance of CAZymes (p = 0.029, linear mixed model; Fig-

ure 3D), especially CAZymes targeted toward plant-carbohy-

drate utilization (p = 0.021; Figure 3E). The ratio of CAZymes tar-

geted toward plant- versus animal-carbohydrates increased

from 1.50 ± 0.28 in the usual diet to 1.64 ± 0.30 in the restore

diet (p = 0.08; Figure 3F) while the ratio of mucin- versus plant-

carbohydrates reduced from 0.53 ± 0.09 to 0.49 ± 0.06 (p =

0.10; Figure 3G). Four CAZyme sub-families belonging to

GH43 (GH43_22, GH43_26, GH43_27, and GH43_29), which

play a role in breaking down plant fibers like hemicelluloses,56

were enriched by the restore diet (FDR-adjusted p < 0.05;
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Figure 3. Gut microbial taxa and CAZymes altered by the restore diet

(A–G) (A) Heatmap showing average relative abundances of ASVs at each sampling day (based on auto-scaled relative abundances using Euclidean distance and

Ward.D clustering). ASVs significantly altered by the restore diet (FDR-adjusted p < 0.05; linear mixed models) are identified in red, while ASVs not significantly

affected are in gray. Waterfall plots show changes in relative abundances of significantly altered (B) ASVs and (C) genera (linear mixed models; FDR-adjusted

p < 0.05). Bars colored based on coefficients—red indicates positive, and blue indicates negative. Changes to CAZymes corresponding to utilization of different

carbohydrate sources during each diet period: (D) total CAZymes, (E) plant-carbohydrate, and ratios between (F) plant- to animal-carbohydrate and (G) mucin- to

plant-carbohydrate (linear mixed models, FDR-adjusted p < 0.05). Bars (insets) represent absolute changes from baseline values within each diet period. (H)

Waterfall plot showing changes in relative abundances of significantly altered CAZymes. Data presented as mean ± SD, with symbols representing individual

samples. See also Figure S4 and Table S5. ASVs, amplicon sequencing variants; BL, baseline of each diet period; CAZymes, carbohydrate-active enzymes.
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Figure 4. Resilience and stability of gut microbiota during the diet intervention and the main drivers of these ecological responses

(A–D) Temporal responses and resilience of microbiota after consuming the restore diet represented as (A) Shannon index (i.e., alpha diversity), (B) observed

features (i.e., richness, based on ASVs), (C) Bray-Curtis distances of each subject’s microbiota during the two diet periods compared with their baseline (i.e., beta

diversity, intra-individual distance), and (D) Bray-Curtis distances among subject’s microbiota (i.e., beta diversity, inter-individual distance) (paired Wilcoxon

signed rank tests, p < 0.05). Data derived from 16 participants who were randomized to consume the restore diet first.

(E) Interaction networks of bacterial families during each diet period (linear models). Node size indicates the number of taxa that the node taxon affects, and arrow

size represents the estimate or strength of the association (i.e., how strongly the abundance of the taxon is associated with the change in abundance of the other

taxon). Only those taxawith >2 interactions and an estimate ofR0.2 (i.e., one unit increase in the node taxon is associatedwith a 0.2 unit change in the abundance

of the other taxon) are shown. Bar graphs indicate number of positive (green) and negative (red) interactions among microbes.

(F) Temporal variation of gut microbiota, represented by Bray-Curtis distances between two consecutive timepoints during each of the two diet periods (linear

mixedmodels). Bray-Curtis distances are between the ‘‘day of intervention’’ labeled in the x axis and the previous sampling timepoint, e.g., ‘‘day 6’’ represents the

distance between days 4 and 6 of each diet period. Data presented as mean ± SEM. +p% 0.1, *p% 0.05, **p% 0.001. See also Figures S5–S7. ASVs, amplicon

sequence variants.
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Figure 3H). The largest magnitude of decrease was observed for

the CAZyme family GH29 (Figure 3H), which contains alpha-fu-

cosidases involved in mucus degradation.57

Temporal dynamics after diet-induced gut microbiome
perturbations
We leveraged the crossover study design and, using the data-

set derived from 16S rRNA gene amplicon sequencing,

analyzed the participants who consumed the restore diet first

(n = 16) to determine to what degree, and within which time

window, microbiota features returned to baseline levels.

These analyses showed that alpha-diversity indices (Figures

4A and 4B), intra-individual beta diversity differences (Fig-

ure 4C), and inter-individual beta diversity differences (Fig-

ure 4D) returned to baseline values either by the end of the

first washout or shortly after the usual diet period began. In

addition, relative abundances of the ASVs that showed the

strongest increases or decreases in response to the restore

diet also returned to baseline levels after the first washout
8 Cell 188, 1–22, March 6, 2025
(Figure S5). Similar reversions to baseline values were

observed for SGBs and WMS functional features (pathways,

CAZymes, and ECs) (Figures S6A–6F). Overall, the findings

establish that the effects of the restore diet on microbiome

ecology are transient and reversible, and the microbiome dis-

played resilience toward the dietary change.

Ecological drivers of the effects of the restore diet and
consequences for community characteristics
To gain insight into the ecological drivers of gut microbiome

shifts, we applied multiple linear regression (MLR) models to

genus-level changes (16S rRNA gene amplicon sequencing) at

day 8 and included factors that may drive microbiome alter-

ations—diet, fecal pH, stool consistency, and bowel movement

frequency. This analysis showed that most genera were not

only directly impacted by the restore diet (Figure S7A) but also

that reductions of genera such as Bacteroides and Parabacter-

oides were associated with changes in fecal pH (Figure S7B),

likely due to their sensitivity to acidic pH.58 Stool consistency
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Figure 5. Effects of the restore diet on microbial fermentation and the plasma metabolome

(A–E) Changes to fecal (A) pH, (B) total SCFAs, (C) acetate, (D) totals BCFAs, and (E) ratio of BCFAs to SCFAswithin each diet period (pairedWilcoxon signed rank

tests, p < 0.05). Data presented asmean ±SD, with symbols representing individual samples. Bars (insets) represent absolute change from baseline values within

each diet period.

(F) Changes in plasma metabolomic profiles from baseline to the end of each diet period (PLS-DA; p-value from 1,000 permutation validation).

(G) Shifts in metabolites from baseline to the end of each diet period (paired t tests, FDR-adjusted p < 0.1). Left and right panels showmetabolites that increased

and decreased during the restore diet period, respectively. Data presented as box plots, with dots representing outliers. See also Figures S7 and S8 and Table S6.

BCFAs, branched-chain fatty acids; BL, baseline of each diet period; PLS-DA, partial least squares-discriminant analysis; SCFAs, short-chain fatty acids.
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and bowel movement frequency influenced only a few genera

(Figure S7B), in agreement with their limited influence on overall

microbial composition (Figure 2K).

To determine the effect of the restore diet on community

interconnectedness, we compared interaction networks of

bacterial families from the longitudinal 16S rRNA gene ampli-

con sequencing during both diet periods using linear models,

where changes in relative abundances from timepoint t to

t + 1 were predicted by abundances at time point t. This anal-

ysis revealed a higher number of positive and likely syntrophic

interactions during the restore diet period, while negative inter-

actions remained unchanged (Figures 4E and S7C). Microbial

families such as Lachnospiraceae, Christensenellaceae, and

Ruminococcaceae had strong positive influences on several

other taxa and are, therefore, considered putative keystone

taxa during the restore diet. Interactions of Lachnospiraceae

and Ruminococcaceae with other taxa were greatly reduced

on the usual diet, suggesting that they lose their apparent

keystone characteristics, likely because their metabolic capac-
ities for fiber degradation are not realized. Due to the higher

number of positive interactions during the restore diet period,

we hypothesized that the microbiota would be more stable.

Indeed, we detected smaller Bray-Curtis distances between

successive timepoints during the restore diet compared with

the usual diet period (p < 0.001, linear mixed model;

Figure 4F).

Effects of the restore diet onmicrobial fermentation and
the plasma metabolome
The restore diet decreased fecal pH from 6.82 ± 0.43 to 6.58 ±

0.44 (p = 0.003; paired Wilcoxon signed rank test; Figure 5A),

increased total short-chain fatty acids (SCFAs) (p = 0.028; Fig-

ure 5B) and acetate concentrations (p = 0.023; Figure 5C), and

reduced total branched-chain fatty acids (BCFAs) concentrations

(p = 0.045; Figure 5D) and the ratio of BCFAs to SCFAs (p = 0.007;

Figure 5E). Overall, these results suggest that the restore diet

increased saccharolytic fermentation (SCFAs) at the expense of

proteolytic metabolism (BCFAs)59 (Table S6).
Cell 188, 1–22, March 6, 2025 9
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Figure 6. Effects of the restore diet on risk markers of chronic diseases

(A and B) PCA plots and results of PERMANOVA show (A) host parameters at baseline and, (B) their percent changes from baseline within each diet period.

(C–E) Differences in risk markers between each diet period (linear mixed models, FDR-adjusted p < 0.05). Data presented as mean ± SD, with symbols rep-

resenting individual samples. Bars (insets) represent percent changes from baseline values within each diet period. Mean percent changes within the restore diet

are in text boxes underneath each figure. BL, baseline of each diet period; BMI, body mass index; HDL, high-density lipoprotein; HOMA-IR, homeostatic model

assessment for insulin resistance; CRP, C-reactive protein; LBP, lipopolysaccharide-binding protein; LDL, low-density lipoprotein; QUICKI, quantitative insulin

sensitivity check index. See also Table S7.
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We employed untargeted metabolomics to profile plasma me-

tabolitesanddetected528metaboliteswithhigh-confidence iden-

tification. Partial least squares-discriminant analysis (PLS-DA) re-

vealed no significant differences in metabolite shifts (4 days after

administration [day 8]—baseline) between the three inoculum

groups (PB-W1, DSM 20016T, and placebo) in either the restore

(p = 0.72, Figure S8A) or usual (p = 0.62, Figure S8B) diet periods.

