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Multi-omics architecture of childhood
obesity and metabolic dysfunction uncovers
biological pathways and prenatal
determinants

A list of authors and their affiliations appears at the end of the paper

Childhood obesity poses a significant public health challenge, yet the mole-
cular intricacies underlying its pathobiology remain elusive. Leveraging
extensive multi-omics profiling (methylome, miRNome, transcriptome, pro-
teins andmetabolites) and a rich phenotypic characterization across twoparts
of Europewithin thepopulation-basedHuman Early Life Exposomeproject, we
unravel the molecular landscape of childhood obesity and associated meta-
bolic dysfunction. Our integrative analysis uncovers three clusters of children
defined by specific multi-omics profiles, one of which characterized not only
by higher adiposity but also by a high degree of metabolic complications. This
high-risk cluster exhibits a complex interplay acrossmanybiological pathways,
predominantly underscored by inflammation-related cascades. Further, by
incorporating comprehensive information from the environmental risk-scape
of the critical pregnancy period, we identify pre-pregnancy body mass index
and environmental pollutants like perfluorooctanoate and mercury as
important determinants of the high-risk cluster. Overall, our work helps to
identify potential risk factors for prevention and intervention strategies early
in the life course aimed at mitigating obesity and its long-term health
consequences.

Childhood obesity, characterized by high body fat accumulation, is a
leading public health threat1. It is estimated that around 1 in every 10
children are currently living with obesity across Europe2. Childhood
obesity is difficult to reverse, drives a myriad of metabolic pertur-
bations, and substantially increases the risk of later cardiovascular
disease (CVD), an effect known to be, at least partly, mediated by
obesity-associated metabolic dysfunction, including dyslipidemia,
hyperinsulinemia, and hypertension1,3,4. Nevertheless, the risk of
developing obesity-associated comorbid diseases can vary across
individuals. It has been shown that not all individuals with obesity
develop metabolic dysfunction, a phenomenon referred to as
metabolically healthy status, and studies have reported a con-
siderably lower risk for future CVD events and all-cause mortality in

those individuals compared to individuals with a metabolically
unhealthy status5.

It has been suggested that complex interactions between meta-
bolically active tissues (suchas fat, liver, and the skeletalmuscle) play a
role in thehealth state of the complex obesity phenotype6,7. Yet, little is
known about the molecular architecture underlying the biology
behind obesity and metabolic dysfunction. Recent advances in high-
throughput technologies have brought forward an accelerated incen-
tive in obesity research, with omics data being key to an in-depth
functional understanding of health and disease states. Studies to date
have largely focused on adult populations, on the examination of
single to two omics layers and on weight-related outcomes with no
consideration of othermetabolic characteristics8–10. Thisprovides little
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knowledge about the internal molecular environment and the under-
lyingbiological pathways early in thedevelopmentof themulti-faceted
obesity phenotype. As highlighted, the tenet of the precisionmedicine
concept in obesity calls for a more holistic approach and a compre-
hensive multi-omics profiling to better understand this prevalent
health condition11–13. This can ultimately facilitate assessment of
obesity-associated risk and disease progression, and aid towards tar-
geted intervention strategies.

We therefore sought to interrogate multiple blood omics layers
and a number of metabolic health outcomes in children to advance
our understanding of the pathobiology of obesity, early in disease
genesis. Our objective was to offer insights into the diversity of
molecular profiles in metabolically healthy and unhealthy indivi-
duals. We hypothesized that children at risk for metabolic disease
would show broad and aggregated alterations in blood omics ana-
lytes, whether as causes or effects of biological changes leading up
to the disease. To explore this hypothesis, we leveraged the unique
database of the population-based Human Early Life Exposome
(HELIX) project14, one of the largest datasets of the general pediatric
population with comprehensive multi-omics profiling (five mole-
cular layers) and a rich phenotypic characterization of metabolic
health from two regions in Europe.

Motivated by the emerging field of precision environmental
health15, we also sought to examine the role of the prenatal environ-
ment to provide an additional level of understanding of potential

contributors to disease etiology. Prenatal life is a particularly impor-
tant period to study the environmental triggers of disease; exposures
during this developmentally vulnerable period may have pronounced
effects at the molecular level and disease risk later in life16. Using a
comprehensive approach that incorporates key environmental, social,
and lifestyle factors, we aimed to understand how early-life exposures
are associated with molecular profiles linked to childhood obesity and
metabolic dysfunction.

Overall, this study seeks to expand our understanding of the
molecular mechanisms underpinning obesity and associated meta-
bolic dysfunction and to identify modifiable environmental factors
that could guide future prevention strategies.

Results
Figure 1 demonstrates our analytic workflow. We analyzed data from
the HELIX project, involving children from two parts of Europe: the
Northern/Western (N/W) part (study sites: Bradford, UK; Poitiers,
France; Kaunas city, Lithuania; and Oslo, Norway) and the Southern/
Mediterranean (S/M) part (study sites: Sabadell, Spain; and Heraklion,
Greece). Our study population included a total of 863 children (N = 557
from the N/W part and N= 306 from the S/M part).

In Table 1, we present characteristics of our study population. The
mean (SD) age of childrenwas 7.8 (1.4) years, and a total of 471 children
(54.6%) were boys. Children from the N/W cohort were more likely to
have mothers with a higher educational level (58.9% vs 35.4%)

Fig. 1 | Analytic workflow of the study. a We integrated multi-omics data,
including DNAmethylation, miRNAs, transcript clusters, proteins and metabolites,
from childhood blood samples from the HELIX population-based project. We
applied similarity network fusion and spectral clustering to derive distinct multi-
omics clusters in children from the Northern/Western European part and recapi-
tulated these clusters in children of the Southern/Mediterranean part. b Using
generalized regression models, we examined the association of the multi-omics
clusters with several metabolic outcomes to characterize the clinical phenotype of
each cluster. c We applied machine learning methods to derive SHapley Additive

exPlanation (SHAP) values in order to identify the molecular features with high
importance in cluster definition and then performed pathway analysis to char-
acterize underlying biological pathways. d We examined how the prenatal envir-
onment affects cluster membership. We applied Least Absolute Shrinkage
SelectionOperator (LASSO)with Stability-enHancedApproaches using Resampling
Procedures (SHARP) to identify the most important determinants among several
prenatal factors. We then estimated the probability of cluster membership across
levels of the identified determinants.
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compared to those from the S/M cohort. These children also had a
lower total fat mass (mean (SD) 6.1 (3.7) kg vs. 7.3 (4.2) kg) and alanine
aminotransferase (ALT) levels (14 (5.1) U/L vs. 18.1 (6.4) U/L) and were
less likely to have overweight/obesity (22.8% vs. 39.2%) than children
from the S/M cohort.

Integrative approach to identifymulti-omics clusters of children
To derive distinct multi-omics clusters, we applied an integrative net-
work and clustering approach to blood DNA methylation, miRNA
expression and gene transcription, plasma protein, and serum meta-
bolite data.

As a first step, we conducted a screening of published literature to
identify and select omics molecules related to childhood adiposity
measures. This filtering step was performed to: 1) provide much-
needed replication of published literature17; and 2) reduce the high
dimensionality of the multi-omics dataset, and thus unwanted noise
that may dilute clustering signals18,19. Details about the omics bio-
markers assessed in HELIX and our search strategy are available in
Supplementary Data 1A-C and Supplementary Table 1. A total of 1379
omics features (N = 976 CpG sites, N = 51 miRNAs, N = 219 transcript
clusters, N = 35 proteins, and N= 98 endogenous metabolites) were
included in the integrated analysis (Supplementary Data 2A-D).

We leveraged the multi-centre nature of the HELIX project and
appliedfirst ourmulti-omics approach in thepopulationofN/Wcohort
and used the population from the S/M cohort as validation cohort. We
computed an affinity matrix for each of the omics datasets and then
derived a fused affinity matrix by similarity network fusion (SNF)20. To
identify mutually exclusive clusters, we applied spectral clustering to
the fused matrix and used the eigengap approach and rotation cost
approach to choose the optimal number of clusters. We identified
threemulti-omics clusters (hereafter referred to asCluster A, ClusterB,
and Cluster C) in the population from the N/W cohort (Supplementary
Fig. 1). We subsequently used label propagation, a graph-based semi-
supervisedmethod20, to predict themulti-omics clusters (as derived in
children from the N/W cohort) in the cohort of children from the S/M
cohort. In the N/W cohort, a total of 227 children were included in
Cluster A, 150 children inCluster B, and 180 children inCluster C. In the
S/M cohort, the corresponding numbers of children assigned to each
cluster were 238, 21, and 47.We did not observe significant differences
by sex, age, study site and ethnicity across the clusters in each part of
Europe (Supplementary Table 2).

Metabolic outcomes associated with the multi-omics clusters
We then examined the association of the multi-omics clusters with
metabolic health outcomes to characterize the clinical phenotype of
each cluster. In the N/W cohort, we observed that compared to chil-
dren in Cluster A, children in Cluster C had a higher BMI, higher fat
mass, higherwaist circumference, lowerHDL cholesterol, higher blood
pressure, and higher insulin levels (Fig. 2a and Supplementary Table 3).
Notably, in the S/M cohort, we observed a similar pattern of associa-
tions withmetabolic outcomes for Cluster C. Membership in Cluster C
was also found to associate with higher odds of having a metabolically
unhealthy status (that is, defined as having at least one metabolic risk
factor following consensus pediatric cutoffs)21,22 in both cohorts, as
compared to children in Cluster A (N/W cohort: 39.1% vs. 24.5%,
adjusted OR 1.96 (95% CI 1.20-3.20); S/M cohort: 52.5% vs. 29.2%,
adjusted OR 2.61 (95% CI 1.30-5.21)). For the multi-omics Cluster B, we
observed associations mostly with the anthropometric outcomes in
N/Wcohort. For instance,membership inCluster Bwas associatedwith
higher fat mass as compared to membership in Cluster A. A
similar association was also observed in the S/M cohort. When we
pooled together the two cohort populations (thus better reflecting a
pan-European population), we observed more precise and pro-
nounced results, possibly owning to smaller standard errors and
higher outcome contrasts. In a post-hoc sensitivity analysis, we
examined whether sex had any influence in the observed associations
for fat mass andmetabolic risk (Supplementary Table 4).We observed
no substantial evidence to indicate effect modification by sex, as
reflected in the largely overlapping95%confidence intervals of the sex-
specific effect estimates. Overall, our findings suggest potential

Table 1 | Characteristics of the study population

Northern/Western
cohort (N = 557)

Southern/Mediterra-
nean cohort (N =306)

Total (N = 863)

Study sitesa

Bradford, UK 156 (28.0%) - 156 (18.1%)

Poitiers, FR 75 (13.5%) - 75 (8.7%)

Kaunas, LT 137 (24.6%) - 137 (15.9%)

Oslo, NO 189 (33.9%) - 189 (21.9%)

Sabadell, SP - 148 (48.4%) 148 (17.1%)

