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Prevalence of processed foods in major US 
grocery stores
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Albert-László Barabási    1,2,4 & Giulia Menichetti    1,2,5,6 

The offering of grocery stores is a strong driver of consumer decisions. 
While highly processed foods such as packaged products, processed meat 
and sweetened soft drinks have been increasingly associated with unhealthy 
diets, information on the degree of processing characterizing an item in a 
store is not straightforward to obtain, limiting the ability of individuals to 
make informed choices. GroceryDB, a database with over 50,000 food items 
sold by Walmart, Target and Whole Foods, shows the degree of processing of 
food items and potential alternatives in the surrounding food environment. 
The extensive data gathered on ingredient lists and nutrition facts enables 
a large-scale analysis of ingredient patterns and degrees of processing, 
categorized by store, food category and price range. Furthermore, it allows 
the quantification of the individual contribution of over 1,000 ingredients 
to ultra-processing. GroceryDB makes this information accessible, guiding 
consumers toward less processed food choices.

Food ultra-processing has drastically increased productivity and shelf 
time, addressing the issue of food availability to the detriment of food 
systems sustainability and health1–4. Indeed, there is increasing evidence 
that over-reliance on ultra-processed food (UPF) has fostered unhealthy 
diet5. The sheer number of peer-reviewed articles investigating the link 
between the degree of food processing and health embodies a general 
consensus among independent researchers on the health relevance 
of UPF, contributing up to 60% of consumed calories in developed 
nations6–8. For instance, recent studies have linked the consumption of 
UPF to non-communicable diseases such as metabolic syndrome9–15 and 
to exposure to industrialized preservatives and pesticides16–20. This body 
of work has driven a paradigm shift from focusing solely on food secu-
rity, which emphasizes access to affordable food, to prioritizing nutri-
tion security21,22. Nutrition security stresses equitable access to healthy, 
safe and affordable foods essential for optimal health and well-being, 
as defined by the US Department of Agriculture (USDA)23,24, echoing 
the recent White House Conference on Hunger, Nutrition, and Health25.

Much of UPF reaches consumers through grocery stores, as docu-
mented by the National Health and Nutrition Examination Survey, 

indicating that in the United States over 60% of the food consumed 
comes from grocery stores (Supplementary Fig. 1). The high reliance on 
UPF and their potential negative health effects raise numerous critical 
questions, such as the following: (1) How can the degree of processing 
of food items be determined? (2) What methods can be used to quantify 
the extent of food processing in the food supply? (3) What alternatives 
can be identified to reduce UPF consumption?

Measuring the degree of food processing is a key step in addressing 
these questions, but it is not straightforward. Indeed, food labels often 
show mixed messages, partly driven by reductionist metrics focusing 
on one nutrient at a time26 and partly because of the contrasting criteria 
on how to classify processed foods27. The ambiguity and inconsistency 
of current food processing classification systems have led to conflict-
ing results regarding their role as risk factors for non-communicable 
chronic diseases28,29. Some of these classification systems also suffer 
from poor inter-rater reliability and lack of reproducibility, issues 
rooted in purely descriptive expertise-based approaches, leaving 
room for ambiguity and differences in interpretation27,28,30. Hence, 
there is a growing call among scientists for a more objective definition 
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In this Article, building on the versatility and scalability of the FPro 
algorithm, we extend our analysis beyond ‘model foods’ tailored for epi-
demiological databases, analysing real-world data encompassing over 
50,000 products from major US grocery store websites. This extensive 
dataset underpins the development of GroceryDB, an open-source 
database of foods and beverages, featuring comprehensive metadata 
on nutritional content, ingredient list and price for each item, collected 
from publicly available online markets of Walmart, Target and Whole 
Foods. Our objective is to demonstrate how machine learning can 
effectively analyse large-scale real-world food composition data and 
translate this wealth of information into the degree of processing for 
any food in grocery stores, facilitating consumer decision-making and 
informing public health initiatives aimed at enhancing the overall qual-
ity of the food environment. This initiative not only lays the ground-
work for similar efforts globally, aimed at promoting better-informed 
dietary choices, but also underscores the critical role of open-access, 
internationally comparable data in advancing global nutrition security.