These results indicate that a single dose of L. reuteri did not influ-

ence plasmametabolomic profiles. By contrast, PLS-DA revealed

a significant global effect of the restore dietwhen the shifts of each

metabolite (end of diet intervention [day 21]—baseline) were

compared with the usual diet (p = 0.004; Figure 5F).

A subset of 31 metabolites was significantly altered by the

restore diet (FDR-adjusted p < 0.10, paired t test; Figure 5G),

wherein 22 increased (e.g., indole-3-propionic acid, biotin,

pipecolic acid) and nine decreased (e.g., deoxycholic acid,

8-hydroxyguanine, ursodeoxycholic acid). More than 90% of

these metabolites are either produced or modified by the micro-

biome or co-produced by microbiome and host.60,61 Correlation

analyses revealed relationships (FDR-adjusted p < 0.10, Spear-

man’s rank correlation) between metabolites and genera (Fig-

ure S8C) and ASVs (Figure S8D) that were significantly altered

by the restore diet, suggesting that changes to the gut micro-
10 Cell 188, 1–22, March 6, 2025
biome contributed to shifts in plasma metabolites. For example,

we detected a positive correlation between B. longum and

indole-3-propionic acid (Figure S8D), a metabolite that can be

synthesized from indole-3-lactic acid that is produced by

bifidobacteria.62

The restore diet induced major improvements in risk
markers of chronic diseases
Given the links between industrialization and westernized

diet and risk of NCDs,63 we were especially interested in the ef-

fects of the microbiome restoration strategy on risk markers

of NCDs. While L. reuteri did not influence these markers

(FDR-adjusted p > 0.05, linear mixed models; Table S7), the

restore diet had pronounced effects. Principal-component anal-

ysis (PCA) ordination of the risk markers revealed no differences

between the two baselines of each diet period (p = 0.96, PERM-

ANOVA; Figure 6A); however, distinct clustering was apparent

based on percent changes from baseline within each diet period

(p = 0.001; Figure 6B), suggesting the restore diet induced signif-

icant overall physiological changes.

Despite being fed to their calculated energy requirements,

participants experienced a small but significant decrease in

body weight (percent change from baseline to day 21 of
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Figure 7. Data integration to determine variables that predict responses in risk markers of chronic diseases to the restore diet

(A and B) RF classification models were applied to predict responders (reduction in glucose R 0.3 mmol/L) and non-responders (<0.3 mmol/L reduction) using

(A) baseline values (best models: metabolic status and microbiota composition, ASV level) and (B) absolute changes of features (best models: pathways and

plasma metabolites). Model performance is depicted as ROC curves—plots contain five individual curves, each representing the ROC of one of the 5-fold of

external cross validation. Different shades of the main color were used so that overlapping lines were clearly visible, and the gray line depicts AUROC of 0.5 (i.e.,

(legend continued on next page)
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restore diet = �1.4 ± 1.9%, mean ± SD; FDR-adjusted p =

0.003, linear mixed model; Figure 6C) and BMI (�1.4 ±

1.9%, p = 0.002; Figure 6D). This could be due to reduced

bioaccessibility of macronutrients due to their encapsulation

within three-dimensional cell wall structures in fiber-rich plant

foods.64,65

The restore diet reduced fasting plasma total cholesterol

(�14.1 ± 11.2%, FDR-adjusted p < 0.001), low-density lipopro-

tein (LDL) cholesterol (�16.8 ± 15.8%, p = 0.003), non-high-

density lipoprotein (non-HDL) cholesterol (�15.2 ± 14.5%, p =

0.002), fasting plasma glucose (�6.3 ± 11.1%, p < 0.001),

C-reactive protein (CRP) (�14.0 ± 58.3%, p = 0.014), and fecal

calprotectin (�21.0 ± 88.3%, p = 0.011) (Figure 6E; Table S7).

Insulin sensitivity (quantitative insulin sensitivity check index

[QUICKI]) was increased (2.4 ± 6.4%, p = 0.036), and insulin

resistance (homeostatic model assessment of insulin resis-

tance [HOMA-IR]) was improved (�5.8 ± 40.5%, p = 0.053),

which was primarily driven by the reduction in fasting glucose,

as there were no effects on fasting insulin levels (p = 0.32)

(Table S7). HDL cholesterol was reduced (�11.3 ± 11.2%,

p = 0.001), which has been observed with other plant-rich di-

ets,66,67 while triglycerides remained unaffected (p = 0.59)

(Table S7).

All the clinical effects of the restore diet remained statistically

significant when controlled for body weight changes (data not

shown), with the exception of CRP (although p value remained

low at 0.058). In addition, the effects of the restore diet were

not reduced when the order by which the diets were consumed

was added as an additional covariate, indicating the 3-week

washout between diet periods was sufficient for participants to

return to their baseline metabolic status. Considering the

elevated intake of fiber from the restore diet and the effects on

fermentation and SCFAs, we were interested in whether markers

of gut barrier function were affected. Both plasma lipopolysac-

charide-binding protein (�8.1 ± 13.8%, p = 0.13) and fecal zon-

ulin (�14.9 ± 27.6%, p = 0.052) were reduced, but effects did not

reach statistical significance (Table S7).

Identification of microbiome and metabolome features
linked to clinical outcomes
To gain mechanistic explanations for the physiological effects of

the restore diet, we employed a set of complementary ap-

proaches using machine learning (random forest [RF]) and

MLR models to integrate the clinical findings with data on the

gut microbiome and plasma metabolome. We applied these an-

alyses to the individual omics datasets (i.e., plasma metabolites,

microbiome compositional profiles at multiple taxonomic levels,
no better than random guessing). Top predictive features of best models are vis

differences in these features between responders and non-responders.

(C) Heatmap showing Spearman correlation coefficients (rs) between top predict

(D–F) (D) Bar plots showing correlations (rs) between percent changes in glucos

applied for LDL cholesterol and CRP using (E) baseline values and (F) absolu

variation explained). Horizontal bars show mean R2, and error bars are 95% c

Absence of * indicates microbiome composition assessed by 16S rRNA gene am

shown to avoid repetition. Top predictors of bestmodels to predict percent change

p < 0.05. See also Figures S9–S11 and Tables S8,S9, S10, and S11. ASVs, amplic

curve; BCFAs, branched-chain fatty acids; CAZymes, carbohydrate-active enzym

short-chain fatty acids.
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inferred microbiome functions, SCFAs, and diversity indices of

gut microbiome) with the goal of determining the best predictors

of the physiological effects of the diet, using both baseline fea-

tures and diet-induced absolute shifts. Baseline dietary intake

and metabolic status (i.e., baseline risk markers such as fasting

glucose, insulin, lipid panel, etc.) were also included (see STAR

Methods).

As a proof of concept, we first determined if diet-induced

changes to the microbiome, metabolome, and metabolic status

could predict whether participants were consuming their usual

diet or the restore diet. RF classification models achieved almost

perfect accuracy with plasmametabolites at the end of each diet

period (mean area under the receiver operating characteristic

curve [AUROC] = 0.99) and WMS-based microbiota composi-

tional profiles at day 8 of each diet period (AUROC = 0.96)

(Figure S9A; Table S8), as well as diet-induced shifts in plasma

metabolites (AUROC = 0.99) and WMS-based microbiota

compositional profiles (AUROC = 1.00) (Figure S9B; Table S8).

Overall, WMS-derived functional features (i.e., CAZymes, path-

ways, and ECs) were also good predictors (AUROC 0.75–0.91),

but SCFAs were no better than random chance (AUROC 0.48

and 0.62) (Figures S9A and S9B; Table S8). These results sug-

gest that effects of the restore diet on the microbiome and me-

tabolome were strong and specific enough to result in almost

perfect predictions of participants’ diets.

The only risk marker that showed individualized responses to

the restore diet, with clear responders and non-responders, was

plasmaglucose (Figure 6E). UsingRFclassificationmodels to pre-

dict ‘responders’ (reduction in glucose R 0.3 mmol/L) and ‘‘non-

responders’’ (<0.3 mmol/L reduction), baseline metabolic status

accurately predicted glucose responses (AUROC = 0.82; Fig-

ure 7A; Table S9). Top predictive features were baseline CRP,

glucose, andHOMA-IR levels, whichwere elevated in responders,

suggesting that participants’ baseline immunometabolic status

(e.g., elevated inflammation and glycemia) determined responses

to the restore diet. Although the accuracy of this model was high

and the predictors biologicallymeaningful, RFmodels using base-

line microbiome composition (ASV level, AUROC = 0.92; Fig-

ure 7A; Table S9), as well as shifts in microbial pathways

(AUROC = 0.94) and plasma metabolites (AUROC = 0.84) were

even more accurate (Figure 7B; Table S10). Interestingly, the top

predictive pathway, tetrapyrrole biosynthesis I (from glutamate),

andmetabolite, 1-pyrroline-2-carboxylic acid, are both implicated

in pyrrole metabolism.68 Shifts in these predictors were negatively

correlated with each other (rs = �0.52, FDR-adjusted p = 0.06)

(Figure 7C) and had opposing associations with percent changes

in glucose (tetrapyrrole biosynthesis I [from glutamate] rs =�0.45,
ualized as bar plots with mean ± SD feature importance, and boxplots show

ive pathways and metabolites.

e and top predictive pathways and metabolites. RF regression models were

te changes of features. Model performance depicted as R2 (proportion of

onfidence intervals. *Indicates microbiome composition assessed by WMS.

plicon sequencing. Only the top-performing microbiome composition model is

s in LDL cholesterol and CRP are shown similarly as those in (D). FDR-adjusted

on sequence variants; AUROC, area under the receiver operating characteristic

es; CRP, C-reactive protein; ROC, receiver operating characteristic; SCFAs,
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p = 0.07; 1-pyrroline-2-carboxylic acid rs = 0.65, p = 0.001) (Fig-

ure 7D). 1-Pyrroline-2-carboxylic acid can be synthesized from

proline, which is an amino acid that can be converted to glucose

via gluconeogenesis. Therefore, microbiome-driven reductions of

1-pyrroline-2-carboxylic acid through the tetrapyrrole biosyn-

thesis I pathway in responders might have reduced glucose con-

centrations by reducing proline. These findings suggest a role of

microbiome-host metabolic crosstalk in the effects of the restore

diet on plasma glucose concentrations. MLR confirmed plasma

metabolites as predictors for changes to glucose (R2 = 0.23, p =

0.021) (Table S11).