Heraklion, GR - 158 (51.6%) 158 (18.3%)

Maternal age, yearsa 30.26 (5.17) 31.23 (4.50) 30.60 (4.96)

Maternal educational levela

Low 90 (16.2%) 44 (14.4%) 134 (15.5%)

Middle 139 (25.0%) 154 (50.3%) 293 (34.0%)

High 328 (58.9%) 108 (35.3%) 436 (50.5%)

Birth weight, gramsa 3435.0 (533.7) 3264.8 (436.1) 3374.2 (507.6)

Gestational age, weeksa 39.7 (1.7) 39.2 (1.7) 39.6 (1.7)

Breastfeedinga

No 86 (15.4%) 36 (11.8%) 122 (14.1%)

Yes 471 (84.6%) 270 (88.2%) 741 (85.9%)

Child sexa

Male 301 (54.0%) 170 (55.6%) 471 (54.6%)

Female 256 (46.0%) 136 (44.4%) 392 (45.4%)

Child race/ethnicitya

white people 463 (83.1%) 306 (100.0%) 769 (89.1%)

South Asian 70 (12.6%) 0 (0.0%) 70 (8.1%)

other 24 (4.3%) 0 (0.0%) 24 (2.8%)

Child age, yearsa 7.78 (1.54) 7.73 (1.24) 7.77 (1.44)

BMI, kg/m2a 16.48 (2.25) 17.40 (2.85) 16.81 (2.52)

Waist cir-
cumference, cma

56.93 (6.74) 60.46 (7.89) 58.18 (7.36)

Total fat mass, kga 6.09 (3.66) 7.32 (4.15) 6.52 (3.88)

Triglycerides, mg/dla 85.59 (40.57) 82.90 (39.21) 84.64 (40.09)

HDL cholesterol,mg/dla 59.19 (11.83) 60.81 (13.16) 59.76 (12.34)

Blood pressure, mm Hga

Systolic 99.21 (11.64) 98.78 (10.66) 99.06 (11.30)

Diastolic 59.14 (10.77) 56.83 (8.71) 58.32 (10.14)

ALT, U/La 14.03 (5.07) 18.08 (6.38) 15.59 (5.94)

Insulin, μg/mla 6.58 (5.45) 7.15 (5.22) 6.78 (5.37)

Overweight/obesitya, b 127 (22.8%) 120 (39.2%) 247 (28.6%)

Metabolic syndrome
score, SDa, c

0.02 (2.23) −0.05 (2.4) −0.01 (2.29)

Metabolically unhealthy
statusa, d

133 (29.8%) 93 (33.3%) 226 (31.1%)

Multi-omics clustersa

Cluster A 227 (40.8%) 238 (77.8%) 465 (53.9%)

Cluster B 150 (26.9%) 21 (6.9%) 171 (19.8%)

Cluster C 180 (32.3%) 47 (15.4%) 227 (26.3%)

ALT alanine aminotransferase, BMI body mass index, HDL high-density lipoprotein.
aValues are mean (SD) or n(%).
bOverweight/obesity was defined according to the World Health Organization criteria.
cThe metabolic syndrome score (expressed in SD) was derived using z scores for waist cir-
cumference, HDL cholesterol level, triglyceride level, insulin level, and systolic and diastolic
blood pressure.
dMetabolically unhealthy status was defined as the presence of at least one of the fol-
lowing risk factors: systolic or diastolic blood pressure ≥90th percentile, insulin ≥90th

percentile, HDL cholesterol ≤40mg/dl, triglycerides ≥110mg/dl, ALT ≥ 22.1 U/L for
females and ≥25.8 U/L for males.
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generalizability of the identified multi-omics clusters, with Cluster C
being designated as the “severe cluster” in terms of metabolic health.

We then stratified our study population according to
weight status to assess the magnitude of the metabolic effects
associated with Cluster C separately in children with normal weight
and overweight or obesity (Supplementary Fig. 2 and Supplementary

Table 5). We observed that Cluster C was associated with a poorer
metabolic profile in both categories of weight status, with more
pronounced associations being observed in children with over-
weight or obesity. In those children, Cluster C was associated with
more than a two-times higher odds of having a metabolically
unhealthy status compared to Cluster A (N/W cohort: 47.4% vs.
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Fig. 2 | Associations of the identified multi-omics clusters with metabolic
health outcomes in childhood. a Associations with continuous metabolic health
outcomes. Effect estimates and their 95% CIs were derived from generalized linear
regression models while controlling for study site, sex, and age at examination.
Circles indicate beta coefficients (expressed in SD change) and whiskers indicate
95%CIs. Themetabolic syndrome (MetS) scorewas derived using z-scores forwaist
circumference, HDL cholesterol level, triglyceride level, insulin level, and systolic
and diastolic blood pressure. Cluster A was the reference category. ALT alanine
aminotransferase, BMI body mass index, DBP diastolic blood pressure, HDL high-
density lipoprotein cholesterol, SBP systolic blood pressure. b Associations with
categorical metabolic health outcomes. Effect estimates and their 95% CIs were
derived from logistic regression models while controlling for study site, sex, and

age at examination. Circles indicate odds ratios and whiskers indicate 95% CIs.
Given the asymmetrical nature of the odds ratio scale, odds ratios are not in the
centre of the 95% CIs. Overweight/obesity (Ov/Ob) was defined according to the
World Health Organization criteria. Metabolically unhealthy (MetU) status was
defined as the presence of at least one of the following risk factors: systolic or
diastolic blood pressure ≥90th percentile, insulin ≥90th percentile, HDL cholesterol
≤40mg/dl, triglycerides ≥110mg/dl, ALT ≥ 22.1 U/L for females and ≥25.8 U/L for
males. Cluster A was the reference category. The number of participants in each
multi-omics cluster across cohorts was as follows: N = 227 for Cluster A, N = 150 for
Cluster B andN = 180 for Cluster C in the Northern/Western cohort, andN = 238 for
Cluster A, N = 21 for Cluster B, and N = 47 for Cluster C in the Southern/Medi-
terranean cohort. Source data for all panels are provided as a Source Data file.
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24.2%, adjusted OR 3.26 (1.10-9.70); S/M cohort: 64% vs. 38.5%,
adjusted OR 2.77 (1.08-7.09)).

Finally, in a sub-sample of our initial study population (Ntotal=404;
NN/W = 233, NS/M = 171), we had available anthropometric measures
assessed in adolescence (mean (SD) age of 14.8 (1.36) years) (Supple-
mentary Table 6). We thus sought to examine whether the identified
multi-omics clusters were associated prospectively with obesity-
related outcomes. We observed that membership in Cluster C was
associated with higher adolescent BMI, waist circumference and fat
mass, as opposed to membership in Cluster A (Supplementary Fig. 3).
For Cluster B, weaker associations were observed.

Molecular drivers of the multi-omics clusters
Given the clinical relevance of the multi-omics clusters in terms of
metabolic health, our biological inquiry focused on identifying the
molecular drivers of the clusters (that is, molecular features with high
importance in cluster definition), so as to better understand potential
underlying biological mechanisms. We applied eXtreme Gradient
Boosting (XGboost) using a one-cluster-versus-the-rest approach and
the multi-omics molecules as predictors. Models’ hyperparameters
were tuned in the N/W cohort (training set) and performance was
assessed in the S/M cohort (testing set). Our models performed well in
correctly predicting cluster membership (area under the receiver
operating characteristic curve (AUC) values > 0.90) in the S/M cohort
(Supplementary Table 7).

To understand both the decision-making mechanisms of the
models and the impact of the features on each cluster, we calculated
SHapley Additive exPlanation (SHAP) values across features which
quantify the magnitude of contribution of each feature at the local
(individual) level and can be aggregated to provide a globalmeasureof
feature importance23. To identify the features with high importance,
we selected those that had amean SHAP value at concordant direction
across cohorts and an absolute mean SHAP value within the top
quartile in each cohort across all molecular layers (Supplementary
Data 3A-B).

miRNAs, gene transcription clusters, and proteins exhibited the
highest contribution to the definition of the high-risk Cluster C
(Fig. 3a). Specifically, membership to Cluster C was associated with
higher levels of 14 miRNAs in blood (including hsa-miR-23a-3p, hsa-
miR-130a-3p, hsa-miR-21-5p, hsa-miR-192-5p, hsa-miR-24-3p, hsa−let
−7 g − 5p) and altered blood transcription levels of 52 genes (including
ACSL1, LRRK2, REST, CCND2, POLR1C, PROK2, S100A8, SPI1, IL1B, FTO)
(Supplementary Data 4A and Supplementary Fig. 4). Cluster Cwas also
linked to a distinct proteomic profile characterized by higher circu-
lating levels of HGF, IL-6, TNF-alpha, BAFF, IL1-beta, CRP, IL-8, IL-1RA,
and MCP1 (Supplementary Fig. 5). Furthermore, higher blood levels of
the branched-chain amino acid (BCAA) valine and two carniti-
nes(C6(C4:1-DC) and C16:1), along with lower levels of the non-
essential amino acid glycine and two lysophosphatidylcholines
(lysoPCaC18:1 and lysoPCaC18:2), were observed to associate with
Cluster C. For Cluster B, miRNAs and gene transcription also exhibited
the highest importance (Supplementary Fig. 6). Altered circulating
levels of 25 miRNAs and blood transcription levels of 9 genes were
associated withmembership to Cluster B (Supplementary Data 4B and
Supplementary Fig. 7). There was a little crossover with the top fea-
tures characterizing Cluster C and the direction of association gen-
erally differed (Supplementary Fig. 8).

To obtain a more holistic understanding of the molecular com-
plexity and mechanisms characterizing the multi-omics clusters, we
conducted integrated pathway analysis (functional enrichment) at the
gene level24. We annotated the top molecular features to genes and
thenused twopublic databases (KEGG, GeneOntology) to enhance the
comprehensiveness of our pathway analysis results and mitigate lim-
itations across the use of single databases, such as differences in
pathway coverage and data curation methodologies25. We observed

that themajority of pathways associatedwith Cluster Cwere related to
immune system and inflammation (e.g., immune cell differentiation
and activation, Toll-like receptor signaling26,27, MAPK signaling, TNF
signaling, JAK/STAT signaling28) (FDR-P < 0.05) (Fig. 3b). We also
identified pathways related to insulin action in metabolism (e.g., PI3K-
Akt signaling29, NF-Kappa B signaling26, AGE-RAGE signaling30, p38
MAPK31,32) (FDR-P <0.05). Other noteworthy pathways associated with
Cluster C included those related to endothelial function (e.g., path-
ways of vascular endothelial growth factor production and nitric oxide
biosynthetic process33,34, HIF-1 signaling35,36) (FDR-P < 0.05). To com-
plement these findings, we integrated the annotated genes with data
from the Genotype-Tissue Expression (GTEx) public database37 to
identify the human tissues in which these genes are most highly
expressed (Supplementary Fig. 9). Several of these genes showed high
expression in adipose tissue, liver, skeletal muscle, and pancreas,
underscoring the role of these tissues in the metabolic and inflam-
matory characteristics of Cluster C. Overall, these results suggest a
multifaceted involvement of biologicalmechanisms characterizing the
poor metabolic phenotype of Cluster C. For Cluster B, no integrated
pathways emerged at FDR-P < 0.05.