Results
For each food, we automated the process of determining the extent of 
food processing using FPro, which translates the nutritional content of 
a food item into its degree of processing37. Figure 1 illustrates the use 
of FPro by presenting the processing scores of three products in the 
bread and yogurt categories, enabling the comparison of their process-
ing levels. For example, the Manna Organics multi-grain bread is made 
from whole wheat kernels, barley, rice without additives, added salt, 
oil and yeast, resulting in a low processing score of FPro = 0.314. By 
contrast, the Aunt Millie’s (FPro = 0.732) and Pepperidge Farmhouse 
(FPro = 0.997) breads include ‘resistant corn starch’, ‘soluble corn 
fiber’ and ‘oat fiber’, requiring additional processing to extract starch 
and fibre from corn and oat to be used as an independent ingredient 
(Fig. 1a), yielding higher processing scores. Similarly, in the yogurt 
category, the Seven Stars Farm yogurt (FPro = 0.355) is a whole milk 

of the degree of food processing, grounded in biological mechanisms 
instead of varying subjective interpretations across research groups28. 
Among the proposed areas for aligning food processing definitions, 
the nutritional profile of food is currently the only aspect consistently 
regulated and reported worldwide27,28,31.

The research efforts outlined in ref. 28 align with a growing 
demand for high-quality and internationally comparable statis-
tics to promote objective metrics, reproducibility and data-driven 
decision-making, advancing convergence towards the Sustainable 
Development Goals32,33. Artificial intelligence (AI) methodologies33–36, 
in particular, are increasingly being used for their potential as more 
objective, data-driven tools to advance nutrition security, a concept 
underpinning Sustainable Development Goals such as ‘zero-hunger’, 
‘good health and well-being’, ‘industry, innovation and infrastructure’ 
and ‘reduce inequalities’.

Responding to the need for objective and scalable metrics to 
ensure nutrition security, recent efforts harnessed machine learning 
to create and fully automate a food processing score (FPro)37. FPro is 
a continuous index derived by training a machine learning model to 
predict manual labels of processing techniques based on the overall 
nutrient profile of a food item (Methods and Supplementary Section 4). 
To teach the algorithm how to score processing from nutrients, labels 
provided by NOVA—the most widely used system for classifying foods 
based on processing-related criteria—were leveraged, offering a rich 
array of epidemiological literature for comparative analysis9,38,39. How-
ever, the FPro algorithm can accommodate different food processing 
classification systems such as the European Prospective Investigation 
into Cancer and Nutrition (EPIC)40, University of North Carolina (UNC)41 
or Système d'Information et de Gestion des Aliments (SIGA)42. The 
predictive power of FPro was rigorously tested for epidemiological 
outcomes with an Environment-Wide Association Study, leveraging 
multiple cycles of the USDA model food databases and national food 
consumption surveys37.
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Fig. 1 | Degrees of food processing in three categories. FPro can assess the 
extent of food processing in three major US grocery stores, and it is best suited 
to rank foods within the same category. a, In breads, the Manna Organics 
multi-grain bread, offered by Whole Foods, is mainly made from ‘whole wheat 
kernels’, barley and brown rice without any additives, added salt, oil and yeast, 
with FPro = 0.314. However, the Aunt Millie’s (FPro = 0.732) and Pepperidge 
Farmhouse (FPro = 0.997) breads, found in Target and Walmart, include soluble 
corn fibre and oat fibre with additives such as ‘sugar’, resistant corn starch, 
‘wheat gluten’ and ‘monocalcium phosphate’. b, The Seven Stars Farm yogurt 
(FPro = 0.355) is made from grade A pasteurized organic milk. The Siggi’s yogurt 

(FPro = 0.436) declares pasteurized skim milk as the main ingredient that has 
0% fat milk, requiring more food processing to eliminate fat. Lastly, the Chobani 
Cookies and Cream yogurt (FPro = 0.918) has cane sugar as the second most 
dominant ingredient combined with multiple additives such as caramel colour, 
fruit pectin and vanilla bean powder, making it a highly processed yogurt. Credit: 
round glossy ice cream cup, Shubby Studio, Adobe Stock; yogurt and ice cream 
tub, DEVASHISH˙RAVAT, Getty images; mauve paint brushstroke, DSAP Project, 
DSAP Project’s Images; all other icons (rural meadow and cow, cow gradient, blue 
ceramic vase, cookie bite, ice cream topping), Canva.com.
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yogurt made from ‘grade A pasteurized organic milk’, while the Siggi’s 
yogurt (FPro = 0.436) uses ‘pasteurized skim milk’ that requires further 
processing to obtain 0% fat. Finally, the Chobani Cookies and Cream 
yogurt relies on cane sugar as the second most dominant ingredient 
and contains cocktails of additives such as ‘caramel color’, ‘fruit pectin’ 
and ‘vanilla bean powder’ making it a highly processed yogurt, resulting 
in a high processing score FPro = 0.918.