In contrast to fasting glucose, the effects of the restore diet on

other risk markers showed remarkably little inter-subject varia-

tion (Figure 6E). We, therefore, applied RF regression models

and MLR to determine to what extent clinical responses could

be explained by microbiome, metabolome, or other host fea-

tures and to identify the best predictors. Baseline microbiota

composition (family-level) explained a substantial amount of

the variation in changes to LDL (RF mean R2 = 0.75; MLR R2 =

0.29, p = 0.010) (Figure 7E; Tables S9 and S11). Baseline fecal

SCFA levels were good predictors of changes in CRP levels

(RF mean R2 = 0.47; MLR R2 = 0.35, p = 0.012) (Figure 7E;

Tables S9 and S11), with top predictive features being the ratio

of BCFAs to SCFAs as well as concentrations of propionate

and total SCFAs. Interestingly, having a higher ratio of BCFAs

to SCFAs (rs = �0.62, p = 0.001) and lower levels of propionate

and total SCFAs (rs = 0.60 and 0.54, p = 0.002 and 0.005, respec-

tively) were correlated with greater decreases in CRP (Figure 7E).

This suggests that having an unfavorable fermentation profile

(i.e., more protein and less fiber fermentation) at baseline allows

for greater anti-inflammatory benefits of the restore diet, but cau-

sality cannot be elucidated (e.g., baseline microbiome meta-

bolism might influence clinical response but might also be

altered by an independent factor). Unlike for glucose responses,

baseline host metabolic status did not explain high amounts of

variation in the other risk markers (Table S9).

MLR analysis revealed that changes in total cholesterol (R2 =

0.31, p = 0.007), LDL (R2 = 0.28, p = 0.011), and non-HDL (R2 =

0.24, p = 0.021) could be explained by baseline microbiome di-

versity metrics (Table S11), with the second principal compo-

nent (PC2; representing 27.0% of total variation) exhibiting

negative associations with these risk markers (data not shown).

The primary variables (explaining >10% of the variation within

this PC) were observed features of CAZymes (12.71%), Shan-

non index of SGBs (12.05%), and Pielou’s evenness of SGBs

(10.80%). Overall, this analysis suggests that higher diversity

indices at baseline corresponded to more pronounced reduc-

tions in cholesterol markers. Although we only detected a trend

between baseline microbiome diversity metrics and CRP using

MLR (p = 0.086; Table S11), our findings align conceptually with

those from a previous study that showed better immunological

responses to a high-fiber diet in subjects with higher micro-

biome diversity.69

When models were constructed using diet-induced shifts, mi-

crobiota composition at the genus-level resulted in the best

model for the prediction of changes to LDL (RF mean R2 =

0.66), with a top predictor being Bilophila shifts that were posi-

tively correlated with changes to LDL (meaning diet-induced
decreases in Bilophila were associated with reductions in LDL)

(rs = 0.54, p = 0.027) (Figure 7F; Table S10). Shifts in CAZyme ra-

tios produced the best predictive model for CRP (RF mean R2 =

0.44; MLR R2 = 0.34, p = 0.010), with ratios of the abundance of

CAZymes that target mucin-glycans and animal-carbohydrates

to total reads being the top predictors (Figure 7F; Tables S10

and S11). These two features were positively correlated with

changes to CRP (rs = 0.51 and 0.43, p = 0.012 and 0.028, respec-

tively), indicating that greater decreases in the abundances of

mucin-glycan- and animal-carbohydrate-targeted CAZymes

were associated with larger decreases in CRP.

To confirm the links amongmicrobiome features and host clin-

ical responses using an independent approach, we built linear

regression models using stepwise model reduction. This anal-

ysis revealed that clinical responses to the restore diet could

be predicted with high accuracy (Figure S10A), with the greatest

amount of variation in responses explained by microbiome

compositional and functional changes (Figure S10B). Certain

variables mirrored the top predictors identified in the RF ana-

lyses (Figures 7A and 7F), such as reductions to Bilophila and

higher baseline glucose levels contributing to greater reductions

in LDL and glucose, respectively (Figure S10B). The analysis

identified a measurable microbiome-independent effect of the

restore diet on LDL, calprotectin, and glucose. By contrast, the

restore diet had only a minor direct, microbiota-independent ef-

fect on total cholesterol, CRP, and BMI, suggesting that reduc-

tions in these parameters were mostly driven by microbiome

responses.

Inter-individual variation in the effects of the restore
diet
Nutrition interventions often elicit variable, person-specific re-

sponses,70 even with standardized diets,55 which provides ratio-

nale for personalized nutrition.71 To quantify to what degree the

various effects of the restore diet were individualized, we calcu-

lated a modified coefficient of variation (mCV) of the absolute

changes of the compositional and functional microbiome fea-

tures, plasma metabolites, and risk markers most impacted by

the diet (either positive or negative; see STAR Methods). This

analysis showed very high variation in compositional changes

to the microbiome (mCV = 0.87–4.45 for ASVs; mCV = 0.66–

5.05 for genera; Figure S11). Variation was lower for microbiome

functions (mCV = 0.58–3.40 for pathways; mCV = 0.74–3.32 for

enzymes; mCV = 0.60–1.16 for CAZymes), likely due to func-

tional redundancy of the microbiome. Responses of plasma me-

tabolites and risk markers hadmuch lower variability thanmicro-

biome responses (mCV = 0.27–0.73 for plasma metabolites;

mCV = 0.36–1.30 for risk markers), indicative that the restore

diet elicited consistent host responses despite higher variation

in microbiome responses.

DISCUSSION

NCDs have increased to epidemic proportions in industrialized

societies, a development that occurred in parallel with a deple-

tion and alteration of the gut microbiome. Industrialized lifestyle

and westernization of diet clearly predispose humans to NCDs,

which develop slowly over a person’s lifetime. A logical yet
Cell 188, 1–22, March 6, 2025 13
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nontrivial solution would be to restore the gut microbiome while

individuals are still healthy with the goal to prevent NCDs. We,

therefore, tested a microbiome restoration strategy in healthy in-

dividuals living in Canada and determined effects on gut micro-

biome ecology, hostmetabolome, and predictors of cardiometa-

bolic disease risk.

The findings revealed important insights into our ability to

restore microbiomes and the clinical implications. We were

only able to stably ‘‘reintroduce’’ L. reuteri PB-W1 in one individ-

ual, and, with a one-time dose, L. reuteri had no detectable

effects on microbiome ecology, plasma metabolome, and risk

markers of chronic diseases. In addition, the restore diet

reduced microbiome diversity, and effects on microbiome

composition and functional features were highly variable among

subjects and small compared with the high inter-individual vari-

ation at baseline. However, when assessed within individuals,

the effects of the diet explained a large proportion of the tempo-

ral variation in the microbiome. In addition, significant composi-

tional shifts were detected, including putatively health-promot-

ing species, and interconnectedness and stability increased.

The restore diet beneficially altered several plasma metabolites,

mostly of microbial origin, that are implicated to play a role in

NCDs. The diet had considerable cardiometabolic effects, re-

sulting in weight loss (despite participants being fed to calcu-

lated caloric requirements), a 17% reduction in plasma fasting

LDL, a 6% reduction in fasting glucose, and a 14% reduction

in CRP. Most importantly, microbiome features that are

adversely affected by industrialization and have well-established

roles in NCD pathology (e.g., fermentation capacity, SCFAs, Bi-

lophila, mucus-degrading genes) were redressed by the restore

diet, and several of these effects were predictive of its substan-

tial cardiometabolic benefits.

L. reuteri was the dominant species in rural Papua New Guin-

eans,13 and its prevalence is 20 times higher in hunter-gatherers

when compared with industrialized societies.14 However, preva-

lence (<3%) and abundance of L. reuteri are nevertheless low in

hunter-gatherer populations,14 and its exact ecological role as a

member of the non-industrialized microbiome remains poorly

understood. Lactobacilli are minority members of the human

gut microbiome (and thus often remain undetected in sequ-

encing studies) and are often allochthonous to the ecosystem,72

and a recent phylogenomic analysis revealed that L. reuteri does

not share a long-term evolutionary history with humans and likely

requires transmission from animals.39 This provides a potential

explanation both for why L. reuteri is rarely detected in human

gut microbiomes and why it did not stably colonize after the

one-time dose applied in our trial in all but one participant.

Nevertheless, the non-industrialized-derived L. reuteri PB-W1

established at least 10 times higher population sizes than the

type strain DSM 20016T 2 days after oral administration and

the restore diet enhanced its persistence and survival, indicating

the PB-W1 strain displays better adaptations both to the human

gut and a non-industrialized-type diet. Future studies are

required to test if repeated doses of PB-W1would elicit probiotic

immunological effects, especially if combined with its growth

substrates to increase its performance in the gut. Further, other

volatile and/or associated negatively with industrialized societies

of humans (VANISH) species and lost microbes should be
14 Cell 188, 1–22, March 6, 2025
tested, especially those with evolutionary connections to hu-

mans,73 in combination with non-industrialized-type diets.