Prenatal factors associated with the multi-omics clusters
Finally, we sought to examine how the prenatal environment is
associated with cluster membership. We assessed a total of 37 key
maternal environmental exposures and characteristics, including
exposures from the outdoor environment, blood concentrations of
chemical exposures, food group intakes and other social and lifestyle
factors in pregnancy (Supplementary Table 8). Building on previous
research showing that exposome components and their impact
exhibit considerable variability across regions owning to different
population characteristics and exposure patterns38,39, we examined
associations with the multi-omics clusters separately in the N/W and
S/M cohorts. To identify the most important environmental factors,
we applied LASSO penalized regression with a stability-enhanced
approach using resampling (SHARP)40, which can accommodate
correlation among exposures (Supplementary Fig. 10) and enhance
result reliability. In the N/W cohort, maternal pre-pregnancy BMI and
exposure to PFOA emerged as themain factors in LASSO, while in the
S/M cohort, maternal mercury exposure was highlighted (Fig. 4a and
Supplementary Table 9). Specifically, higher pre-pregnancy BMI and
higher maternal levels of PFOA were found to associate with
increased probability of belonging to Cluster C in the N/W cohort
(Fig. 4b and Supplementary Table 10). Moreover, elevated maternal
levels of mercury were similarly linked to a greater likelihood of
belonging to Cluster C in the S/M cohort (Fig. 4c and Supplementary
Table 10).

Discussion
It is increasingly recognized that obesity is a complex phenotype
encompassing a multitude of interconnected and interacting patho-
mechanisms.Once established, obesity poses a significant challenge to
treat. Therefore, understanding the molecular biology of obesity,
along with associated biomarker signatures and modifiable environ-
mental determinants that could inform preventive or therapeutic
measures, is becoming increasingly important. To the best of our
knowledge, this is the largest study to apply a systems biology
approach through deep, multi-omics profiling in a population-based
cohort of children to identify and validate molecular signatures of
obesity early in disease genesis and characterize subgroups with dif-
feringmetabolic characteristics driven bydistinctmolecular pathways.
We further incorporated information from the environmental “risks-
cape” of the critical pregnancy period, capturing widespread chemical
exposures, outdoor and built environmental exposures, and demo-
graphic and lifestyle factors, to explore potential environmental con-
tributors to disease risk early in the life course.
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Fig. 3 | Molecular drivers of the high-risk Cluster C. a Global importance of the
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genes and genomes. Source data for all panels are provided as a Source Data file.
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The primary aim of this study was to uncover the molecular
mechanisms underpinning childhood obesity and associated meta-
bolic dysfunction, rather than to develop a predictive risk score for
metabolic outcomes. The bottom-upmulti-omics clustering approach
was selected to allow for the emergence of distinct molecular sub-
types, enabling a data-driven exploration of metabolic health. While
the metabolic syndrome score remains a valuable clinical tool for risk

classification, it does not reflect the intricate molecular heterogeneity
underlying obesity-associated metabolic dysfunction. By focusing on
clusters derived from multi-omics profiles, our approach provides an
understanding of biological pathways involved in metabolic health,
beyond established clinical scores.

We followed a targeted approach in selecting omics biomarkers
for investigation, as our objective was to provide an integrated
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Fig. 4 | Prenatal determinants of the multi-omics clusters. a Selection propor-
tion values of prenatal factors derived from Least Absolute Shrinkage Selection
Operator (LASSO) penalized multinomial models using cluster membership as
outcome and a stability enhanced approach employing resampling. Dashed lines
represent the threshold in selection proportion for which each factor is stably
selected or stably excluded. DDE 4,4′dichlorodiphenyl dichloroethylene, HCB
hexachlorobenzene, NDVI average Normalized Difference Vegetation Index, NO2
nitrogen dioxide, PCB polychlorinated biphenyl, PFHxS perfluorohexane sulfonate,
PFNA perfluorononanoate, PFOA perfluorooctanoate, PFOS perfluorooctane sulfo-
nate, PM10 particulate matter with an aerodynamic diameter of less than 10 μm,
PM2.5 particulate matter with an aerodynamic diameter of less than 2.5 μm.

Outdoor environment buffers reflect distance from home address. b Predicted
probabilities of cluster membership for the selected prenatal factors in the
Northern/Western cohort derived from multinomial regression models controlled
for study site, sex and age at examination. Solid lines represent the predicted
probabilities and dotted lines represent their 95% CIs. c Same as (b) but for the
Southern/Mediterranean cohort. The number of participants in each multi-omics
cluster across cohortswas as follows: N = 227 forCluster A,N = 150 forCluster B and
N = 180 for Cluster C in the Northern/Western cohort, and N = 238 for Cluster A,
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Source data for all panels are provided as a Source Data file.
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framework to offer much-needed replication of existing literature,
instead of pursuing novel discoveries. We acknowledge that we might
have been underpowered for more exploratory endeavors. Previous
research trying to characterize the molecular architecture of child-
hood obesity has been limited by small sample sizes, lack of a valida-
tion population, examination of bodymass index only, and assessment
of only one to two omics layers, thereby providing a limited coverage
of the molecular landscape characterizing the obesity phenotype8–10.
Our study overcomes limitations of prior literature in several ways. It is
the largest muti-omics study of childhood obesity to date with a rich
phenotypic metabolic characterization, the first to employ a unique
design using a bottom-up approach from molecular omics to clinical
clusters of children. Importantly, we recapitulated these clusters in an
independent population, with comparableomics and phenotypic data,
despite underlying sociodemographic differences between the
cohorts. The similarity networks were generated using state-of-the-art
omics profiling platforms, which not only provide broad molecular
coverage, but they are also widely used in epidemiologic research and
provide highly reproducible data.

Inmany current obesity treatment guidelines, diagnosis of obesity
and treatment decisions are based on BMI41,42, despite the fact that at a
given BMI, the individual variation in comorbidities and health risk
factors is high43–45. Observational data show that a subgroup of indi-
vidualswith obesitymay be at a significantly higher risk than estimated
solely from the positive association between BMI and cardiometabolic
risk5,43,45,46. Our multi-omics approach in obesity identified clusters of
children with differences in their phenotypic characteristics. Cluster C
was identified as the cluster with the highest degree of metabolic
dysfunction, characterized by increased adiposity and the strongest
associations with adverse metabolic outcomes. Children in Cluster B
appeared to have a relatively healthier metabolic profile; however, the
potential for transition to a metabolically unhealthy state remains an
important consideration, as these childrenmay still be at risk for future
metabolic complications. Recent studies highlight that metabolically
healthy individuals with obesity carry a health risk and may transition
to an unfavorable metabolic state5,45,47,48. Further research incorporat-
ing longitudinal follow-up data is needed to examine the trajectory of
multi-omics profiles and provide insights into the risk of metabolic
complications in the future.

Although our study utilized several omics layers, we recognize
that resource constraints may limit the scope of omics layers feasible
for other studies. Of the layers we analyzed, miRNA expression, tran-
scriptomics, and proteomics proved particularly valuable for cluster-
ing profiles related to metabolic dysfunction and identifying key
molecular pathways. For resource-limited settings, focusing on tran-
scriptomics and proteomics could yield meaningful insights, as these
layers capture broad gene expression changes and protein-level
functional alterations, respectively. Together, they can provide a
comprehensive view of the biological pathways central to obesity and
metabolic dysfunction, thereby enhancing the utility of these analyses.

Inflammation plays a pivotal role in the pathophysiology of obe-
sity and associated metabolic dysfunction, representing a critical area
of study in understanding the complexities of these conditions4,49.
Through examination and integration of different omics layers, our
study unveiled a cascade of enriched inflammation-related pathways
characterizing the high-risk cluster C, further elucidating the mole-
cular underpinnings of the obesity phenotype. Recruitment of
immune cells and inflammation, especially in adipose tissue, can start
early in disease genesis49, which is consistent with our observation on
many dysregulated immune cell differentiation and activation path-
ways in Cluster C. Enlarged adipocytes and polarized immune cells
secrete a plethora of cytokines, including TNF-a, IL-6, IL-8 and IL-1b,
and chemokines (MCP-1). Thesemolecules serve as both paracrine and
endocrine factors, instigating signaling cascades such as MAPK, JAK/
STAT, TNF, and NFK-b pathways. The culmination of these events can

lead to the development of insulin resistance and the perpetuation of
inflammatory responses, thus forming a feed-forward loop of chronic
inflammation49,50. Although elevated inflammatory cytokines are well-
established cardiovascular risk factors, the majority of research has
focused on the adult population, leaving a significant gap in our
understanding of the onset of these biomarkers in children51. Addres-
sing this knowledgedeficit, our studydelved into theproteomicprofile
of children and confirmed an elevation of the inflammatory cytokines
in children belonging to the high-risk cluster. We also observed ele-
vated CRP levels associated with the high-risk cluster, a well-
established marker of systemic inflammation that has been shown in
numerous prospective studies to predict cardiovascular events52,53.
Animal in vivo and in vitro studies have reported that CRP is directly
linked to endothelial function through alteration of vascular endo-
thelial growth expression and nitric oxide synthase activity54,55.

We identified a signature of 14miRNAs playing a significant role in
the definition of the high-risk Cluster C. Among themiRNAs identified,
four in particular (miR-23a, miR-24, miR-130a and miR-21) have gath-
ered increased attention for their role in regulating key metabolic
processes. Specifically, miR-23a and miR-24 are part of the miR-
23 ~ 27 ~ 24 family which has been suggested to control effector
immune cell responses and has been implicated in various physiolo-
gical and pathological processes, including the atherosclerotic
process56–62. Moreover, miR-130a has been reported to regulate the
proliferation of vascular smooth muscle cells and angiogenesis63–65,
potentially contributing to vascular remodeling and altered blood
pressure66–68. miR-21 exerts pleiotropic effects in human metabolism,
including roles in insulin action69,70 and hepatic inflammation71. Addi-
tionally, several DNA methylation markers were identified as con-
tributing to the definition of Cluster C, albeit to a lesser extent than
miRNAs. The CpGs cg08462942 and cg09615786 emerged as the
strongest contributors. Notably, cg08462942 is annotated to ATG4B,
an autophagy-related gene that has been implicated in
adipogenesis72–74. The CpG cg09615786 is annotated to DCBLD2which
has been linked to endothelial function75. Further, one particularly
interesting signature detected with the metabolomics data was the
perturbed levels of the BCAA valine and non-essential amino acid
glycine in the high-risk Cluster C. Elevated circulating levels of valine
have consistently been reported in adults with diabetes76,77, and have
been implicated in insulin resistance, possibly through
3-hydroxyisobutyrate driven lipotoxicity (e.g., diglyceride
accumulation)78. Conversely, lower circulating glycine levels have been
observed in metabolic disorders associated with obesity and
diabetes79. It has been suggested that glycine metabolism should be
considered in close interactionwith BCAAmetabolism, asmuscle-liver
trafficking of BCAA-derived nitrogen might play a role in glycine
depletion80.