GroceryDB assigns an FPro score to all foods collected from 
Walmart, Target and Whole Foods by leveraging the machine learning 
classifier FoodProX, which takes mandatory information from nutri-
tion labels as input (Methods). The distribution of the FPro scores in 
the three stores shows a high degree of similarity: each store exhibits a 
monotonically increasing curve (Fig. 2a), indicating that minimally pro-
cessed products (low FPro) represent a relatively small fraction of the 
inventory of grocery stores, the majority of the offerings being in the 
ultra-processed category (high FPro). Although less-processed items 
make up a smaller share of the overall inventory, they likely account 
for a proportionally larger portion of actual purchases, highlighting 

a discrepancy between sales data and available food options. Never-
theless, systematic differences between stores emerge: Whole Foods 
offers a greater selection of minimally processed items and fewer 
ultra-processed options, whereas Target has a particularly high pro-
portion of ultra-processed products (high FPro). FPro also captures 
the inherent variability in the degree of processing per food category. 
As illustrated in Fig. 2b, there is a small variability of FPro scores in cat-
egories like jerky, popcorn, chips, bread, biscuits, and mac and cheese, 
indicating that consumers have limited choices in terms of degree of 
processing for these food groups (see Supplementary Section 7 for 
harmonizing categories between stores). Yet, in categories like cere-
als, milk and milk substitute, pasta noodles and snack bars, FPro shows 
considerable variation, reflecting a wider extent of possible choices 
from a food processing perspective.

The distribution of FPro in GroceryDB was compared with the 
latest USDA Food and Nutrient Database for Dietary Studies (FNDDS), 
offering a representative sample of the consumed food supply (Fig. 2c). 
The similarity between the distributions of FPro scores obtained from 
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Fig. 2 | Food processing in grocery stores. a, The distribution of FPro scores 
from the three stores follows a similar trend, a monotonically increasing curve, 
indicating that the number of low FPro items (unprocessed and minimally 
processed) offered by the grocery stores is relatively lower than the number of 
high FPro items (highly processed and ultra-processed items), and the majority of 
offerings are ultra-processed (see Methods for FPro calculation). b, Distribution 
of FPro scores for different categories of GroceryDB. The distributions indicate 
that FPro has a remarkable variability within each food category, confirming 
the different degrees of food processing offered by the stores. Unprocessed 
foods such as eggs, fresh produce and raw meat are excluded (Supplementary 

Section 7). Sample sizes range from 126 for baby food to 2,043 for prepared 
meals dishes (see Source Data Figs. 1–6 for exact values). For the box plots, the 
minimum is the lower quartile, the central line is the median and the maximum 
is the upper quartile. The whiskers show data outside of the inter-quartile range. 
Diamonds represent outliers. c, The distributions of FPro scores in GroceryDB 
compared with two USDA nationally representative food databases: the USDA 
FNDDS and FoodData Central Branded Products (BFPD). The similarity between 
the distributions of FPro scores in GroceryDB, BFPD and FNDDS suggests 
that GroceryDB offers a comprehensive coverage of foods and beverages 
(Supplementary Section 6).
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GroceryDB and FNDDS suggests that GroceryDB also offers a repre-
sentative sample of foods and beverages in the supply chain. In addi-
tion, the comparison of GroceryDB with the USDA Global Branded 
Food Products Database (BFPD), which contains 1,142,610 branded 
products, reveals that the FPro distributions in GroceryDB and BFPD 
follow similar trends (Fig. 2c). While BFPD contains 22 times more foods 
than GroceryDB, only an estimated 44% of GroceryDB’s products are 
represented in BFPD, even after accounting for potential variability 
in food names and ingredient lists (Supplementary Section 6). This 
indicates that while BFPD offers an extensive representation of branded 
products, it does not fully capture the current offering of stores.  
Furthermore, a comparison of GroceryDB with Open Food Facts (OFF), 
an extensive crowd-sourced collection of branded products containing 
426,000 items with English ingredient lists (https://world.openfood-
facts.org), reveals that fewer than 40% of the products in GroceryDB 
are present in OFF (Supplementary Fig. 4). This limited overlap sug-
gests that monitoring products currently offered in grocery stores 
may provide a more accurate account of the food supply available to 
consumers.

Food processing and caloric intake
The depth and the resolution of the data collected in GroceryDB reveals 
some of the complexity regarding the relation between price and calo-
ries. Among all categories in GroceryDB, a 10% increase in FPro results 
in 8.7% decrease in the price per calorie of products, as captured by 
the dashed line in Fig. 3a. However, the relationship between FPro and 
price per calorie strongly depends on the food category (Supplemen-
tary Section 8). For example, in soups and stews the price per calorie 
drops by 24.3% for 10% increase in FPro (Fig. 3b), a trend observed also 
in cakes, mac and cheese, and ice cream (Supplementary Fig. 8). This 
means that, on average, the most processed soups and stews, with 
FPro ≈ 1, are 67.72% cheaper per calorie than the minimally processed 
alternatives with FPro ≈ 0.4 (Fig. 3e). By contrast, the price per calorie 
for cereals drops only by 1.2% for 10% increase in FPro (Fig. 3c), a slow 
decrease observed also for seafood and yogurt products (Supplemen-
tary Fig. 8). It is worth noting that there is an increasing trend between 
FPro and price in the milk and milk-substitute category (Fig. 3d), par-
tially explained by the higher price of plant-based milk substitutes, 
which require more extensive processing than the dairy-based milks.