Although the restore diet provided greater diversity of

fermentable substrates and increased the number of positive

interactions within the microbial community, it reduced diver-

sity (i.e., richness and evenness). This finding was unexpected,

but there are potential mechanistic explanations. The diet had a

profound effect on the gut environment, inducing conditions

(high SCFAs, low pH) that are inhibitive to some microbes.58

Our analysis confirmed that reductions of acid-sensitive

taxa74 like Parabacteroides and Bacteroides were driven by

changes in pH (Figure S7B). In addition, the diet altered host

phenotypes such as inflammation and bile acid excretion that

may have reduced competitive advantages of bile-resistant

taxa (e.g., Bilophila, Alistipes) that are often enriched during in-

flammatory conditions75,76 at the expense of inflammation-sen-

sitive taxa, such as Faecalibacterium,77 which bloomed during

the restore diet period. The restore diet further removed

sources of potential growth substrates (e.g., dairy- and meat-

derived glycoproteins),78 which might have reduced abun-

dances of microbes reliant on these resources that lacked ad-

aptations necessary to utilize the novel substrates provided by

the diet.79 In this respect, a hurdle in restoring microbiome di-

versity is that microbial exposure and dispersal (e.g., through

sanitation) are low in industrialized settings.13 In a multi-gener-

ational murine model that tested western diet-induced extinc-

tions in the gut microbiota, switching from a low- to high-fiber

diet without fecal exposure was not sufficient to restore lost mi-

crobial diversity.27 Thus, although observational studies have

reported positive links between diet diversity and gut micro-

biome diversity,80–82 the latter might be impossible to increase

beyond the baseline in the short term without administration of

lost fiber degraders or VANISH species.83

Despite the reduction in diversity, community interconnected-

ness and stability increased during the restore diet, which are

considered beneficial attributes of communities,84 and the

compositional shifts induced by the restore diet are generally re-

garded as beneficial (e.g., increases in Bifidobacterium, Faecali-

bacterium, and Lachnospiraceae). Most importantly, gut micro-

biome features affected by industrialization were redressed by

the restore diet: fermentation capacity and SCFA production

were increased, pH was reduced, abundances of pro-inflamma-

tory microbes (e.g., Bilophila, Alistipes) were decreased, and po-

tential formucusdegradationwas reduced. Several of these diet-

mediated effects were associated with the clinical benefits of the

restore diet and provide potential mechanisms by which the

restore diet exerts its benefits. Reduction in pH has a wide range

of positive effects onmicrobiomemetabolism.85 In addition,Bilo-

phila, which blooms during increased saturated fat intake, has

been shown to aggravatemetabolic and immunological dysfunc-

tions inmice75,86 and is associatedwith adenomas andcolorectal

cancer in epidemiological studies.87–89 Further, mucus degrada-

tion is an important pathological factor that drives inflamma-

tion.28,29,90 Thus,our studyprovidesexperimental evidence inhu-

mans that these well-established mechanistic links between the

microbiome and host pathology can be modulated through diet.

Interestingly, the restore diet increased the abundance of bacte-

rial genera that were predictive of mild COVID-19 outcomes,
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while it reduced taxa linked to poor clinical outcomes.91,92 There-

fore, although the restore diet reduced gut microbial diversity, its

overall effects on host-microbiome and microbiome-immune in-

teractions were likely beneficial.

It is of interest to compare our findings with effects of other

nutritional strategies to elucidate the most likely dietary determi-

nants of the considerable cardiometabolic benefits of the restore

diet. In a study of healthy adults that, through dietary advice,

increased intake of fermented foods or dietary fiber (�43 g/day),

some inflammatory cytokines were reduced due to the fer-

mented-foods intervention, but the high-fiber intervention had

no effect on lipid and glycemic profiles.69 The striking differences

in the benefits of fiber observed in this studywhen comparedwith

the restore diet might stem from the advantage of strictly control-

ling food intake. Our findings are more in line with the cardiopro-

tective effects of other plant-rich diets, such as theMediterranean

diet and strictly plant-based (vegan) diets. In male subjects with

metabolic syndrome following aMediterraneandiet (�24g/day fi-

ber), glucose (�3.4%), HOMA-IR (�24.3%), total cholesterol

(�17.5%), LDL (�16.7%) and HDL (�15.4%) concentrations

were reduced, while CRP did not change.93 Similar findings

were observed in subjects with obesity who consumed a calori-

cally restricted Mediterranean diet for 6 months, which improved

LDL (�3.5%), HDL (+5.1%), triglycerides (�13.2%), and CRP

(�10.9%).94 In an inpatient crossover study, adults without dia-

betes and BMI 27.8 ± 1.3 kg/m2 were provided a strictly plant-

based diet containing similar amounts of dietary fiber as in

our study (31.4 g/1,000 kcal) or a low-carbohydrate diet.66

After 2 weeks, the plant-based diet significantly reduced total

cholesterol (�25.7%), LDL (�26.3%), CRP (�42.9%), glucose

(�6.6%), and insulin (�26.5%). Overall, it appears the effects of

the restore diet match other plant-rich diets in their metabolic

and anti-inflammatory effects.67,95,96

Although the health effects of plant-based diets are well-es-

tablished, there are still open questions related to the underlying

mechanisms and the role of the gut microbiome. Our study con-

tributes to addressing these questions. Many of the plasma me-

tabolites impacted by the restore diet are of microbial origin or

modified by microbes and have health implications. For

example, indole-3-propionic acid, which is enhanced by the

restore diet, is a neuroprotective antioxidant endogenously pro-

duced by the gut microbiome that has been correlated with a

reduced risk of type 2 diabetes and atherosclerosis.97–99 Other

metabolites increased by the restore diet have antioxidant and

anti-inflammatory properties, such as coniferyl aldehyde,100,101

pipecolic acid,102 and glycocholic acid.103 The secondary bile

acids deoxycholic and ursodeoxycholic acid, which were

reduced by the restore diet, are established carcinogens, while

8-hydroxyguanine is a marker of mutagenesis and carcinogen-

esis.104,105 Thus, our findings provide potential mechanistic ex-

planations for the well-established benefits of plant-based diets

on brain aging and cognition, cancer prevention, and longevity,

and clearly implicate the gut microbiome in these effects.

Many dietary interventions show a considerable degree of in-

ter-individual variation in their physiological effects,70,106,107

which provides rationale for personalized nutritional ap-

proaches.108,109 Given its highly individualized nature and

importance for the effects of diet,109 the microbiome has
been proposed to constitute an important factor in attempts

to personalize diet. By conducting a controlled feeding trial,

we directly established the extent of variation in microbial and

physiological responses to a standardized diet. Although

changes to gut microbiome composition were highly individual-

ized, less variation was observed in the diet’s effects on func-

tional features (e.g., CAZymes), and the effects on blood me-

tabolites and risk markers were highly consistent among

individuals. Potential explanations for these findings are that

functional redundancies exist among different microbial

members, the complex range of nutrients in the restore diet

influenced a wide variety of microbial taxa, and microbiome-in-

dependent effects of the diet. These findings are of con-

siderable relevance for dietary recommendations, as they

demonstrate that plant-rich diets exert consistent and likely

population-wide benefits that require no personalization.

There has been active debate around the rationale, chal-

lenges, and limitations of gut microbiome restoration attempts

and the validity of the conceptual framework on which such ap-

proaches rest.30 Concerns have been raised about the inability

to define an ancestral microbiome—or even a ‘‘healthy’’ micro-

biome110—and the lack of evidence that microbiome traits asso-

ciated with non-industrialized populations promote health (e.g.,

considering the higher life expectancy in industrialized settings).

In addition, phenotypic effects of the gut microbiome are context

dependent—theymay be beneficial or detrimental depending on

environmental factors or genetic predisposition. Furthermore, an

industrialized microbiome is likely well-adapted to its particular

environment and difficult to change. Our study revealed impor-

tant insights into the ecological constraints that apply when at-

tempting to restore the industrialized gut microbiome. Reduced

diversity, which characterizes industrialized microbiomes, was

not redressed, L. reuteri could not be reintroduced after one

dose, and microbiome changes were highly individualized. In

addition, our findings suggest that at least some members of

the industrialized microbiome are misadapted to fiber-rich diets.

It might be impossible to increase diversity with fiber-based stra-

tegies,79 especially without co-administration of repeated doses

of VANISH species, and to restore industrialized microbiomes to

more ancestral states.

Although these concerns are certainly warranted, we consider

several of our findings promising, as they point to the ability to re-

dress relevant compositional and functional characteristics of

the gut microbiome with beneficial outcomes, even if a more

complete restoration of diversity is not possible. Several micro-

biome features altered by industrialization that have well-estab-

lished roles in pathology (e.g., fermentation capacity, SCFAs,

Bilophila, mucus degradation) were redressed and predictive

of the considerable clinical benefits of the diet. In addition, our

findings point to functional redundancy between industrialized

and non-industrialized gut microbiomes in that the industrialized

gut microbiome, although depleted and devoid of VANISH spe-

cies, has maintained its ability to mediate at least some of the

health effects of a non-industrialized-type diet.

Limitations of the study
Non-industrialized dietary patterns are diverse, and there are un-

certainties about ancestral diets,111 making it impossible to
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exactly replicate such diets. In addition, being comprised of food

items available in Canada, the restore diet is only an approxima-

tion of a non-industrialized diet. Our focus was, therefore, to

replicate key diet characteristics, such as an enrichment of

plant-based, high-fiber foods and avoidance of highly processed

foods. L. reuteri DSM 20016T has been propagated in labora-

tories much longer than the non-industrialized PB-W1 strain,

which may have reduced its ecological performance in humans.