Environmental and lifestyle factors are estimated to account for
70–90% of the burden of human disease81. In light of this, precision
environmental health has emerged as a new framework aiming to
integrate environmental and biological factors to better understand
associations and identify high-risk individuals15. In our study, we built
upon this framework by introducing the prenatal environment as an
additional dimension and employing a robust data science method to
explore associations with health risk. Our models showed that envir-
onmental exposures were differentially associated with multi-omics
cluster membership in the two parts of Europe. This can be probably
attributed to differences in factors related to diet, lifestyle, socio-
economic status, or other demographic and cultural factors. Among a
set of several prenatal factors, we identified pre-pregnancy BMI and
maternal PFOA levels to be the strongest predictors of membership to
the high-risk Cluster C in the Northern/Western cohort. Mothers from
this part had in general a higher BMI but similar PFOA levels to those in
the Southern/Mediterranean cohort. Maternal pre-pregnancy BMI has
been shown to have persistent effects on long-term health in
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offspring82, with an accumulating body of evidence highlighting an
association with future obesity risk83. PFOA is a manmade chemically
stable compound that can cross the placenta84, and once in the human
body, it exhibits a long elimination half-life85. Over the last years, PFOA
has received increased attention for its potential adverse effects, with
several studies, but not all, reporting an association with childhood
obesity86,87. We also identified maternal exposure to mercury, a heavy
metal designated as a high-priority pollutant by the US Environmental
Protection Agency (EPA)88, to be a risk factor for membership to
Cluster C in the Southern/Mediterranean cohort. Bloodmercury levels
were much higher in this part, probably as a result of higher fish
consumption89. Mercury has been shown to readily cross the human
placenta barrier90. Similar to our findings, mercury exposure has pre-
viously been associated with metabolic syndrome, visceral adiposity,
and insulin resistance91,92. Overall, our results underscore the impor-
tance of the modifiable prenatal environment linked to subsequent
disease risk and highlight the need to tailor prevention guidelines to
accommodate diverse country contexts. We acknowledge that
potential gene-environment interactions may influence disease risk.
For instance, a small study in the Faroes cohort recently showed that
PFAS health effects and inparticular associations observedwith insulin
sensitivity could vary between individuals as a result of genetic pre-
disposition involving gene variants related to lipid and glucose
metabolism93. Large-scale studies incorporating polygenic risk scores
and environment-wide interaction models will be needed to compre-
hensively assess how genes interact with the environment to shape
health outcomes.

Our study has some limitations. The omics measurements were
conducted concurrently with the assessment of phenotypes, thereby
limiting our ability to discern whether the identified biological sig-
natures and underlying pathways are causal factors or consequences
of obesity and metabolic dysfunction. However, we did observe an
association between the high-risk multi-omics cluster in childhood
and subsequent obesity traits in adolescence in a subsample of our
population. Future investigations incorporating repeated omics and
phenotyping measurements could elucidate the temporal dynamics
and causal relationships of the biological mechanisms underlying
obesity andmetabolic dysregulation. Themetabolomicplatformused
(LC-MS/MS, Biocrates kit) does not provide specific fatty acid side-
chain composition for lipids and is limited in the number of meta-
bolites identified, thereby providing partial coverage of the metabo-
lome. However, this analytical method provides absolute
concentrations of metabolites, with unambiguous annotation, has
high interlaboratory reproducibility, and has been widely used in
large-scale epidemiology studies94,95. While our study employed both
targeted and untargeted methods, additional untargeted technolo-
gies—such as high-resolution mass spectrometry, shotgun pro-
teomics, single-cell RNA sequencing, and metagenomics—could
enhance the understanding of molecular pathways involved and help
identify novel biomarkers and risk factors96. We utilized blood sam-
ples that were readily accessible for the assessment of omics profiles,
however, we acknowledge that blood may not be the ideal target
matrix for the relevant health outcomes. Future studies encompass-
ing samples of adipose tissue, skeletal muscle and liver, which con-
stitutemainmetabolic tissues of the human body, will provide a clear
understanding of the intricate inter-tissue cross-talk underlying the
pathophysiology of obesity and associated metabolic dysfunction.
Further, given its observational design, our study identifies associa-
tions between prenatal factors and obesity-related outcomes but
does not establish causation. Although our study included extensive
prenatal data, we were unable to assess the effects of maternal dia-
betes and preeclampsia- two conditions closely associated with off-
spring’s metabolic health97,98- due to substantial missing data.
However, we included pre-pregnancy BMI and gestational weight
gain, which have been strongly linked to maternal metabolic

health99–101. We assessed a wide variety of environmental factors,
which might be prone to different types of exposure measurement
error. Questionnaire-based assessment of diet, for instance, is known
to be subject to potential misclassification, while outdoor air pollu-
tants based on residential addresses have been shown to not highly
correlate with short-term personal air pollution levels102. Never-
theless, the exposure assessment methods in our study have been
widely used in large cohort studies and were applied using validated
instruments. Our study provides insights into childhood obesity and
metabolic dysfunction in a European cohort that mostly consists of
white people. Expanding future research to include more ethnically
and geographically diverse populations would be important for
determining the generalizability of multi-omics clusters and associa-
tions across different demographic groups.

In summary, our study delves into the intricate molecular biology
of childhood obesity and metabolic dysfunction. Through the inte-
gration of multi-omics profiling and prenatal environmental and life-
styledata, we unveil distinctmetabolic clusters of children and identify
potential modifiable risk factors. Our results may help to inform early-
life prevention and intervention strategies aimed at combating obesity
and its long-term health consequences.

Methods
Study participants
This study used data collected in the HELIX project14, a collaboration
across six established and ongoing longitudinal population based
cohorts, involving children from two large parts of Europe: the
Northern/Western (N/W) part (study sites: Born in Bradford (BiB)
cohort study, Bradford, UK; Étude des Déterminants pré et postnatals
du développement et de la santé de l’Enfant (EDEN) cohort study,
Poitiers, France; Kaunas cohort (KANC) study, Kaunas city, Lithuania;
and Norwegian Mother, Father and Child (MoBa) cohort study, Oslo,
Norway103) and the Southern/Mediterranean (S/M) part (study sites:
INfancia y Medio Ambiente (INMA) cohort study, Sabadell, Spain; and
RHEA Mother Child cohort study, Heraklion, Greece). Data collection
was performed according to identical pre-defined standardized pro-
tocols across cohorts and conducted by trained staff. The full HELIX
protocol and database are described elsewhere14.

All participating families provided written informed consent.
Local ethical committees approved the studies that were conducted
according to the guidelines laid down in the Declaration of Helsinki.
The ethical committees for each cohort were the following: BIB:
Bradford Teaching Hospitals NHS Foundation Trust, EDEN: Agence
nationale de sécurité du médicament et des produits de santé, INMA:
Comité Éticode InverticaciónClínica Parc de SalutMAR,KANC:Kaunas
Regional Committee for Biomedical Research Ethics, MoBa: Regional
komité for medisinsk og helsefaglig forskningsetikk, Rhea: Ethical
committee of the general university hospital of Heraklion, Crete.

Multi-omics assessment
Blood samples were collected during the childhood follow-up visit at
the end of the clinical examination, following a median (IQR) fasting
time of 3.4 (2.8, 4.0) hours. Blood samples were collected using a
‘butterfly’ vacuumclip andprocessed into a variety of samplematrices:
EDTAused for plasmaproteomics,miRNAs, andDNA isolation; tempus
tubes for RNA isolation; and plastic silica Vacutainers for serum
metabolomics. All samples were processed and frozen at −80 °Cunder
standardized procedures.

We used both targeted and untargeted methods to assess mole-
cular features across five omics layers. For untargeted profiling, we
assessed blood DNA methylation with the Illumina 450K array, blood
gene expression using theAffymetrixHTAv2.0array andbloodmiRNA
expression using the Agilent SurePrint HumanmiRNA rel 21 array. For
targeted profiling, we assessed plasma proteins using three Luminex
multiplex assays and serum metabolites with the LC-MS/MS Biocrates
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AbsoluteIDQ p180 kit. Further details about the omics biomarkers
assessed in HELIX have been described previously24,104 and are avail-
able in Supplementary Data 1A-C.

Anthropometry and metabolic health outcomes
During the clinical examination of childhood follow-up, we assessed
height and weight and calculated BMI age-and-sex–standardized
z-scores (z-BMI) using the international World Health Organization
(WHO) reference curves105. We followed the WHO criteria for defining
childhood overweight or obesity (z-BMI > 1 SD)105. Bioelectric impe-
dance analysis (BIA) was performed and we calculated the proportion
of total fatmass using appropriate equations106.We also assessedwaist
circumference (WC) and blood pressure (BP) with common, standar-
dized protocols14. HDL cholesterol, triglyceride, and ALT levels were
quantified in serum using colorimetric methods according to the
manufacturer’s instructions. Insulin levels were assessed using the
human adipokine 15-plex magnetic panel. Following the criteria pro-
posed in the European, multicenter IDEFICS study107, we constructed
age- and sex-specific percentiles for waist circumference, systolic and
diastolic blood pressure, and insulin91, and then calculated ametabolic
syndrome risk score as follows: metabolic syndrome Score= z-WC +
(– z-HDL cholesterol + z-triglyceride)/2 + z-insulin + (z-systolic BP +
z-diastolic BP)/2. This score is used to reflect ametabolic health profile,
with higher scores indicating a poorer profile, and has been previously
validated in the European, multi-center IDEFICS study107. We also used
a categorical definition of metabolically unhealthy status in childhood
using consensus pediatric cut-offs21,22. Specifically, a metabolically
unhealthy status was defined as the presence of at least one of the
following metabolic risk factors: systolic or diastolic blood pressure
≥90th percentile, insulin ≥90th percentile, HDL cholesterol ≤40mg/dl,
triglycerides ≥110mg/dl, and ALT ≥ 22.1U/L for females or ≥25.8 U/L
for males21,22.

We followed up a subset of our study population in adolescence,
during which we assessed body mass index, waist circumference, and
total fat mass using similar protocols and procedures as those in
childhood.