Choice availability and food processing
Not surprisingly, GroceryDB documents differences in the product 
offerings of the three stores analysed. For instance, in the cereal cat-
egory—one of the most popular staple foods, consumed by 283 million 
Americans in 202043—Whole Foods offers a selection with a broad spec-
trum of processing levels, while Walmart’s cereal options are primarily 
limited to products with higher FPro (Fig. 4a). To investigate the roots 
of these differences, we examined the ingredients of cereals available at 
each store. The analysis showed that cereals sold at Whole Foods typi-
cally contain less sugar, fewer artificial and natural flavours, and fewer 
added vitamins compared with those at Walmart and Target, where 
products are more likely to include corn syrup, a sweetener associated 
with enhanced dietary fat absorption and weight gain (Fig. 4b)44. Addi-
tives such as butylated hydroxytoluene (a preservative) and calcium 
carbonate (an acidity regulator and anti-caking agent) are largely absent 
in the Whole Foods cereals, partially explaining the wider range of 
processing scores characterizing cereals at this store (Fig. 4a).

The brands offered by each store could also explain the different 
FPro patterns. Indeed, while Walmart and Target have a large overlap in 
the list of brands they carry, Whole Foods relies on different suppliers 
(Fig. 4c), largely unavailable in other grocery stores. In general, Whole 
Foods offers less processed soups and stews, yogurt and yogurt drinks, 
and milk and milk substitute (Fig. 4a). In these categories Walmart’s 
and Target’s offerings are limited to higher FPro values. Lastly, some 
food categories such as pizza, mac and cheese, and popcorn are highly 

processed in all stores (Fig. 4a). Pizzas available in all three chains, for 
example, consistently have high FPro values, partly due to the use of 
substitute ingredients such as ‘imitation mozzarella cheese’ instead 
of real ‘mozzarella cheese’.

While grocery stores sell a large variety of products, the offered 
processing choices can be identical in multiple stores. For example, 
GroceryDB has a comparable number of cookies and biscuits in each 
chain, with 453, 373 and 402 items in Walmart, Target and Whole 
Foods, respectively. The degree of processing of cookies and biscuits 
in Walmart and Target are nearly identical (0.88 < FPro < 1), limiting 
consumer nutritional choices in a narrow range of processing (Fig. 4a). 
By contrast, Whole Foods not only offers a large number of items (402 
cookies and biscuits) but also provides wider choices of processing 
(0.57 < FPro < 1).

Organization of ingredients in the food supply
Food and beverage companies are required to report the list of ingredi-
ents in descending order of the amount used in the final product. When 
an ingredient itself is a composite, consisting of two or more ingredi-
ents, the US Food and Drug Administration (FDA) mandates paren-
theses to declare the corresponding sub-ingredients (Fig. 5a,b)45. By 
organizing the ingredient list as a tree (Methods), differences between 
highly processed and less processed options can be analysed (Fig. 5). In 
general, products with complex ingredient trees are more processed 
than products with simpler and fewer ingredients (Supplementary 
Section 9.3). For example, the ultra-processed cheesecake in Fig. 5a 
has 43 ingredients, 26 additives and 3 branches with sub-ingredients. 
By contrast, the minimally processed cheesecake has only 14 ingredi-
ents, 5 additives and 2 sub-ingredient branches (Fig. 5b). As illustrated 
by the cheesecake example, the ingredients used in the food supply 
provide valuable insights into the type and extent of processing of the 
final product, prompting the question: which ingredients contribute 
the most to the degree of processing of a product? To answer this, we 
introduce the Ingredient Processing Score (IgFPro), defined as