Participants enrolled in our study weremainly students or univer-

sity employees due to their proximity to campus and willingness

to attend clinic visits, which may limit the generalizability of the

results to the general population. The sample size was relatively

small (n = 30), and although this was partially mitigated by the

crossover design for the diet intervention, the number of partic-

ipants randomized in the parallel-arm design to the L. reuteri and

placebo groups (n = 9–11 per group) may have limited statistical

power to detect effects of L. reuteri on the gut microbiome and/

or host physiology. The sample size is also a limitation for the

machine learning approach, as we did not have a large enough

n to create an independent test set to evaluate the predictive

models; however, potential bias was partially mitigated through

our use of the standard technique of external cross-validation

for model evaluation. We conducted per-protocol as opposed

to intention-to-treat analyses in an effort to maintain statistical

power and detect meaningful microbiome changes and potential

host-microbiome interactions. The controlled feeding trial was

designed to determine the causal effects of the restore diet on

the gut microbiome and risk markers of chronic diseases.112

However, our study cannot determine to what degree the micro-

biome changes caused the clinical effects of diet. Future

research is required to confirm the mechanistic underpinnings

of the non-industrialized-type diet and the causal contributions

of the microbiome.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Recruitment and selection of participants
This proof-of-concept study was approved by the University of Alberta’s Health Research Ethics Board (Pro00077565) and Health

Canada (file number 237696) and was prospectively registered on ClinicalTrials.gov (NCT03501082). The study adhered to all rele-

vant institutional and national regulatory body requirements. Safety monitoring was independently conducted by the University of

Alberta’s Quality Management in Clinical Research Department. Study data was collected and managed using REDCap electronic

data capture tools hosted and supported by the Women and Children’s Health Research Institute at the University of Alberta.135

Healthy individuals aged 18-45 years with BMI 20.0-29.9 kg/m2were recruited between January 2019 and January 2020. Exclusion

criteria were: history of long-term gastrointestinal disorders (e.g., inflammatory bowel diseases, Celiac disease), diabetes, cardiovas-

cular disease, cancer, or other inflammatory conditions; chronic use of laxatives, anti-diabetic, anti-hypertensive, lipid-lowering, or

anti-inflammatorymedications; positive pregnancy test (as determined by urine sample at screening visit) or self-reported lactating or

menopausal women; bowel movement frequency <1 per day; >7 drinks of alcohol per week, tobacco (smoking or chewing), or use of

illicit drugs or marijuana; vigorous exercise of >5 hours per week; allergy or intolerance to any foods or ingredients of the restore diet;

vegetarian or vegan; antibiotic use %3 months prior to enrollment; use of probiotic, prebiotic, fiber, omega-3 fatty acid, or herbal

supplements (if subjects used any of these supplements but were otherwise eligible, they could elect to undergo a four-week

washout period before participating in the study); presence of L. reuteri above 104 cells/gram of feces (assessed only in individuals

who met all of the above criteria; n = 42). As requested by the Health Research Ethics Board of the University of Alberta, information

on participants’ ancestry, race, or ethnicity was not collected as these factors were not pertinent to the objectives of this study.

Specimen collection
Fecal sampleswere collected onDays 0, 4, 6, 8, 12, 16, 21, 42, 46, 48, 50, 54, 58, 63, and 84 (i.e.,Days 0, 4, 6, 8, 12, 16, and 21 of each

diet period, as well as the last day of the last washout; Figure 1A). Participants were provided stool collection kits consisting of a stool

specimen container (Fisher, Canada) and an airtight plastic bag. Once received, within four hours of collection, stool samples were

processed in an anaerobic environment (5% CO2, 5% H2, 90% N2). Raw fecal material was aliquoted for downstream analyses, and

was also diluted in sterile 1:5 phosphoric acid (5%) for SCFA quantification as well as sterile 1:10 phosphate buffered saline (PBS)

with 10% glycerol for the quantitative culture of L. reuteri; all aliquots were immediately stored at -80�C after processing.136 Fecal

samples were stored without undergoing DNA extraction, SCFA quantification, quantitative culture of L. reuteri, or other measure-

ments until the completion of the human trial to avoid any potential batch effects.
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On Days 0 and 21 of each diet period (i.e., Days 0, 21, 42 and 63), after participants fasted for 12 hours overnight, blood was

collected via venipuncture using K2-ethylenediaminetetraacetic acid-coated and lithium heparin tubes. Whole blood was sent within

90 minutes of collection to Alberta Precision Laboratories (Edmonton, AB, Canada) for downstream analyses. Blood for plasma was

centrifuged, aliquoted, and stored immediately at -80�C for downstream analyses. Additional blood samples were collected for

plasma metabolomics (detailed below) on Day 8 of each diet period (4 days post-supplementation of L. reuteri; Days 8 and 50).

METHOD DETAILS

Intervention
We designed a randomized controlled feeding trial (Figure 1A) to allow for the simultaneous assessment of the effects of: 1) a single

dose of L. reuteri supplementation and if it could be re-established in the gutmicrobiome, 2) the restore diet, independent of L. reuteri,

and 3) potential interactions between L. reuteri and diet. Given the extreme nature and stark contrast of the restore diet (trademarked

as NiMeTM diet by A.M.A. and J.W.) compared to typical Canadian diets, we chose to provide it in a strictly controlled and standard-

ized fashion. Using a crossover design, participants were randomized to either the restore diet or remained on their usual diet for

three weeks and then, after a three-week washout, switched to the other diet period for three weeks. Using a parallel-arm design,

participants were further randomized to either the L. reuteri strain derived from rural Papua New Guinea (PB-W1�; trademark of

PrecisionBiotics Group Ltd.), the type-strain (DSM 20016T), or a placebo (maltodextrin). On the fourth day of each diet period, par-

ticipants received a single dose of either L. reuteri or placebo. The study concluded with a final three-week washout to assess po-

tential long-term persistence of L. reuteri.

The random allocation sequence was computer-generated and concealed by a researcher not involved in subject allocation.

Random allocation considered both designs (i.e., six groups in total): participants were assigned to a starting diet period (restore

or usual) and inoculum (either L. reuteri strain or placebo). If a participant withdrew from the study, an additional subject was recruited

to replace them and were assigned using the same random allocation methods. The randomization scheme was not revealed to par-

ticipants or study investigators/staff, and double-blinding was maintained for L. reuteri assignment until after data analysis was

completed. Due to the nature of the dietary intervention, blinding to diet assignment was not possible.

L. reuteri inocula and placebo preparation
L. reuteri inocula were prepared at the food-grade laboratory of the Department of Agricultural, Food & Nutritional Science at the

University of Alberta, following our Standard Operating Procedure developed previously that assured highly standardized viable

L. reuteri cell counts.134 Briefly, L. reuteri strains were cultured overnight twice in MRS broth, washed twice using sterile mQ H2O,

and then transferred to sterile food-grade media (see Table S12 for recipe) for one overnight culture and one 16 h culture to generate

cultures for the inocula. Cells were harvested and suspended in bottled spring water immediately prior to participant consumption,

and samples were plated quantitatively on MRS agar for quantification of L. reuteri and on BHI agar to check for contamination.

Maltodextrin placebo (2 g of GLOBE� 10DEMaltodextrin, Non-GMO, Ingredion, IL, USA) was also dissolved in bottled spring water.

L. reuteri inocula and placebo were prepared in opaque cups fitted with lids by a researcher not involved in subject allocation or

data analysis. The cups were labelled ‘A’, ‘B’, or ‘C’ to ensure double-blinding was maintained. Based on the culture results before

consumption, cell numbers of PB-W1 andDSM20016T provided to the participants throughout the human trial were 10.44 ± 0.02 and

10.23 ± 0.04 Log10 of viable cells (mean ± SEM), respectively.

Restore diet preparation and adherence
All meals and snacks of the restore diet were prepared in themetabolic kitchen of the HumanNutrition Research Unit (Edmonton, AB,

Canada), with ingredients and foods weighed to the nearest 0.1 g. All participants were provided identical meals and snacks during

the restore diet period. Caloric requirements were calculated based on the Mifflin St. Jeor predictive equation137 multiplied by an

appropriate physical activity coefficient, and participants were fed to the nearest 100 kcal of their requirements in an attempt tomain-

tain body weight. Drinks were not provided as part of the restore diet, but rather caloric assignments were adjusted based on self-

reported daily calorie-containing beverage consumption at the screening visit. Participants were encouraged to only consume the

provided study foods but were allowed one daily snack of approximately 100 kcal if all study foods were eaten. Participants picked

up their study foods every three to five days and were instructed to bring back all containers so that study investigators could weigh

any remaining food to assess adherence. If participants consumed less than 80%of the provided study foods during the intervention,

they were removed from the study (n = 2). Of the participants who completed the study, adherence to the restore diet protocol was

94.4 ± 6.4% (mean ± SD). Finally, to account for potential differences in micronutrient intake between the restore diet and partici-

pants’ usual diets, they were provided a multivitamin (100% Complete Multi For Adults, Jamieson, Canada) and instructed to

consume it daily throughout the twelve-week study.

Participant-reported outcomes
A gastrointestinal symptom questionnaire was used to determine the intensity of stomach aches, abdominal tension, and flatulence

using a 5-point hedonic scale with no symptoms (0) and severe symptoms (4) on either end.136 On the same questionnaire, markers of

stool transit time were assessed136: stool consistency was assessed using the Bristol Stool Scale, with ‘‘hard or fragmented’’ (0) and
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‘‘entirely liquid’’ (6) on either end, and ‘‘sausage or snake-shaped, smooth, and soft’’ in the center (3); bowel movement frequency

was assessed using a 5-point hedonic scale, with ‘‘every third day or less often’’ (0) and ‘‘three times a day ormore often’’ (4) on either

end and ‘‘once a day’’ in the center (2). The questionnaire was administeredweekly in both diet periods (i.e. at baseline,Week 1,Week

2, and Week 3).