Prenatal exposure variables
A total of 37 keymaternal environmental exposures and characteristics
were investigated in the study, including: exposures from the outdoor
environment (air pollution, traffic, built environment, and surrounding
green space); blood biomonitoring exposures (metals, organochlorine
compounds [OCs], perfluoroalkyl substances [PFAS]); food group
intakes (fish, legumes, dairy, meat, fruits and vegetables); and other
social and lifestyle factors (tobacco smoking, alcohol consumption,
maternal education, maternal age, pre-pregnancy BMI, gestational
weight gain). A complete list of the prenatal factors investigated can be
seen in Supplementary Table 7. As previously described38, missing
maternal environmental exposure data (chemicals, metals, exposures
from the outdoor environment, and diet) were imputed using a
chained equationsmethod implemented in themice Rpackage108. Prior
to imputation, continuous exposure variables were transformed to
achieve linearity or categorized, when needed. We used data on
environmental factors with missing information <40%. Details on the
assessment methods and distribution levels in HELIX can be found
elsewhere14,38,109.

Data synthesis and analysis
Creation of multi-omics clusters. As a first step, we conducted a
screening of published literature to identify and select omics mole-
cules in blood, plasma and/or serum that are related to adiposity
measures in children (<18 years of age). For DNAmethylation, miRNAs
and metabolomics, we searched for systematic reviews, published up
to 15March 2024, and evaluated included studies. For transcriptomics,
we conducted a search of individual studies, as no systematic synthesis

of published literature was available up to the index date. We also
screenedmanually bibliographies of included articles and used expert
input to identify any additional eligible studies. Details of our search
strategy across these four omics layers are available in Supplementary
Table 1. We then linked the omics molecules identified from the lit-
erature to the HELIX dataset. For the proteome data, no filtering was
performed; our panels assessed a total of 35 proteins, all of which were
included in the analysis.

Data from all omic layers were adjusted for key covariates and
scaled to a mean of zero and a standard deviation of one. Covariates
included study site, child’s sex, child’s age atmeasurement, and child’s
ethnicity (European ancestry; Pakistani or Asian; and other). In addi-
tion, plasma protein and serum metabolite levels were adjusted for
time to last meal and technical batch. DNA methylation, miRNA
expression, and gene expression data were corrected by surrogate
variables (SVs), which captured both batch effects and blood cell type
composition.

To derive biologically distinct molecular clusters, we used inte-
grative network and clustering methods to the multi-omics data. We
appliedfirst ourmulti-omics approach in thepopulationofN/Wcohort
and used the population from the S/M cohort as validation cohort. We
computed distance matrices for each of the omic datasets with the
amap R package110 using 1) Pearson distance for DNA methylation,
miRNA expression, and gene expression data and 2) Euclidian distance
for metabolome and proteome data. Then, we computed an affinity
matrix of each dataset and derived a fused affinity matrix by similarity
network fusion (SNF) using the SNFtool R package20. For defining the
parameters k (number of neighbors) and sigma (hyperparameter), we
performed a grid search across the recommended values byWang and
colleagues20 and chose those (k = 90 and sigma=0.8) that maximized
the variance of the affinity matrix111. To identify mutually exclusive
clusters, we then applied spectral clustering to the fused affinitymatrix
and chose the optimal number of clusters based on the eigen-gap best
approach and the rotation cost approach111. We subsequently used
label propagation, a graph-based semi-supervisedmethod20, to predict
the multi-omics clusters (as derived in children from the N/W cohort)
in the cohort of children from the S/M part. This method leverages on
nodes connected by edges (where similar subjects tend to have the
same label) and propagates labels from labeled nodes to unlabeled
ones through their interconnected edges in the integrated network. In
this way, a child in multi-omics Cluster A in the N/W cohort had a
similar multi-omics profile to an individual in multi-omics Cluster A in
S/M, and so on.

Association of multi-omics clusters with clinical phenotypes. We
assessed the relation ofmulti-omics clusterswith several adiposity and
metabolic traits. We applied generalized linear and logistic regression
models (for continuous and categorical outcomes, respectively) while
treating cluster membership as predictor and controlling for age at
examination, sex and study site. Cluster A was chosen as the reference
category for comparative analyses because it exhibited the lowest
levels of adiposity and metabolic complications, thereby providing a
clearer baseline for assessing metabolic health differences across
clusters. To account for the differential follow-up in adolescence and
potential attrition bias, we applied inverse probability weighting with
the weightit R package by calculating weights based on the inverse of
the probability of participating in the follow-up according to maternal
education, study site, child sex, age, ethnicity, and weight status in
childhood. We then included these weights in the adolescent regres-
sion models. All derived P-values were two-sided and a threshold of
P < 0.05 was considered statistically significant.

Identification of molecular drivers of multi-omics clusters and
pathway analysis. In our biological inquiry, we sought to identify
which molecules had the highest contribution to the definition of the
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clusters. We thus applied XGboost with decision-tree based learner112

using the caret113 and xgboost114 R packages. XGboost is a nonlinear and
nonparametric ensemble model that is able to handle high dimen-
sionality evenwithin a small dataset112.We applied aone-cluster-versus-
the-rest approach and used the multi-omics molecules as predictors.
Models’ hyperparameters were tuned in the N/W cohort (training set)
using 5-fold cross-validation and the Gini coefficient as evaluation
metric.We then assessed the final performance of eachmodel in the S/
M cohort (testing set) using the evaluation metrics accuracy, sensi-
tivity, specificity, gmean, balanced accuracy and area under the
receiver operating characteristic curve (AUC), calculated with the
confusionMatrix function in caret, the metrica115 and pROC116 R packa-
ges. Having established a high classifying capacity of our machine
learning models, we then calculated SHAP values across all molecular
features. By assessingboth themagnitude and signof eachSHAPvalue,
one can determine the impact of a feature on the final model
prediction23. The size of the absolute mean SHAP value (across all
subjects) reflects the magnitude of feature’s contribution to the
model, with larger values indicating greater importance. The sign of
the SHAP value indicates the direction of influence exerted by the
feature on the final classification. For instance, in the context of binary
classifiers such as ours (e.g., membership to Cluster C vs. membership
to Cluster A or Cluster B), a positive SHAP value signifies that the
feature steered the prediction towards Cluster C. We defined the top
molecular drivers of the clusters as those features that had a mean
absolute SHAP value within the top 25% of each cohort and had amean
SHAP value at concordant direction across cohorts.

We performed single-omics regression analyses to estimate the
percentage change in each identified top feature associated with the
multi-omics clusters. Further, for molecular layers whose features
could be easily annotated to genes (DNA methylation, miRNA
expression, gene transcription, and proteins), we performed enrich-
ment (or over-presentation) analysis at the gene level using two public
databases (KEGG, Gene Ontology Biological Processes). The Cluster-
Profiler R package117 were used to examine whether the list of genes
annotated to the top features was enriched for a specific pathway.
Significance of enriched pathways was tested using hypergeometric
tests at a false discovery rate (FDR)-P value threshold of less than 0.05.
For pathways of the Gene Ontology database belonging in the same
parent-child hierarchy, we selected the pathways exhibiting the high-
est number of genes related to the features and/or the smallest FDR-P
value. We report enriched pathways with ≥3 genes. We further eval-
uated tissue-specific expression patterns of the mapped genes by
using the publicly available dataset of the GTEx project118. Expression
levels were measured in Transcripts Per Million (TPM) to enable
accurate comparisons across tissues.

Identification of prenatal determinants of the multi-omics clusters.
We estimated correlations between the variables of interest using
Pearson’s correlation for continuous vs continuous variables, R2 of a
linear model for continuous vs categorical variables, and Cramér’s V
test for categorical vs categorical variables in the first imputed
exposure dataset. To identify the most important prenatal determi-
nants of the multi-omics cluster, we applied LASSO penalized mul-
tinomial regression with cluster membership as the outcome, the
prenatal variables as predictors and adjustment for study site, age
and sex. LASSO considers all exposures simultaneously and performs
variable selection by shrinking the lowest regression coefficients of
the predictors, which correspond to the least informative ones, to
zero. To enhance reliability of LASSO models, we applied a stability
selection approach using resampling (K = 100 complementary sub-
samples of 80% of observations) and an automated calibration pro-
cedure implemented in the sharp R package40. The calibration
procedure aims at identifying the pair of hyper-parameters (λ penalty
parameter and π threshold in selection proportion) that maximizes

model stability40. We applied this approach in each imputed expo-
sure dataset and kept the variables with a mean selection proportion
above the mean π across datasets. We subsequently fitted multi-
nomial regression models adjusted for the same covariates as the
LASSO models to obtain predicted probabilities of cluster member-
ship related to the selected variables by using the nnet119 and
ggeffects120 R packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings from this study are available within
the manuscript and its supplementary information. Due to the HELIX
data policy and data use agreement, human subjects’ data used in
this project cannot be freely shared. Researchers external to the
HELIX Consortium who have an interest in using data from this
project for reproducibility or in using data held in the HELIX data
warehouse for research purposes can apply for access to data for a
specific manuscript at the time. Interested researchers should fill in
the application found at https://www.projecthelix.eu/files/helix_
external_data_request_procedures_final.pdf. and send it to helixda-
ta@isglobal.org. The applications are received by the HELIX Coor-
dinator, and are processed and approved by the HELIX Project
Executive Committee. The decision to accept or reject a proposal is
taken by the HELIX Project Executive Committee, and is based largely
on potential overlap with other HELIX-related work, the adequacy of
data protection plans, and the adequacy of authorship and
acknowledgement plans. Further details on the content of the data
warehouse (data catalogue) including those data used for the present
study and procedures for external access are described on the pro-
ject website https://www.projecthelix.eu/es/data-inventory. Source
data are provided as a Source Data file. Source data are providedwith
this paper.

Code availability
The software program and packages used to conduct the present
analyses are freely available and can be found via the citations in
the manuscript. The code used for the present analysis can be
found at: Stratakis N. Multi-omics architecture of obesity and
metabolic dysfunction: identifying biological pathways and pre-
natal determinants. nstrata/multiomics_childhood_obesity.
https://doi.org/10.5281/zenodo.14354199.

References
1. Bluher, M. Obesity: global epidemiology and pathogenesis. Nat.

Rev. Endocrinol. 15, 288–298 (2019).
2. Report on the fifth round of data collection, 2018–2020: WHO

European Childhood Obesity Surveillance Initiative (COSI). (WHO
Regional Office for Europe, Copenhagen, 2022).

3. Magge, S. N. et al. The metabolic syndrome in children and ado-
lescents: shifting the focus to cardiometabolic risk factor clus-
tering. Pediatrics 140, e20171603 (2017).

4. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a
scientific statement from the american heart association. Circu-
lation 143, e984–e1010 (2021).

5. Stefan, N., Haring, H. U. & Schulze, M. B. Metabolically healthy
obesity: the low-hanging fruit in obesity treatment? Lancet Diab.
Endocrinol. 6, 249–258 (2018).

6. Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 41,
bnaa004 (2020).

7. Iacobini, C., Pugliese, G., Blasetti Fantauzzi, C., Federici, M. &
Menini, S. Metabolically healthy versus metabolically unhealthy
obesity. Metabolism 92, 51–60 (2019).