IgFPro(g) =
∑f∈Fg r

f
g × FProf

∑f∈Fg r
f
g

, (1)

where r f
g  ranks an ingredient g in decreasing order based on its position 

in the ingredient list of each food f that contains g (Supplementary 
Section 9.5). IgFPro ranges between 0 (unprocessed) and 1 
(ultra-processed), enabling the rank order of ingredients based on 
their contribution to the degree of processing of the final product. 
This analysis reveals that not all additives contribute equally to 
ultra-processing. For example, the ultra-processed cheesecake (Fig. 5a) 
has polysorbate 60 (an emulsifier used in cakes for increased volume 
and fine grain with IgFPro = 0.908) and corn syrup (a corn sweetener 
with IgFPro = 0.905)46, each of which emerges as signals of 
ultra-processing with high IgFPro scores. By contrast, both the mini-
mally processed and ultra-processed cheesecakes (Fig. 5) contain xan-
than gum (IgFPro = 0.818), guar gum (IgFPro = 0.801), locust bean gum 
(IgFPro = 0.786) and salt (IgFPro = 0.777). Indeed, the European Food 
Safety Authority reported that xanthan gum as a food additive does 
not pose any safety concern for the general population, and the FDA 
classified guar gum and locust bean gum as ‘generally recognized  
as safe’46.

By the same token, when evaluating oils used as ingredients in 
branded products, IgFPro identifies brain octane oil (IgFPro = 0.573), 
flaxseed oil (IgFPro = 0.69) and olive oil (IgFPro = 0.722) as the highest 
quality options, having the smallest contribution to ultra-processing. 
On the other hand, palm oil (IgFPro = 0.888), vegetable oil (IgF-
Pro = 0.866) and soybean oil (IgFPro = 0.862) represent strong signals 
of ultra-processing (Fig. 6a). It is worth noting that flaxseed oil is high in 
omega-3 fatty acids with several health benefits47. By contrast, blending 
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Fig. 3 | Price and food processing. a, Using robust linear models, the relationship 
between price and food processing are assessed (Supplementary Fig. 8 for 
regression coefficients of all categories). The price per calorie drops by 24.3% 
(soup and stew, n = 505) and 1.2% (cereal, n = 659) for 10% increase in FPro. Also, 
an 8.7% decrease is observed across all foods in GroceryDB (n = 19,345) for 10% 
increase in FPro. It is worth noting that in milk and milk substitute (n = 240), price 
per calorie increases by 1.6% for 10% increase in FPro, partially explained by the 
higher price of plant-based milks that are more processed than regular dairy 
milk. The shaded area for each line is the 95% confidence interval of the standard 
error. b–d, Distributions of price per calorie in the linear bins of FPro scores for 
each store (Supplementary Fig. 7 illustrates the correlation between price and 
FPro for all categories). In soup and stew (b), there is a steep decreasing slope 

between FPro and price per calorie, while in cereals (c) the effect is smaller. In 
milk and milk substitute (d), price tends to slightly increase with higher values of 
FPro. For the box plots, the minimum is the lower quartile, the central line is the 
median and the maximum is the upper quartile. The whiskers show data outside 
of the inter-quartile range. Diamonds represent outliers. e, Percentage of change 
in price per calorie from the minimally processed products to ultra-processed 
products in different food categories. This analysis was performed by comparing 
the average price per calorie of the top 10% most processed items with the 
top 10% least processed items within each category. In the full GroceryDB, on 
average, the ultra-processed items are 52.09% cheaper than their minimally 
processed alternatives. n > 4 for all statistics; see Source Data Figs. 1–6 for exact 
sample sizes.
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of vegetable oils—a signature of UPF—is a straightforward practice to 
achieve desired texture, stability and nutritional profiles48.

Finally, to illustrate the ingredient patterns characterizing UPF 
in Fig. 6b, three tortilla chips are ranked from ‘minimally processed’ 
to ultra-processed. Relative to the snack-chips category, Siete tortilla 
is minimally processed (FPro = 0.477), made with avocado oil and 
blend of cassava and coconut flours. The more processed El Milagro 
tortilla (FPro = 0.769) is cooked with corn oil and ground corn and 
has calcium hydroxide, a generally-recognized-as-safe additive made 
by adding water to calcium oxide (lime) to promote dispersion of 
ingredients46. By contrast, the ultra-processed Doritos (FPro = 0.982) 
have corn flour and a blend of vegetable oils and rely on 12 additives 
to ensure a palatable taste and the texture of the tortilla chip, demon-
strating the complex patterns of ingredients and additives needed for 
ultra-processing (Fig. 6b).

In summary, complex ingredient patterns accompany the produc-
tion of UPF (Supplementary Section 9.4). IgFPro enables the assessment 

of processing characteristics across the entire food supply, as well as 
the contribution of individual ingredients.