Physical activity levels were assessed using the validated International Physical Activity Questionnaire.138 A validated perceived

stress questionnaire was used to assess stress experienced within the previousmonth.139 To assessmood states, the validated Pro-

file of Mood States questionnaire was used.140 These questionnaires were administered on Days 0, 21, 42, and 63.

To assess participants’ usual dietary intake, the Canadian version of the Automated Self-Administered 24-hour Dietary Assess-

ment Tool (ASA24-Canada 2016) was used to administer 24-hour dietary recalls (National Cancer Institute, MD, USA). Participants

completed two 24-hour dietary recalls (one on a weekday and another on a weekend day) at baseline and Week 3 of the usual diet

period, as well as at baseline of the restore diet period. This was to confirm no significant dietary changes weremade during the usual

diet period, and also to compare participants’ usual dietary intake to the composition of the restore diet. Pooled values for the usual

diet were calculated as the averages of all of the dietary recalls (i.e., baseline andweek 3 of the usual diet, baseline of the restore diet).

These values were used to test for differences between the two diet periods (i.e., pooled usual diet vs Week 3 restore diet). An HEI

score adapted to Canada’s Food Guide (2007) was also calculated based on the procedure outlined in Jessri et al.141 to quantify

baseline diet quality.

DNA extraction and sequencing
Microbial DNA was extracted from fecal samples using a modified protocol based on QIAamp Fast DNA Stool Mini Kit as

described previously.113 Briefly, 0.1 g of fecal material was washed three times with ice-cold PBS buffer. Then, 100 ml of lysis

buffer was added to cell pellets and the mixtures were incubated at 37�C for 30 min. Samples were then mixed with 1 mL of

buffer InhibitEX, and homogenized through vortexing and bead-beating. The remaining steps of the manufacturer’s protocol for

DNA isolation were followed. The V5-V6 hypervariable region of bacterial 16S rRNA gene was chosen as it provides greater

resolution not only for bifidobacteria and lactobacilli but also the entire microbial community of human fecal samples. This tar-

geted region was amplified using the primer pair 784F (50-RGGATTAGATACCC-30) and 1064R (50-CGACRRCCATGCANCACCT-

30). The amplicons were paired-end sequenced (2 x 300 bp) using Illumina MiSeq PE300 at the University of Minnesota

Genomics Center (Minneapolis, MN, USA). To ensure sufficient sequencing depth and prevent batch effects, amplicons from

all samples were pooled together, and the same pool was repeatedly sequenced using two sequencing lanes; following this,

data generated from the two lanes were integrated into a singular dataset. DNA extracted from samples of Days 0, 8, 42,

and 50 (i.e., Days 0 and 8 of each diet period) were also subjected to WMS. WMS libraries of each DNA sample were generated

using the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, Whitby, ON, Canada). The libraries were

pooled and sequenced using NovaSeq 6000 S4 PE150 platform (2 x 150 bp paired-end sequencing) at the Génome Québec

Innovation Centre (Montréal, QC, Canada). The WMS data for all samples were generated using a single lane concurrently to

avoid batch effects.

Bioinformatics analysis
16S rRNA gene amplicon sequencing data were processed using QIIME2.114 Briefly, the plugin cutadapt trim-pairedwas used to trim

the residual primers and adapters. The dada2 denoise-paired pipeline was applied to truncate low-quality bases, join paired-end

reads, remove chimeras, generate an ASV table, and obtain representative sequences of ASVs. The hypervariable V5-V6 region

of 16S sequences of the SILVA database (version 138) was extracted using the feature-classifier extract-reads function, then

used to train the Naive Bayes classifier using feature-classifier fit-classifier-naive-bayes that assigned the taxonomy of the se-

quences. The representative sequence of each ASV was further assigned taxonomy at the species-level, if possible, using the

IMG/MER system115 and/or the NCBI Web BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). While the NCBI Taxonomy database

has appended a list of 42 names of prokaryote phyla (e.g., Bacillota [formerly Firmicutes], Bacteroidota [formerly Bacteroidetes], Ac-

tinomycetota [formerly Actinobacteria], and Pseudomonadota [formerly Proteobacteria]), the majority of the publications referenced

in this study adhere to the former nomenclature for these microorganisms. Therefore, we have maintained the use of their previous

nomenclature in the current study.

Singleton and doubleton ASVs were removed for downstream analyses. To estimate alpha-diversity indices (i.e., observed fea-

tures, Pielou’s evenness, and Shannon index) and the Bray-Curtis dissimilarity matrix among samples, the number of bacterial se-

quences was rarefied to 4,200 reads per sample, and samples with read numbers <4,200 were removed for further analyses. Alpha-

and beta-diversity indices were then calculated for ASVs with the function diversity core-metrics-phylogenetic. Microbial taxa with

relative abundance >0.1% in at least 20%of the samples (i.e., 6, 9, 19, 34, 74, 124, and 205 at the phylum, class, order, family, genus,

species, and ASV level, respectively) were used for downstream analyses.

The quality of WMS dataset was examined using FastQC (https://github.com/s-andrews/FastQC), the residual adapter se-

quences were filtered, and the bases with average quality scores <20 were trimmed using Trimmomatic v0.39.116 Trimmed reads

with lengths lower than 100 bp were then discarded for downstream analyses. Sequences of bacteriophage phiX174 (Illumina

spike-in of WMS libraries) and human DNA reads were eliminated through mapping WMS dataset to phiX174 genome reference

(NCBI accession: NC_001422.1) and human genome reference GRCh38 using Bowtie2 (version 2.3.5.1),117 with -N 1 and
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otherwise default settings. The compositional profile of WMS dataset was generated using MetaPhlAn 4.0 with default parame-

ters.142 The functional profile of gut microbiome (i.e., pathways and ECs) was predicted using HUMAanN 3.0 with default set-

tings.118 To identify CAZymes, DIAMOND (version 0.9.32.133)119 was used to align post-QCWMS reads to the dbCAN2 database

(version 9.0)143 with an E value <1e-10 as the cut-off. For each mapped read, the best hit with the lowest E-value was used for

downstream analyses. CAZymes related to the utilization of various carbohydrate categories were grouped as suggested previ-

ously26 with further updates by adding more CAZyme families to each category (Table S13). Bioinformatic analyses for the WMS

data were conducted on the computing platform provided by the Digital Research Alliance of Canada. Singleton and doubleton

microbial features were removed for downstream analyses. Compositional and functional features with relative abundance

>0.005% in at least 20% of the samples were included in downstream analyses. The alpha-diversity indices of WMS features

were computed using the plugin diversity alpha of QIIME2. The Bray-Curtis dissimilarity matrix of samples based onWMS features

(i.e., SGBs, pathways, CAZymes, and ECs) was generated using R package rbiom120 and PCoA was then visualized via the plugin

diversity pcoa and emperor plot of QIIME2.

Fecal SCFAs, BCFAs, pH, and dry mass percentage
SCFAs and BCFAs were quantified using gas chromatography at the Agricultural, Food & Nutritional Science Chromatography Fa-

cility (University of Alberta, Edmonton, Canada) in fecal samples from Days 0, 8, 21, 42, 50, and 63 (i.e.,Days 0, 8, and 21 of each diet

period), as previously described.144 Total SCFA concentrations were determined as the sum of acetate, propionate, butyrate, and

valerate, and the relative proportions of each SCFA were determined by dividing these individual SCFA by total SCFAs. Total

BCFAs were the sum of isobutyrate and isovalerate concentrations. Fecal dry mass percentage was determined by drying raw fecal

material overnight in an oven at 103�C.107 Fecal pH was analyzed using an Accumet� AB150 pH meter (Fisher, Canada) by diluting

raw fecal material 1:4 in distilled water, as previously described.107

Plasma metabolomics
The metabolome of plasma samples was profiled using high-performance chemical isotope labeling liquid chromatography-mass

spectrometry (CIL LC-MS) platform for carboxyl and amine/phenol submetabolome.145 Briefly, two aliquots (30 mL) of each sample

were labelled using DmPA-labeling kit (for carboxyl submetabolome) and Dansyl-labeling kit (for amine and phenol submetabolome),

respectively. To measure the relative concentration of each metabolite, individual samples were separately labelled by 12C2-reagent

(light labeling), and the pooled sample containing aliquots from all the samples (serving as an internal standard) was labelled by 13C2-

reagent (heavy labeling). The equal volume of 13C2-labeled reference pool was mixed with each 12C2-individual sample, and the

LC-MS analysis of the mixtures was carried out within a single run to prevent any batch effects. The resulting data was interpreted

using software IsoMS Pro 1.2.7 (Nova Medical Testing Inc., Edmonton, AB, Canada) and applied to extract peak pairs and calculate

the intensity ratio of each peak pair. For metabolite identification, based on multiple metabolite identifiers, peak pairs were searched

against the CIL-labeled metabolite library and linked identity library.

Safety-related laboratory measures
Complete blood count differential analysis was performed on a Sysmex XN-10� Automated Hematology Analyzer (Lincolnshire, IL,

USA) to determine red blood cells, hemoglobin, hematocrit, mean corpuscular volume,mean corpuscular hemoglobin concentration,

red cell distribution width, platelets, white blood cells, neutrophils, and lymphocytes. Albumin, sodium, potassium, chloride, urea,

creatinine, estimated glomerular filtration rate, total protein, immunoglobulin (Ig) G, IgA, and IgM were quantified on a Beckman

Coulter UniCel DxC-800 (Mississauga, ON, Canada).

Risk markers of chronic diseases
Glucose, total cholesterol, HDL, non-HDL, and triglycerides were quantified on a Beckman Coulter UniCel DxC-800 (Mississauga,

ON, Canada). LDL was calculated using the Friedewald equation.146 Insulin and CRP were measured in aliquoted plasma using

the U-PLEX Human Insulin Assay (intra-assay CV 5.2%) and the V-PLEX Human CRP Kit (CV 5.0%), respectively, which were

analyzed using the SECTOR� Imager 6000 according to the manufacturer’s protocols (Meso Scale Discovery�; Rockville, MD,

USA). Glucose and insulin data were used to calculate HOMA-IR147 and QUICKI.148 Fecal calprotectin was measured using an

enzyme-linked immunosorbent assay (Catalog Number K6927, Immundiagnostik AG, Hessen, Germany; CV 4.8%), following the

manufacturer’s protocol.