Article https://doi.org/10.1038/s41467-025-56013-7

Nature Communications |          (2025) 16:654 11

https://www.projecthelix.eu/files/helix_external_data_request_procedures_final.pdf
https://www.projecthelix.eu/files/helix_external_data_request_procedures_final.pdf
https://www.projecthelix.eu/es/data-inventory
https://doi.org/10.5281/zenodo.14354199
www.nature.com/naturecommunications


8. Paczkowska-Abdulsalam, M. & Kretowski, A. Obesity, metabolic
health and omics: Current status and future directions. World J.
Diab. 12, 420–436 (2021).

9. Aleksandrova, K., Egea Rodrigues, C., Floegel, A. & Ahrens, W.
Omicsbiomarkers in obesity: novel etiological insights and targets
for precision prevention. Curr. Obes. Rep. 9, 219–230 (2020).

10. Drouard, G. et al. Longitudinal multi-omics study reveals common
etiology underlying association between plasma proteome and
BMI trajectories in adolescent and young adult twins. BMC Med.
21, 508 (2023).

11. Cifuentes, L., Hurtado, A. M., Eckel-Passow, J. & Acosta, A. Preci-
sion medicine for obesity. Dig. Dis. Inter. 5, 239–248 (2021).

12. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and
disease. Nat. Rev. Genet 19, 299–310 (2018).

13. Gawlik, A. et al. Personalized approach to childhood obesity:
Lessons from gut microbiota and omics studies. Narrative review
and insights from the 29th European childhood obesity congress.
Pediatr. Obes. 16, e12835 (2021).

14. Maitre, L. et al. Human Early Life Exposome (HELIX) study: a Eur-
opean population-based exposome cohort. BMJ Open 8,
e021311 (2018).

15. Baccarelli, A., Dolinoy, D. C. & Walker, C. L. A precision environ-
mental health approach to prevention of human disease. Nat.
Commun. 14, 2449 (2023).

16. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L.
Effect of in utero and early-life conditions on adult health and
disease. N. Engl. J. Med. 359, 61–73 (2008).

17. Perng, W. & Aslibekyan, S. Find the needle in the haystack, then
find it again: replication and validation in the ‘omics era. Metabo-
lites 10, 286 (2020).

18. Ruan, P., Wang, Y., Shen, R. & Wang, S. Using association signal
annotations to boost similarity network fusion. Bioinformatics 35,
3718–3726 (2019).

19. Torres-Martos, A. et al. Omics data preprocessing for machine
learning: a case study in childhood obesity. Genes (Basel) 14,
248 (2023).

20. Wang, B. et al. Similarity network fusion for aggregatingdata types
on a genomic scale. Nat. Methods 11, 333–337 (2014).

21. Damanhoury, S. et al. Defining metabolically healthy obesity in
children: a scoping review. Obes. Rev. 19, 1476–1491 (2018).

22. Vos, M. B. et al. NASPGHAN Clinical Practice Guideline for the
Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in
Children: Recommendations from the Expert Committee on
NAFLD (ECON) and the North American Society of Pediatric Gas-
troenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr.
Gastroenterol. Nutr. 64, 319–334 (2017).

23. Lundberg, S. M. et al. From Local Explanations to Global Under-
standing with Explainable AI for Trees. Nat. Mach. Intell. 2,
56–67 (2020).

24. Maitre, L. et al. Multi-omics signatures of the human early life
exposome. Nat. Commun. 13, 7024 (2022).

25. Garcia-Campos, M. A., Espinal-Enriquez, J. & Hernandez-Lemus, E.
Pathway analysis: state of the art. Front Physiol. 6, 383 (2015).

26. Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type
lectin receptors: shaping immune responses. Nat. Rev. Immunol.
9, 465–479 (2009).

27. Jialal, I., Kaur, H. & Devaraj, S. Toll-like receptor status in obesity
and metabolic syndrome: a translational perspective. J. Clin.
Endocrinol. Metab. 99, 39–48 (2014).

28. Sarapultsev, A. et al. JAK-STAT signaling in inflammation and
stress-related diseases: implications for therapeutic interventions.
Mol. Biomed. 4, 40 (2023).

29. Molinaro, A. et al. Insulin-Driven PI3K-AKT signaling in the hepa-
tocyte ismediated by redundant PI3Kalpha and PI3Kbeta activities
and is promoted by RAS.Cell Metab.29, 1400–1409.e1405 (2019).

30. Gonzalez, P., Lozano, P., Ros, G. & Solano, F. Hyperglycemia and
oxidative stress: an integral, updated and critical overview of their
metabolic interconnections. Int J. Mol. Sci. 24, 9352 (2023).

31. Bengal, E., Aviram, S. & Hayek, T. p38 MAPK in glucose metabo-
lism of skeletal muscle: beneficial or harmful? Int J. Mol. Sci. 21,
6480 (2020).

32. Nandipati, K. C., Subramanian, S. & Agrawal, D. K. Protein kinases:
mechanisms and downstream targets in inflammation-mediated
obesity and insulin resistance. Mol. Cell Biochem. 426,
27–45 (2017).

33. Celletti, F. L. et al. Vascular endothelial growth factor enhances
atherosclerotic plaque progression. Nat. Med 7, 425–429 (2001).

34. Forstermann, U., Xia, N. & Li, H. Roles of vascular oxidative stress
and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res.
120, 713–735 (2017).

35. Giordano, F. J. Oxygen, oxidative stress, hypoxia, and heart failure.
J. Clin. Invest 115, 500–508 (2005).

36. Akhtar, S. et al. Endothelial hypoxia-inducible factor-1alpha pro-
motes atherosclerosis andmonocyte recruitment by upregulating
MicroRNA-19a. Hypertension 66, 1220–1226 (2015).

37. GTEx Consortium. The GTEx Consortium atlas of genetic reg-
ulatory effects across human tissues. Science 369,
1318–1330 (2020).

38. Tamayo-Uria, I. et al. The early-life exposome: Description and
patterns in six European countries. Environ. Int 123,
189–200 (2019).

39. Robinson, O. et al. The urban exposome during pregnancy and its
socioeconomic determinants. Environ. Health Perspect. 126,
077005 (2018).

40. Bodinier, B., Filippi, S., Nost, T. H., Chiquet, J. &Chadeau-Hyam,M.
Automated calibration for stability selection in penalised regres-
sion and graphical models. J. R. Stat. Soc. Ser. C. Appl Stat. 72,
1375–1393 (2023).

41. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the man-
agement of overweight and obesity in adults: a report of the
American College of Cardiology/American Heart Association Task
Force on Practice Guidelines and The Obesity Society. Circulation
129, S102–S138 (2014).

42. Garvey, W. T. et al. American association of clinical endocrinolo-
gists and american college of endocrinology comprehensive
clinical practice guidelines for medical care of patients with
obesity. Endocr. Pr. 22, 1–203 (2016).

43. Beyene, H. B. et al. Metabolic phenotyping of BMI to characterize
cardiometabolic risk: evidence from large population-based
cohorts. Nat. Commun. 14, 6280 (2023).

44. Sims, E. A. Are there persons who are obese, but metabolically
healthy? Metabolism 50, 1499–1504 (2001).

45. Neeland, I. J., Poirier, P. & Despres, J. P. Cardiovascular and
metabolic heterogeneity of obesity: clinical challenges and
implications for management. Circulation 137, 1391–1406
(2018).

46. Piche, M. E., Tchernof, A. & Despres, J. P. Obesity phenotypes,
diabetes, and cardiovascular diseases. Circ. Res. 126,
1477–1500 (2020).

47. Lee, H., Kim, J. S. & Shin, H. Predicting the transition to metabo-
lically unhealthy obesity among young adults with metabolically
healthy obesity in south korea: nationwide population-based
study. JMIR Public Health Surveill. 10, e52103 (2024).

48. Gao,M. et al.Metabolically healthy obesity, transition to unhealthy
metabolic status, and vascular disease in Chinese adults: A cohort
study. PLoS Med. 17, e1003351 (2020).

49. Wu, H. & Ballantyne, C. M. Metabolic Inflammation and Insulin
Resistance in Obesity. Circ. Res. 126, 1549–1564 (2020).

50. Wu, H. & Ballantyne, C. M. Skeletal muscle inflammation and
insulin resistance in obesity. J. Clin. Invest 127, 43–54 (2017).

Article https://doi.org/10.1038/s41467-025-56013-7

Nature Communications |          (2025) 16:654 12

www.nature.com/naturecommunications


51. Balagopal, P. B. et al. Nontraditional risk factors andbiomarkers for
cardiovascular disease: mechanistic, research, and clinical con-
siderations for youth: a scientific statement from the American
Heart Association. Circulation 123, 2749–2769 (2011).

52. Ridker, P. M. Clinical application of C-reactive protein for cardio-
vascular disease detection and prevention. Circulation 107,
363–369 (2003).

53. Alfaddagh, A. et al. Inflammation and cardiovascular disease:
From mechanisms to therapeutics. Am. J. Prev. Cardiol. 4,
100130 (2020).

54. Hein, T. W. et al. Human C-reactive protein induces endothelial
dysfunction and uncoupling of eNOS in vivo. Atherosclerosis 206,
61–68 (2009).

55. Badimon, L. et al. C-Reactive Protein in Atherothrombosis and
Angiogenesis. Front Immunol. 9, 430 (2018).

56. Sprenkle, N. T. et al. The miR-23-27-24 clusters drive lipid-
associatedmacrophage proliferation in obese adipose tissue.Cell
Rep. 42, 112928 (2023).

57. Garavelli, S. et al. Plasma circulating miR-23~27~24 clusters cor-
relate with the immunometabolic derangement and predict
C-peptide loss in children with type 1 diabetes. Diabetologia 63,
2699–2712 (2020).

58. Cho, S. et al. miR-23~27~24 clusters control effector T cell differ-
entiation and function. J. Exp. Med. 213, 235–249 (2016).

59. Guo, J. et al. Hsa-miRNA-23a-3p promotes atherogenesis in a
novel mouse model of atherosclerosis. J. Lipid Res. 61,
1764–1775 (2020).

60. Peng, M. et al. Extracellular vesicles carrying proinflammatory
factors may spread atherosclerosis to remote locations. Cell Mol.
Life Sci. 79, 430 (2022).

61. Wang, M. et al. Obesity-induced overexpression of miRNA-24
regulates cholesterol uptake and lipid metabolism by targeting
SR-B1. Gene 668, 196–203 (2018).

62. Ng, R. et al. Inhibition of microRNA-24 expression in liver prevents
hepatic lipid accumulation and hyperlipidemia. Hepatology 60,
554–564 (2014).

63. Chen, Y. & Gorski, D. H. Regulation of angiogenesis through a
microRNA (miR-130a) that down-regulates antiangiogenic
homeobox genes GAX and HOXA5. Blood 111, 1217–1226 (2008).

64. Cavallari, C. et al. miR-130a and Tgfbeta content in extracellular
vesicles derived from the serumof subjects at highcardiovascular
risk predicts their in-vivo angiogenic potential. Sci. Rep. 10,
706 (2020).