Discussion
GroceryDB, accessible to the public at https://www.TrueFood.tech/, 
offers both the data and methodologies needed to quantify food pro-
cessing and analyse the structure of ingredients within the US food sup-
ply. By combining large-scale data on food composition and machine 
learning, GroceryDB uncovers insights on the current state of food 
processing in the US grocery landscape, obtaining distributions of 
FPros that capture a remarkable variability in the offerings of different 
grocery stores. The differences in FPro’s distributions (Fig. 2a) indicate 
that multiple factors drive the range of choices available in grocery 
stores, from the cost of food and the socioeconomic status of the con-
sumers to the distinct declared missions of the supermarket chains: 
‘quality is a state of mind’ for Whole Foods Market and ‘helping people 
save money so they can live better’ for Walmart49,50. Furthermore, the 
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Fig. 4 | The difference between stores in terms of processing. The degree of 
processing of food choices depends on the grocery store and food category.  
a, The degree of processing of food items offered in grocery stores, stratified by 
food category. For example, in cereals, Whole Foods shows a higher variability 
of FPro, implying that consumers have a choice between low and high processed 
cereals. Yet, in pizzas, all supermarkets offer choices characterized by high FPro 
values. Lastly, all cheese products are minimally processed, showing consistency 
across different grocery stores. For the box plots, the minimum is the lower 
quartile, the central line is the median, and the maximum is the upper quartile. 
The whiskers show data outside of the inter-quartile range. Diamonds represent 

outliers. n > 4 for all statistics; see Source Data Figs. 1–6 for exact sample sizes.  
b, The top 30 most reported ingredients in cereals show that Whole Foods tends 
to eliminate corn syrup, uses more sunflower oil and less canola oil and relies  
less on vitamin fortification. In total, GroceryDB has 1,168 cereals from which  
973 have ingredient lists (Walmart = 309, Target = 260, Whole Foods = 395).  
c, The brands of cereals offered in stores partially explains the different patterns 
of ingredients and variation of FPro. While Walmart and Target have a larger 
intersection in the brands of their cereals (for example, Annie’s and Nature’s 
Path), Whole Foods tends to supply cereals from brands not available elsewhere 
(for example, Annie’s Homegrown and Nature’s Path Organic).
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continuous nature of FPro allows for data-driven investigations on 
the relationship between price and food processing stratified by food 
category. Overall, food processing in GroceryDB tends to be associated 
with the production of more affordable calories, a positive correlation 
that raises the likelihood of habitual consumption among lower-income 

populations, ultimately contributing to growing socioeconomic dis-
parities in terms of nutrition security51–56. However, it is important to 
note that the strength and direction of this correlation varies depending 
on the specific food category under consideration, as exemplified by 
the opposite trend of milk and milk substitutes compared with soups 

Ingredients: sour cream (cultured cream, modified
food starch, sodium tripolyphosphate, locust bean  
gum, guar gum, carrageenan), sugar, wheat flour, water, 
shortening (palm oil and/or soybean oil), milk, cream 
cheese (pasteurized milk, cream, cheese culture), 
hydrogenated palm kernel oil, corn syrup, modified 
food starch, baking soda, salt, locust bean gum, natural 
flavour, monoglyceride and/or diglyceride, sodium 
caseinate, maltodextrin, xanthan gum, cheese culture, 
dextrose, polysorbate 60, sorbitan monostearate, guar 
gum, sodium citrate, citric acid, soy lecithin, malic 
acid, potato maltodextrin, whey protein concentrate, 
beta-carotene, apocarotenal.

Ingredients: cream cheese (pasteurized milk,
cream, salt, stabilizer (carob bean gum and/or
xanthan gum, locust bean gum, guar gum), cheese 
culture), maltitol, egg, lemon juice, vanilla. 

a bFPro = 0.953 FPro = 0.720
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Fig. 5 | Ingredient trees. GroceryDB organizes the ingredient list of products into 
structured trees, where the additives are marked as orange nodes (Methods and 
Supplementary Section 9). a, Edwards Desserts Original Whipped Cheesecake 
is a highly processed cheesecake that contains 43 ingredients from which 
26 are additives, resulting in a complex ingredient tree with 3 branches of 
sub-ingredients. b, Pearl River Mini No Sugar Added Cheesecake is a minimally 

processed cheesecake that has a simpler ingredient tree with 14 ingredients, 5 
additives and 2 sub-ingredient branches. Additives are identified according to 
the FDA77,78. See Source Data Fig. 5. Credit: watercolour cheesecake illustration 
and gold line stripes, Canva.com; delicious cheesecake on white background, 
Africa Studio, Adobe Stock.
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Fig. 6 | IgFPro. To investigate which ingredients contribute most to ultra-
processed products, equation (1) is used. With the introduction of IgFPro, 
over 12,000 ingredients are ranked by their prevalence and contribution to 
ultra-processed products, prioritizing ingredients and food groups for targeted 
intervention. A total of 1,676 ingredients are in more than 10 products. a, The 
IgFPro of all ingredients that appeared in at least 10 products are calculated by 
rank-ordering ingredients based on their contribution to UPF. The ingredients 
are colored based on their distance to the root node, d, of the ingredient tree 
(Methods). The popular oils used as an ingredient are highlighted, with the 
Brain Octane, flaxseed and olive oils contributing the least to ultra-processed 
products. By contrast, the palm, vegetable and soybean oils contribute 
the most to ultra-processed products (Supplementary Section 9.5). b, The 
patterns of ingredients in the least-processed tortilla chips versus the ultra-
processed tortilla chips. The IgFPro values of the oils used in the three tortilla 
chips are highlighted in bold in a. The minimally processed Siete tortilla chips 