Weight was measured using a calibrated digital scale to the nearest 0.1 kg (Health o meter� Professional 752KL, Pelstar LLC;

McCook, IL, USA) on Days 0, 8, 21, 42, 50, and 63. Height was measured to the nearest 0.01 cm (Digi-kit digital stadiometer, Mea-

surement Concepts, Quick Medical�; Issaquah, WA, USA) on Day 0. Height and weight were measured with participants wearing

light clothing, having empty pockets, and shoes removed, and were then used to calculate BMI (kg/m2).

Markers of gut barrier function
Lipopolysaccharide-binding protein was measured in plasma, while zonulin was measured in raw fecal material. Both markers were

measured using enzyme-linked immunosorbent assays (Catalog Numbers KR6813 and K5600, CV 4.2% and 4.7%, respectively; Im-

mundiagnostik AG, Hessen, Germany) following the manufacturer’s protocols.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of L. reuteri in fecal samples
The abundance of L. reuteri strains in fecal samples was determined by both quantitative culture and qPCR. Quantitative culture was

performed on L. reuteri isolation medium (LRIM), which is sufficiently selective to quantitatively isolate L. reuteri from human fecal

samples of most subjects.134 Quantification of PB-W1 and DSM 20016T by qPCR was performed as previously described113 using

strain- or lineage-specific primers, respectively. Given that qPCR captures DNA from both live and dead cells, while quantitative cul-

ture estimates the number of live cells, the ratio of cell numbers estimated using quantitative culture to qPCR in fecal samples was

used to assess the survival of L. reuteri as suggested previously.113

Quantitative culture data were obtained for 26 participants without background bacterial colonies growing on LRIM selective me-

dium (n = 9 for PB-W1, n = 10 for DSM20016T, and n = 7 for placebo); i.e., four participants (n = 1 from the DSM20016T group, and n =

3 from the placebo group) with bacteria species other than L. reuteri (confirmed by 16S Sanger sequencing) growing on LRIM were

excluded from the culture analysis. Strain-specific qPCR data were obtained for 20 subjects (n = 9 for PB-W1, and n = 11 for DSM

20016T), while the placebo group was not included due to confirmed absence of L. reuteri by selective culture on LRIM. Since

L. reuteri PB-W1 stably engrafted in one subject (RW-16) throughout the entire trial (Figure S3B), their culture and qPCR data

were excluded from subsequent analyses on persistence.

Statistical analyses
For this proof-of-concept study, we could not conduct a power calculation as our primary outcome had not been explored previously.

However, we aimed to enroll ten participants in each L. reuteri arm (previously used to test persistence of a probiotic149), and a total of

30 individuals based on similar intervention trials.150,151 Statistical analyses were performed using R and/or GraphPad Prism unless

otherwise specified. Only participants who completed the entire trial were included in the final analyses (n = 30). One participant could

not provide a blood sample at the end of both diet periods; therefore, for all analyses of plasma samples, n = 29 was included. Data

were assessed for normality using visual inspection of histograms and QQ-plots, and homogeneity of variances was confirmed using

Levene’s test. The statistical tests used in each analysis as well as the types of center and dispersion measures are described in the

main text and figure legends.When box plots were utilized, the center line denotes themedian, the box encapsulates the interquartile

range (IQR) from the 25th to 75th percentiles, and the black whiskers indicate the minimum and maximum values of the data, unless

outliers were identified. Missing data was imputed for statistical analyses using multivariate imputation using the R package mice.121

Baseline data of risk markers of chronic diseases and gut barrier function markers as well as percent changes for each marker

within each diet period were ordinated by PCA using factoextra122 and FactoMineR123 packages. Between-group differences

(restore diet vs. usual diet) were assessed by PERMANOVA using the R package vegan.124 PERMANOVA was also conducted to

evaluate effects of various factors (i.e., individuality, diet, bowel movement frequency, stool consistency) on the overall structure

of microbiome (with 1000 permutations).

For linearmixedmodels, participant IDwas included as the random factor, and diet period and L. reuteri inoculumwere included as

fixed factors. For data derived from 16S rRNA gene amplicon sequencing, day of intervention was included as an additional fixed

factor. Baseline values of each diet period were included as covariates for each outcome variable for safety-related laboratory mea-

sures, risk markers of chronic diseases, and markers of gut barrier function using the R package nlme,125 as well as in per-feature

testing conducted for data derived from 16S rRNA gene amplicon sequencing andWMS adapted in MaAsLin2.132 The relative abun-

dance of eachmicrobial feature was log-transformed before inputting into themodel, as suggested previously.152 FDR-adjusted two-

tailed p < 0.05 was considered significant after Benjamini-Hochberg correction for multiple comparisons.

Data derived from the gastrointestinal symptoms, perceived stress, physical activity, and mood questionnaires were either

ordinal or derived from ordinal data (i.e., sum or mean) and were non-normally distributed. The R package geepack127 was

used for GEE with repeated-measures models to assess the overall effect of diet and L. reuteri. When a significant effect

was observed, within-group pairwise comparisons were applied using estimated marginal means and the emmeans

package.128

MetaboAnalyst (https://www.metaboanalyst.ca/) was used for statistical analyses and data visualization of the plasma metabo-

lome dataset.133 To estimate the overall effects of the restore diet, PLS-DA was conducted based on shifts from baseline to the

end of each diet period (Day 21), and the p value was obtained from 1000 permutation validation. To detect the influence of

L. reuteri, PLS-DA was conducted based on shifts ([Day 8; 4 days after L. reuteri inoculum] – baseline) in each diet period.

Correlations between microbial taxa and plasma metabolites that significantly responded to the restore diet were investigated us-

ing Spearman’s rank correlation. According to the beta-coefficients obtained from the linear mixed models described above, the top

30 (i.e., thosewith the highest absolute beta-coefficient values) genera and ASVs (from 16S rRNAgene amplicon sequencing dataset)

increased or decreased by the restore diet were identified and included in analyses. Relative abundance shifts of these taxa were

correlated with shifts of metabolites driven by the restore diet, and possible outliers (those falling outside the range of mean ±

3SD) were removed before analysis.

To quantify variation in responses of the gutmicrobiome and host to the restore diet, modified coefficients of variation (mCVs) were

calculated by first adding the absolute value of the minimum to all values (i.e., to make them non-negative) then calculating the CV as

the ratio of the standard deviation to the mean. This was calculated for: ASVs and genera (16S rRNA gene amplicon sequencing);
e6 Cell 188, 1–22.e1–e7, March 6, 2025

https://www.metaboanalyst.ca/


ll
OPEN ACCESS

Please cite this article in press as: Li et al., Cardiometabolic benefits of a non-industrialized-type diet are linked to gut microbiome modulation,
Cell (2025), https://doi.org/10.1016/j.cell.2024.12.034

Article
pathways, enzymes, and CAZymes (WMS); plasma metabolites; and risk markers of chronic diseases. The R package cvcqv129 was

used to calculate mCVs and 95% confidence intervals of the absolute changes in the features within each dataset that had the great-

est (positive and negative) effect sizes.

Machine learning models
RF classification and regression models were developed using the default settings in the R package caret.130 Recursive feature se-

lection was used to determine the optimal number of features included in each model, as many datasets had several hundred fea-

tures. Due to the small sample size of the participant cohort, the lack of an independent test set, and tomaximize the number of sam-

ples used to identify the most informative set of features, internal leave-one-out cross-validation was used for feature selection. The

identified set of features was then used to train the model to predict the outcome of interest. Leave-one-out cross-validation was

implemented again to maximize the number of samples used to train the model. Using a standard machine learning approach to

reduce the risk of bias,153 this entire process (feature selection and model training) was performed five separate times using external

5-fold cross-validation, and the average AUROC (classification) or R2 (regression) across these five folds was reported. Other model

performance metrics, such as sensitivity and specificity for classification tasks and root mean squared error (RMSE) and mean ab-

solute error (MAE) for regression tasks are reported in supplementary tables (Tables S8, S9, and S10). Separate models were trained

using microbial compositional profiles (ASV/SGBs, genus, family, phylum, and all taxonomic levels combined), microbiome

functional features (SCFAs, pathways, CAZymes, ECs), and host features (risk markers of chronic diseases, plasma metabolome,

dietary intake). Ecology metrics (including alpha-diversity indices and Bray-Curtis distances calculated for ASVs, SGBs, pathways,

CAZymes, and ECs, as well as the Prevotella/Bacteroides ratio derived from 16S rRNA gene amplicon sequencing and WMS) and

Average Influencer (a variable derived from our interaction network analysis, reflecting the average relative abundance of Strepto-

coccaceae, Bacteroidaceae, Erysipelatoclostridiaceae, Rikenellaceae, Pasteurellaceae, Akkermansiaceae, Clostridiaceae, and De-

sulfovibrionaceae, which exhibited increasing positive effects on others during the restore diet phase) were also evaluated for their

predictive value. Scaled top predictive features of the models were identified based on importance values in the models and were

averaged across the five folds to give mean importance scores. For the best-performing regression models (i.e., R2 > 0.30), Spear-

man’s correlation coefficients were calculated between top predictive features and percent changes in risk markers, as

described above.