65. Wu, W. H. et al. MicroRNA-130a mediates proliferation of vascular
smooth muscle cells in hypertension. Am. J. Hypertens. 24,
1087–1093 (2011).

66. Wei, C. et al. Circulating miRNAs as potential marker for pul-
monary hypertension. PLoS One 8, e64396 (2013).

67. Karolina, D. S. et al. Circulating miRNA profiles in patients with
metabolic syndrome. J. Clin. Endocrinol. Metab. 97,
E2271–E2276 (2012).

68. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in
vascular diseases, inflammation, and angiogenesis. Cardiovasc
Res. 79, 581–588 (2008).

69. Roggli, E. et al. Involvement of microRNAs in the cytotoxic effects
exerted by proinflammatory cytokines on pancreatic beta-cells.
Diabetes 59, 978–986 (2010).

70. Calo, N. et al. Stress-activated miR-21/miR-21* in hepatocytes
promotes lipid and glucose metabolic disorders associated with
high-fat diet consumption. Gut 65, 1871–1881 (2016).

71. Loyer, X. et al. Liver microRNA-21 is overexpressed in non-
alcoholic steatohepatitis and contributes to the disease in
experimental models by inhibiting PPARalpha expression.Gut 65,
1882–1894 (2016).

72. Fernandez, A. F. et al. Autophagy couteracts weight gain, lipo-
toxicity and pancreatic beta-cell death upon hypercaloric pro-
diabetic regimens. Cell Death Dis. 8, e2970 (2017).

73. Haim, Y. et al. Elevated autophagy gene expression in adipose
tissue of obese humans: A potential non-cell-cycle-dependent
function of E2F1. Autophagy 11, 2074–2088 (2015).

74. Martinez-Garcia, G. G. et al. Autophagy Deficiency by Atg4B Loss
Leads to Metabolomic Alterations in Mice. Metabolites 11,
481 (2021).

75. Guo, L. et al. DCBLD2 deletion increases hyperglycemia and
induces vascular remodeling by inhibiting insulin receptor recy-
cling in endothelial cells. FEBS J. 291, 4076–4095 (2024).

76. Wang, T. J. et al. Metabolite profiles and the risk of developing
diabetes. Nat. Med. 17, 448–453 (2011).

77. Guasch-Ferre,M. et al.Metabolomics in prediabetes anddiabetes:
a systematic review and meta-analysis. Diab. Care 39, 833–846
(2016).

78. Jang, C. et al. A branched-chain amino acid metabolite drives
vascular fatty acid transport and causes insulin resistance. Nat.
Med. 22, 421–426 (2016).

79. Alves, A. & Morio, B. Alterations in glycine metabolism in obesity
and chronic metabolic diseases - an update on new advances.
Curr. Opin. Clin. Nutr. Metab. Care 26, 50–54 (2023).

80. White, P. J. et al. Muscle-Liver Trafficking of BCAA-Derived Nitro-
gen Underlies Obesity-Related Glycine Depletion. Cell Rep. 33,
108375 (2020).

81. Rappaport, S. M. & Smith, M. T. Epidemiology. Environment and
disease risks. Science 330, 460–461 (2010).

82. Godfrey, K.M. et al. Influenceofmaternal obesity on the long-term
health of offspring. Lancet Diab. Endocrinol. 5, 53–64 (2017).

83. Voerman, E. et al. Maternal body mass index, gestational weight
gain, and the risk of overweight and obesity across childhood: An
individual participant data meta-analysis. PLoS Med. 16,
e1002744 (2019).

84. Mamsen, L. S. et al. Concentrations of perfluoroalkyl substances
(PFASs) in human embryonic and fetal organs from first, second,
and third trimester pregnancies. Environ. Int 124, 482–492 (2019).

85. Lindstrom, A. B., Strynar, M. J. & Libelo, E. L. Polyfluorinated
compounds: past, present, and future. Environ. Sci. Technol. 45,
7954–7961 (2011).

86. Stratakis, N. et al. Prenatal exposure to persistent organic pollu-
tants and childhood obesity: A systematic review and meta-
analysis of human studies. Obes. Rev. 23, e13383 (2022).

87. Liu, Y. et al. Associations of gestational perfluoroalkyl substances
exposure with early childhood BMI z-scores and risk of over-
weight/obesity: results from the ECHO Cohorts. Environ. Health
Perspect. 131, 67001 (2023).

88. U.S. Environmental Protection Agency. Priority Pollutant List. Vol.
2020 (December 2014).

89. Stratakis, N. et al. Fish Intake in Pregnancy and Child Growth: A
Pooled Analysis of 15 European and US Birth Cohorts. JAMA
Pediatr. 170, 381–390 (2016).

90. Needham, L. L. et al. Partition of environmental chemicals
between maternal and fetal blood and tissues. Environ. Sci.
Technol. 45, 1121–1126 (2011).

91. Stratakis, N. et al. Association of fish consumption and mercury
exposure during pregnancy with metabolic health and inflam-
matory biomarkers in children. JAMA Netw. Open 3,
e201007 (2020).

92. Roy, C., Tremblay, P. Y. & Ayotte, P. Is mercury exposure causing
diabetes, metabolic syndrome and insulin resistance? A sys-
tematic review of the literature. Environ. Res. 156, 747–760 (2017).

93. Valvi, D. et al. Gene-environment interactions in the associations
of PFASexposurewith insulin sensitivity andbeta-cell function in a

Article https://doi.org/10.1038/s41467-025-56013-7

Nature Communications |          (2025) 16:654 13

www.nature.com/naturecommunications


Faroese cohort followed from birth to adulthood. Environ. Res.
226, 115600 (2023).

94. Siskos, A. P. et al. Interlaboratory reproducibility of a targeted
metabolomics platform for analysis of human serum and plasma.
Anal. Chem. 89, 656–665 (2017).

95. Floegel, A. et al. Identification of serum metabolites associated
with risk of type 2 diabetes using a targeted metabolomic
approach. Diabetes 62, 639–648 (2013).

96. Cani, P. D. &VanHul,M.Gutmicrobiota in overweight andobesity:
crosstalk with adipose tissue. Nat. Rev. Gastroenterol. Hepatol. 21,
164–183 (2024).

97. Feig, D. S. et al. Long-term neurobehavioral and metabolic out-
comes in offspring of mothers with diabetes during pregnancy: a
large, population-based cohort study in Ontario, Canada. Diab.
Care 47, 1568–1575 (2024).

98. Yang, F. et al. Association ofmaternal preeclampsiawith offspring
risks of ischemic heart disease and stroke in Nordic countries.
JAMA Netw. Open 5, e2242064 (2022).

99. Bodnar, L. M., Ness, R. B., Markovic, N. & Roberts, J. M. The risk of
preeclampsia rises with increasing prepregnancy body mass
index. Ann. Epidemiol. 15, 475–482 (2005).

100. Brunner, S. et al. Excessive gestational weight gain prior to glu-
cose screening and the risk of gestational diabetes: a meta-
analysis. Diabetologia 58, 2229–2237 (2015).

101. Shirvanifar, M. et al. Adverse pregnancy outcomes attributable to
overweight and obesity across maternal birth regions: a Swedish
population-based cohort study. Lancet Public Health 9,
e776–e786 (2024).

102. Nieuwenhuijsen, M. J. et al. Variability in and agreement between
modeled and personal continuously measured black carbon
levels using novel smartphone and sensor technologies. Environ.
Sci. Technol. 49, 2977–2982 (2015).

103. Magnus, P. et al. Cohort profile update: the norwegianmother and
child cohort study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

104. Robinson,O. et al. Associations of four biological agemarkerswith
child development: A multi-omic analysis in the European HELIX
cohort. Elife 12, e85104 (2023).

105. de Onis, M. et al. Development of a WHO growth reference for
school-aged children and adolescents. Bull. World Health Organ
85, 660–667 (2007).

106. Clasey, J. L., Bradley, K. D., Bradley, J.W., Long, D. E. &Griffith, J. R.
A new BIA equation estimating the body composition of young
children. Obes. (Silver Spring) 19, 1813–1817 (2011).

107. Ahrens, W. et al. Metabolic syndrome in young children: defini-
tions and results of the IDEFICS study. Int J. Obes. (Lond.) 38,
S4–S14 (2014).

108. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate
Imputation by Chained Equations in R. J. Stat. Soft 45, 1–67
(2011).

109. Haug, L. S. et al. In-utero and childhood chemical exposome in six
European mother-child cohorts. Environ. Int 121, 751–763 (2018).

110. CRAN—Package amap.
111. Chen, Y. et al. The value of prospective metabolomic suscept-

ibility endotypes: broad applicability for infectious diseases.
EBioMedicine 96, 104791 (2023).

112. Chen. T. & Guestrin, C. XGBoost: a scalable tree boosting system.
in Proceedings of the 22nd ACM SIGKDD International Conference
onKnowledgeDiscovery andDataMining 785–794 (Association for
Computing Machinery, San Francisco, California, 2016).

113. Kuhn, M. Building Predictive Models in R Using the caret Package.
J. Stat. Soft 28, 1–26 (2008).

114. Chen, T. &Guestrin,C. XGBoost: AScalable TreeBoostingSystem.
in KDD ‘16: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining 785-794
(San Francisco,California 2016).

115. Correndo, A. A. et al. metrica: an R package to evaluate prediction
performance of regression and classification point-forecast
models. JOSS 7, 4655 (2022).

116. Robin, X. et al. pROC: an open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinforma. 12, 77
(2011).

117. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for
interpreting omics data. Innov. (Camb.) 2, 100141 (2021).

118. The data used for the analysis described in this manuscript were
obtained from the GTEx Portal https://www.gtexportal.org/
home/.

119. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S,
(Springer, New York, 2002).