(FPro = 0.477) uses avocado oil (IgFPro = 0.822), and the more processed El 
Milagro tortilla (FPro = 0.769) uses corn oil (IgFPro = 0.886). By contrast, 
the ultra-processed Doritos (FPro = 0.982) relies on a blend of vegetable oils 
(IgFPro = 0.866) and is accompanied by a much more complex ingredient tree, 
indicating that there is no single ingredient ‘biomarker’ for UPF. Ingredient trees 
contain both ingredients (blue) and additives (orange). Additives are identified 
according to the FDA77,78. Credit: food packaging (foil and plastic snack bags 
mockup isolated on white background, purple coloured pillow packages for food 
production on white PNG file), Juraiwan, Adobe Stock; brown paper bag, Graphic, 
Adobe Stock; foil and plastic snack bags mockup isolated on white background, 
dark blue coloured pillow packages for food production, snack wrappers on 
white background with clipping path, MERCURY, Adobe Stock; flying Mexican 
nachos chips isolated on white background, Yeti Studio, Adobe Stock; nachos 
and tortilla chip illustration, Canva.com.
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and stews (Supplementary Section 8). Further in-depth analyses are 
needed to evaluate the effectiveness of intervention strategies target-
ing specific food groups within diverse food environments.

Governments increasingly acknowledge the impact of processed 
foods on population health and its long-term effect on healthcare57,58. 
For example, the UK spends £18 billion annually on direct medical 
costs related to non-communicable diseases like obesity59, while the 
United States incurs $1.1 trillion in yearly food-related human health 
costs60,61. GroceryDB serves as a valuable resource for both consum-
ers and policymakers, offering essential insights to gauge the level of 
food processing within the food supply. For instance, in categories like 
cereals, milk and milk alternatives, pasta noodles and snack bars, FPro 
shows a wide range, highlighting the substantial variations in the pro-
cessing levels of products. If consumers had access to this processing 
data, they could make informed choices, selecting items with mark-
edly different degrees of processing (Fig. 2b). Yet, the comprehension 
of nutrient and ingredient data disclosed on food packaging often 
poses a challenge to consumers due to unrealistic serving sizes and 
confusing health claims based on one or a few nutrients. Our primary 
objective lies in translating this wealth of data into an actionable scor-
ing system, enabling consumers to make healthier food choices and 
embrace effective dietary substitutions, without overwhelming them 
with excessive information. In addition, this approach holds great 
potential for public health initiatives aimed at improving the overall 
quality of the food environment, such as strategies reorganizing super-
market layouts, optimizing shelf placements and thoughtfully design-
ing counter displays53,62,63. Transforming health-related behaviours is 
a challenging task64,65; hence, easily adoptable dietary modifications 
along with environmental nudges could make it easier for individuals 
to embrace healthier choices.

Currently, FPro partially draws from expertise-based food pro-
cessing classifications due to limited data concerning compound 
concentrations indicative of food matrix alterations, such as cellular 
wall transformations or industrial processing techniques. However, a 
comprehensive mapping of the ‘dark matter of nutrition’, encompass-
ing chemical concentrations for additives and processing by-products, 
aims to evolve FPro into an unsupervised system, independent of 
manual classifications66,67. Unlike expertise-based systems, FPro func-
tions as a quantitative algorithm, using standardized inputs to generate 
reproducible continuous scores, facilitating sensitivity analysis and 
uncertainty estimations37 (Supplementary Section 5). These important 
features enhance reliability, transparency and interpretability of the 
analyses while reducing errors associated with the descriptive nature 
of manual classifications28, which have shown a low degree of consist-
ency among nutrition specialists30.