The same input variables employed in the RF models were used in MLR models; however, to decrease data dimensionality, PCA

was applied to obtain the top three PCs that explained the most variation in dietary intake, risk markers of chronic diseases, ecology

metrics, microbial compositional profiles (at each taxonomic level separately), functional profiles (at each function category sepa-

rately and combined together), SCFAs, and plasma metabolomic profiles. Sample outliers of PCs were identified as more than

fivemedian absolute deviations away from themedian, and removed from downstream analyses. For CAZyme categories for utilizing

different carbohydrate sources, variance inflation factors (VIF) were calculated using the R package car131 before running analyses,

and high multi-collinearity was considered with VIF > 10. PCs and variables with p < 0.05 were considered significant, and adjusted

R2 values were used to evaluate the models.

Linear models
The combined effects of different types of variables on host responses were analysed with linear models using the package nlme,125

with participant ID as the random factor. Explanatory variables, including changes in microbiome features such as taxonomic

composition, diversity indices, CAZyme ratios, and SCFAs, their changes between time points, as well as baseline levels of risk

markers and baseline diet were selected for themodel based on their association with the outcome variable. Themost strongly asso-

ciated variables were included in a single model, which was reduced using stepwise AIC-based model selection with the penalty

parameter k set to 4. The final model contained as explanatory variables both microbiota features and the diet (usual or restore

diet), thus effectively adjusting for microbiota changes and enabling the assessment of microbiota-independent effects of the restore

diet on each risk marker. The variance explained by each variable in the final model was calculated using the package MuMIn.126

Interactions between microbes and effects of changes in pH, stool consistency, and bowel movement frequency were assessed us-

ing a similar stepwise model reduction protocol with the changes in microbial relative abundances between time points as the

response variables and the relative abundances of microbes at the previous time point as the predictor variables.

ADDITIONAL RESOURCES

Clinical trial registry #NCT03501082: https://www.clinicaltrials.gov/study/NCT03501082
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Supplemental figures

Figure S1. Example of food provided to participants during restore diet period, related to Figure 1
One-days’ worth of food consumed by a participant assigned to the 2000 kcal increment based on calculated caloric requirements. Photo depicts menu items

from day 4 of the 4-day rotating menu of the restore diet (approximately 46 g dietary fiber): (A) sweet potato and black bean hash and (B) mandarin oranges

(breakfast); (C) quinoa tabbouleh salad and (D) canned pears (lunch); (E) baked pork tenderloin, roasted Jerusalem artichokes and potatoes, and coleslaw

(dinner); and (F) dried apricots and almonds (snack). See also Table S1. Photo by: A.M.A.
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Figure S2. Effects of microbiome restoration strategy on markers of transit time and gastrointestinal tolerance, related to Figure 2

Self-reported stool consistency, bowel movement frequency, and gastrointestinal symptoms assessed via weekly questionnaire. (A) Effect of diet alone, and

(B) effect of L. reuteri supplementation within each diet period. GEE with repeated-measures models; FDR-adjusted p < 0.05. Data presented as mean ± SD.

*p < 0.05; **p < 0.01; ***p < 0.001. BL, baseline of each diet period; DSM 20016T, L. reuteri-type strain; PB-W1, L. reuteri strain from rural Papua New Guinea.
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Figure S3. Effects of the restore diet on the microbiome and persistence of Limosilactobacillus reuteri, related to Figure 2

(A) Cell numbers of L. reuteri in fecal samples determined by quantitative PCR (qPCR). Data presented as Log10 of cells per g of feces, and within each day of the

intervention, different letters indicate significant differences based on repeated-measures two-way ANOVA with p < 0.05.

(B–E) (B) L. reuteri PB-W1 stably engrafted for the entirety of the trial in one subject (RW-16), confirmed by both qPCR and quantitative culture. Changes in alpha-

diversity indices between each subject’s gut microbiome at baseline and during the dietary intervention, specifically (C) Shannon index, (D) richness, displayed as

observed features, and (E) evenness, displayed as Pielou’s evenness (linear mixed models or repeated-measures two-way ANOVA).

(F) Bray-Curtis distance among different subjects (inter-individual distance) calculated based on ASVs and WMS features; paired Wilcoxon signed rank test was

performed, with p < 0.05 considered significant. Data presented as box plots, violin plots, or mean ± SEM. ASVs, amplicon sequencing variants; BL, baseline of

each diet period; CAZymes, carbohydrate-active enzymes; ECs, level-4 enzyme commission categories; LoD, limit of detection; N.S., not significant; SGBs,

species-level genome bins; WMS, whole metagenome sequencing.
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Figure S4. Individualized response of microbial genera to the restore diet, related to Figure 3

Bubble graph shows absolute change (day 8—baseline) in relative abundance of genera that were significantly altered in the restore diet period. Each column

represents one participant. Red indicates an increase, blue indicates a decrease, and an X indicates the taxa were not detected in that participant. Bubble size

represents the magnitude of the shift. See also Table S5.
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Figure S5. Temporal response and resilience of gut microbiota to the restore diet, related to Figure 4

Microbiota dynamics in participants (n = 16) who were randomized to the restore diet in the first period. Fluctuation of top 10 ASVs that increased (top) or

decreased (bottom) in response to the restore diet (identified through linear mixed models). Data presented as mean ± SEM. Green column is the restore diet

period, orange is the usual diet period, and gray is the washout.
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Figure S6. Temporal response and resilience of predicted WMS features, related to Figure 4

Microbiome dynamics in participants (n = 16) who were randomized to the restore diet in the first period, specifically: (A) observed features (richness), (B) Pielou’s

evenness, (C) Shannon index, (D) Bray-Curtis distance among different subjects within the same day (inter-individual distance), (E) Bray-Curtis distance of each

subject’s gut microbiome to the previous timepoint (stability, rate of distance change), and (F) Bray-Curtis distance of each subject’s gut microbiome at different

timepoints compared with the baseline (beta diversity; intra-individual distance).Data presented as mean ± SEM. Paired Wilcoxon signed rank tests; +p% 0.1, *p

% 0.05, **p % 0.001. BL, baseline of each diet period; CAZymes, carbohydrate-active enzymes; ECs, level-4 enzyme commission categories; N.S., not sig-

nificant; SGBs, species-level genome bins; WMS, whole metagenome sequencing. Green column is the restore diet period, orange is the usual diet period, and

gray is the washout.

ll
OPEN ACCESS Article



Figure S7. Ecological drivers of the effects of the restore diet, related to Figures 4 and 5

(A) Direct effect of the diet intervention on absolute shifts (day 8 - baseline) at the genus-level (16S rRNA gene amplicon sequencing).

(B) Effects of changes to fecal pH, stool consistency, and bowel movements on microbial taxa at day 8 of the restore diet period. Legend represents which

taxonomic classes to which the genera belong. Negative values indicate a negative effect, positive values indicate positive effect (R2).

(C) Number of interactions eachmicrobial family had during the restore and usual diet periods. Positive indicates that a high abundance of that taxon is associated

with a subsequent increase in other taxa, and negative indicates that a high abundance of that taxon is associated with a subsequent decrease in other taxa.

ll
OPEN ACCESSArticle



Figure S8. Effects of L. reuteri on the plasma metabolomic profiles, related to Figure 5

PLS-DA based on shifts (from baseline to 4 days after L. reuteri treatment [day 8]) of metabolites during the (A) restore diet and (B) usual diet periods (p-value from

1,000 permutation validation). Correlation matrices of Spearman’s rank correlations between plasma metabolites and the top 30 (C) genera and (D) ASVs that

were significantly altered by the restore diet (16S rRNA gene amplicon sequencing). Only correlations with FDR-adjusted p < 0.10 were displayed. Taxa colored

based on phyla, and metabolites colored based on whether they were increased (red) or decreased (blue) by the restore diet. ASVs, amplicon sequencing

variants; PLS-DA, partial least squares-discriminant analysis.
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Figure S9. Prediction of diet period (restore versus usual) based on gut microbiome and host features, related to Figure 7

RF classification models were built, with input features based on individual omics datasets (plasma metabolites, microbiome compositional profiles at multiple

taxonomic levels from both 16S rRNA gene amplicon sequencing andWMS, inferred microbiome functions, SCFAs, and risk markers of chronic diseases), using

(A) features measured during each diet period (day 8 for microbiome taxonomic and functional features; day 21 for SCFAs, plasmametabolites, and risk markers)

and (B) absolute shifts of these features within each diet period. Model performance was based on AUROC, and individual dots represent AUROC for each of the

5-fold with the black line representing the mean AUROC. Bar plots show scaled feature importance (mean ± SD) for the top predictive features of the two best-

performing models based on (A) endpoint data or (B) absolute shifts. See also Table S8. ASVs, amplicon sequence variants; AUROC, area under the receiver

operating characteristic curve; CAZymes, carbohydrate-active enzymes; SCFAs, short-chain fatty acids; SGBs, species-level genome bins.
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Figure S10. Contribution of different host andmicrobiome factors to clinical responses to the restore diet based on linear regressionmodels
using stepwise model reduction, related to Figure 7

(A) Correlations between predicted and actual changes to risk markers of chronic diseases.

(B) Percent variation explained by different variables for percent changes to risk markers of chronic diseases. Taxonomic and functional microbiota changes

included either as change from baseline to days 4, 8, or 21 or relative abundance on days 4, 8, or 21 of the restore diet period. ‘‘Restore diet’’ variable indicates

microbiome-independent effect of restore diet on markers. BMI, body mass index; CRP, C-reactive protein; LDL, low-density lipoprotein.
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Figure S11. Variability in responses of the gut microbiome and host to the restore diet, related to Figure 7

Modified Coefficient of Variation (mCV) and 95% confidence intervals of the absolute changes in each feature within the restore diet period are depicted as bar

graphs. The parameters within each dataset that had the greatest (positive and negative, identified by linear mixed models) effect sizes were included. Bars are

colored based on coefficients—red indicates positive, and blue indicates negative. ASVs, amplicon sequence variants; CAZymes, carbohydrate-active enzymes.
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