120. Lüdecke, D. ggeffects: tidy data frames of marginal effects from
regression models. JOSS 3, 772 (2018).

Acknowledgements
The study received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no.
874583 (ATHLETE project). Data were collected as part of the Eur-
opean Community’s Seventh Framework Programme (FP7/2007-206)
under grant agreement no. 308333 (HELIX project). This project also
received support from Generalitat de Catalunya through the Con-
solidated Group on HEALTH ANALYTICS (2021 SGR 01563). We would
like to thank all the families whose data were used. BiB received core
infrastructure funding from the Wellcome Trust (WT101597MA) and a
joint grant from the UK Medical Research Council (MRC) and Eco-
nomic and Social Science Research Council (ESRC) (MR/N024397/1).
The EDEN study was supported by Foundation for medical research
(FRM), National Agency for Research (ANR), National Institute for
Research in Public health (IRESP: TGIR cohorte santé 2008 program),
French Ministry of Health (DGS), French Ministry of Research, INSERM
Bone and Joint Diseases National Research (PRO-A), and Human
Nutrition National Research Programs, Paris-Sud University, Nestlé,
French National Institute for Population Health Surveillance (InVS),
French National Institute for Health Education (INPES), the European
Union FP7 programmes (FP7/2007–2013, HELIX, ESCAPE, ENRIECO,
Medall projects), Diabetes National Research Program (through a
collaboration with the French Association of Diabetic Patients (AFD)),
French Agency for Environmental Health Safety (now ANSES),
Mutuelle Générale de l’Education Nationale a complementary health
insurance (MGEN), French national agency for food security, French-
speaking association for the study of diabetes and metabolism
(ALFEDIAM). INMAdata collections were supported by grants from the
Instituto de Salud Carlos III, CIBERESP, and the Generalitat de
Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian
Agency for Science Innovation and Technology (6-04-2014_31V-66).
The Norwegian Mother, Father and Child Cohort Study (Moba) is
supported by the Norwegian Ministry of Health and Care Services and
the Ministry of Education and Research. The RHEA project was
financially supported by European projects (EU FP6-2003-Food-3-
NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project
No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU
FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6.
Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No
308333 HELIX), and the Greek Ministry of Health (Program of Pre-
vention of obesity and neurodevelopmental disorders in preschool
children, in Heraklion district, Crete, Greece: 2011-2014; “Rhea Plus”:
Primary Prevention Program of Environmental Risk Factors for
Reproductive Health, and Child Health: 2012-15). ISGlobal acknowl-
edges support from the grant CEX2023-0001290-S funded by MCIN/
AEI/ 10.13039/501100011033, and support from the Generalitat de
Catalunya through the CERCA Program. Nikos Stratakis has received
funding from the European Union’s Horizon Europe research and
innovation programme under the Marie Skłodowska-Curie Actions

Article https://doi.org/10.1038/s41467-025-56013-7

Nature Communications |          (2025) 16:654 14

https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
www.nature.com/naturecommunications


(MSCA) Postdoctoral Fellowships (grant no. 101059245), by a Juan de
la Cierva-Incorporación fellowship (IJC2020-043630-I) financed by
Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de Inves-
tigación (AEI)/10.13039/501100011033 and the European Union
“NextGenerationEU/PRTR”, and from the Ministry of Science and
Innovation and State Research Agency through the “Centro de
Excelencia Severo Ochoa 2019–2023” Program (CEX2018-
000806-S).

Author contributions
N.S. and M. Vrijheid conceived and designed the study. N.S. and
A.A.R. performed statistical analyses. The following authors partici-
pated in omics data acquisition and quality control: M.B. (DNA
methylation, miRNAs, transcriptomics), E.B., E.S. (proteomics), and
L.M., H.C.K. (metabolomics). L.F., L.M., J.R.G., S.A., X.B., L.C., R.G.,
L.S.H., B.H., R.M., M.N., R.S., C.T., J.U., T.R., M. Vafeiadi, J.W., and M.B.
are the PIs of the cohorts and/or participated in HELIX data acquisition
and cleaning. M. Vrijheid is the coordinator of the HELIX project.
N.S. and M. Vrijheid wrote the original draft of the paper. All authors
(A.A.R. L.F., L.M., J.R.G., S.A., X.B., E.B., H.C.K., L.C., D.V.C., J.G.,
R.G., L.S.H., B.H., W.L.Y., R.M., M.N., E.S., R.S., C.T., J.U., T.R., M.
Vafeiadi, J.W., and M.B.) critically revised drafts and approved the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-56013-7.

Correspondence and requests for materials should be addressed to
Nikos Stratakis.

Peer review information Nature Communications thanks Liming Pei,
who co-reviewed with Ting Peng, Sandi Azab and Kok Lim Kua for their
contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nikos Stratakis 1,2,3 , Augusto Anguita-Ruiz 1,4,5, Lorenzo Fabbri 1,2,3, Léa Maitre 1,2,3, Juan R. González 1,2,3,
Sandra Andrusaityte 6, Xavier Basagaña 1,2,3, Eva Borràs 2,7, Hector C. Keun 8,9, Lida Chatzi10, David V. Conti10,
Jesse Goodrich 10, Regina Grazuleviciene 4, Line Småstuen Haug11,12, Barbara Heude 13, Wen Lun Yuan 13,
Rosemary McEachan14, Mark Nieuwenhuijsen1,2,3, Eduard Sabidó 2,7, Rémy Slama15, Cathrine Thomsen 11,12,
Jose Urquiza 1,2,3, Theano Roumeliotaki 16, Marina Vafeiadi 16, John Wright14, Mariona Bustamante 1,2,3 &
Martine Vrijheid 1,2,3

1Institute forGlobalHealth (ISGlobal), Barcelona, Spain. 2Universitat Pompeu Fabra (UPF), Barcelona, Spain. 3CIBER Epidemiología y SaludPública (CIBERESP),
Madrid, Spain. 4Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona
(IBUB), Universitat de Barcelona (UB), Barcelona, Spain. 5CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health
Carlos III (ISCIII), Madrid, Spain. 6Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania. 7Center for Genomic Regulation
(CRG), Barcelona Institute of Science and Technology, Barcelona, Spain. 8Division of Systems Medicine, Department of Metabolism, Digestion and Repro-
duction, Imperial College London, London, UK. 9CancerMetabolism&Systems ToxicologyGroup, Imperial College London,HammersmithHospital Campus,
London, United Kingdom. 10Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles,
CA,USA. 11Department of FoodSafety,Norwegian Institute of PublicHealth,Oslo, Norway. 12Centre for SustainableDiets, Norwegian Instituteof PublicHealth,
Oslo, Norway. 13UniversitéParisCité andUniversité SorbonneParisNord, Inserm, INRAE,Center for Research inEpidemiology andStatisticS (CRESS), F-75004
Paris, France. 14Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom. 15Department of
Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes,
Grenoble, France. 16Department of Social Medicine, University of Crete, Heraklion, Crete, Greece. e-mail: nikos.stratakis@isglobal.org

Article https://doi.org/10.1038/s41467-025-56013-7

Nature Communications |          (2025) 16:654 15

https://doi.org/10.1038/s41467-025-56013-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0003-4613-0989
http://orcid.org/0000-0003-4613-0989
http://orcid.org/0000-0003-4613-0989
http://orcid.org/0000-0003-4613-0989
http://orcid.org/0000-0003-4613-0989
http://orcid.org/0000-0001-6888-1041
http://orcid.org/0000-0001-6888-1041
http://orcid.org/0000-0001-6888-1041
http://orcid.org/0000-0001-6888-1041
http://orcid.org/0000-0001-6888-1041
http://orcid.org/0000-0003-3031-322X
http://orcid.org/0000-0003-3031-322X
http://orcid.org/0000-0003-3031-322X
http://orcid.org/0000-0003-3031-322X
http://orcid.org/0000-0003-3031-322X
http://orcid.org/0000-0003-3682-7117
http://orcid.org/0000-0003-3682-7117
http://orcid.org/0000-0003-3682-7117
http://orcid.org/0000-0003-3682-7117
http://orcid.org/0000-0003-3682-7117
http://orcid.org/0000-0003-3267-2146
http://orcid.org/0000-0003-3267-2146
http://orcid.org/0000-0003-3267-2146
http://orcid.org/0000-0003-3267-2146
http://orcid.org/0000-0003-3267-2146
http://orcid.org/0000-0002-4309-0208
http://orcid.org/0000-0002-4309-0208
http://orcid.org/0000-0002-4309-0208
http://orcid.org/0000-0002-4309-0208
http://orcid.org/0000-0002-4309-0208
http://orcid.org/0000-0002-8457-1489
http://orcid.org/0000-0002-8457-1489
http://orcid.org/0000-0002-8457-1489
http://orcid.org/0000-0002-8457-1489
http://orcid.org/0000-0002-8457-1489
http://orcid.org/0000-0001-5100-7809
http://orcid.org/0000-0001-5100-7809
http://orcid.org/0000-0001-5100-7809
http://orcid.org/0000-0001-5100-7809
http://orcid.org/0000-0001-5100-7809
http://orcid.org/0000-0001-7358-8851
http://orcid.org/0000-0001-7358-8851
http://orcid.org/0000-0001-7358-8851
http://orcid.org/0000-0001-7358-8851
http://orcid.org/0000-0001-7358-8851
http://orcid.org/0000-0001-6615-0472
http://orcid.org/0000-0001-6615-0472
http://orcid.org/0000-0001-6615-0472
http://orcid.org/0000-0001-6615-0472
http://orcid.org/0000-0001-6615-0472
http://orcid.org/0000-0002-0210-8053
http://orcid.org/0000-0002-0210-8053
http://orcid.org/0000-0002-0210-8053
http://orcid.org/0000-0002-0210-8053
http://orcid.org/0000-0002-0210-8053
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0002-7472-5042
http://orcid.org/0000-0002-7472-5042
http://orcid.org/0000-0002-7472-5042
http://orcid.org/0000-0002-7472-5042
http://orcid.org/0000-0002-7472-5042
http://orcid.org/0000-0001-6506-7714
http://orcid.org/0000-0001-6506-7714
http://orcid.org/0000-0001-6506-7714
http://orcid.org/0000-0001-6506-7714
http://orcid.org/0000-0001-6506-7714
http://orcid.org/0000-0002-6889-7868
http://orcid.org/0000-0002-6889-7868
http://orcid.org/0000-0002-6889-7868
http://orcid.org/0000-0002-6889-7868
http://orcid.org/0000-0002-6889-7868
http://orcid.org/0000-0003-2220-607X
http://orcid.org/0000-0003-2220-607X
http://orcid.org/0000-0003-2220-607X
http://orcid.org/0000-0003-2220-607X
http://orcid.org/0000-0003-2220-607X
http://orcid.org/0000-0002-5044-983X
http://orcid.org/0000-0002-5044-983X
http://orcid.org/0000-0002-5044-983X
http://orcid.org/0000-0002-5044-983X
http://orcid.org/0000-0002-5044-983X
http://orcid.org/0000-0002-6143-7172
http://orcid.org/0000-0002-6143-7172
http://orcid.org/0000-0002-6143-7172
http://orcid.org/0000-0002-6143-7172
http://orcid.org/0000-0002-6143-7172
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0003-0127-2860
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
http://orcid.org/0000-0002-7090-1758
mailto:nikos.stratakis@isglobal.org
www.nature.com/naturecommunications

	Multi-omics architecture of childhood obesity and metabolic dysfunction uncovers biological pathways and prenatal determinants
	Results
	Integrative approach to identify multi-omics clusters of children
	Metabolic outcomes associated with the multi-omics clusters
	Molecular drivers of the multi-omics clusters
	Prenatal factors associated with the multi-omics clusters

	Discussion
	Methods
	Study participants
	Multi-omics assessment
	Anthropometry and metabolic health outcomes
	Prenatal exposure variables
	Data synthesis and analysis
	Creation of multi-omics clusters
	Association of multi-omics clusters with clinical phenotypes
	Identification of molecular drivers of multi-omics clusters and pathway analysis
	Identification of prenatal determinants of the multi-omics clusters

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