The chemical composition of branded products is partially 
captured by the nutrition facts table and partially reported in the 
ingredient list, which includes additives such as artificial colours, 
flavours and emulsifiers. However, comprehensive and internation-
ally well-regulated data on food ingredients are currently limited, as 
documented by the GS1 UK data crunch analysis which reported an 
average of 80% inconsistency in products’ data31, leading us to focus 
on the nutrition facts to enhance the algorithm’s portability and repro-
ducibility. The nutrition facts alone show excellent performance in 
discriminating between NOVA classes, confirming how food processing 
consistently alters nutrient concentrations with reproducible patterns, 
effectively harnessed by machine learning37. While FPro assesses the 
degree of food processing by holistically evaluating nutrient concentra-
tions, the few nutrients available on food packaging increase the risk 
of identifying products with similar nutrition facts but distinct food 
matrices (for example, pre-frying, puffing, extrusion-cooking). Indeed, 
if the chemical panel used to train the algorithm fails to exhaustively 
capture matrix modifications induced by processing and cooking, FPro 
and the substitution algorithm implemented at https://www.TrueFood.
tech/ remain blind to these chemical-physical changes. Incorporating 

disambiguated ingredients in FPro, such as the ultra-processing mark-
ers characterized by SIGA68, may offer a solution until larger composi-
tion tables for branded products become available (Supplementary 
Section 5).

In summary, this work represents a departure from traditional 
food classification systems, advancing toward the use of machine 
learning methodologies to model the chemical complexity of food69 
(Supplementary Section 1). Despite the limited information provided 
by the FDA-regulated nutrition labels, GroceryDB and FPro offer a 
data-driven approach that enables a substitution algorithm capable of 
recommending similar but less processed alternatives for any food in 
GroceryDB. Together, GroceryDB and the TrueFood platform highlight 
the importance of data transparency in grocery store inventories, a key 
factor that directly shapes consumer choices.

Methods
Data collection
Publicly accessible data on food products were compiled from the 
online platforms of Walmart, Target and Whole Foods. Each store 
organizes its food items hierarchically. Using these categorizations, 
the stores’ websites are systematically navigated to identify specific 
food items. To ensure consistency, the food category hierarchy within 
GroceryDB is standardized by comparing and aligning the classifica-
tion systems used by each store. The stores sourced nutrition facts 
from physical food labels and provided digital versions for each food 
item. These data allowed us to standardize nutrient concentrations to 
a uniform measure of 100 g and use FoodProX to evaluate the degree 
of food processing for each item. Lastly, all data for this manuscript 
were collected in May 2021.

Calculation of the FPro
Processing alters the nutrient profile of food, changes that are detecta-
ble and categorizable using machine learning37,69,70. Hence, FoodProX37, 
a random forest classifier, translates the combinatorial changes in 
the nutrient amounts induced by food processing into a FPro. Exten-
sive tests and validations on the stability of FPro were performed in 
several databases such as the US FNDDS and the international OFF. 
FPro enabled the implementation of an in silico study based on US 
cross-sectional population data, showing that on average substituting 
only a single food item in a person’s diet with a minimally processed 
alternative from the same food category can reduce the risk of develop-
ing metabolic syndrome (12.25% decrease in odds ratio) and increase 
vitamin blood levels (4.83% and 12.31% increase of vitamin B12 and 
vitamin C blood concentration)37.

FoodProX takes as input 12 nutrients reported in the nutrition 
facts (Supplementary Table 1) and returns FPro, a continuous score 
ranging between 0 (unprocessed foods such as fruits and vegetables) 
and 1 (UPF such as instant soups and shelf-stable breads). The manual 
NOVA classifications were applied to the USDA Standard Reference 
and FNDDS databases to train FoodProX. In the original classification, 
NOVA labels were assigned by inspecting the ingredient list and the 
food description but without taking into account nutrient content.

FPro does not assess individual nutrients in isolation but, rather, 
learns from the configurations of correlated nutrient changes within 
a fixed quantity of food (100 g)37. Consequently, a single high or low 
nutrient value does not dictate a food’s FPro. Instead, the final score 
depends on the likelihood of observing the overall pattern of nutrient 
concentrations in unprocessed food versus UPF. For instance, while 
fortified food may mirror mineral and vitamin content in unprocessed 
food, the algorithm identifies unique concentration signatures unlikely 
to be found in minimally processed food, resulting in a higher FPro37.

The calculation of FPro for all food in GroceryDB represents a 
generalization task, where the model faces ‘never-before-seen’ data69,71. 
More details on the training dataset, including class heterogeneity and 
imbalance, are available in Supplementary Section 4.
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Price for calories trends
Robust linear models with Huber’s t-norm72–74 were applied to cal-
culate regression coefficients and P values for the relationship 
log(PricePerCalorie) ~ log(FPro). The detailed regression results for 
each food category are presented in Supplementary Fig. 8, while the 
overall trend across GroceryDB is depicted in Fig. 3a. To illustrate 
the price disparity at the extremes of food processing, the percent-
age change in price per calorie shown in Fig. 3e was calculated by 
comparing the average price per calorie of the top 10% minimally 
processed items to that of the top 10% ultra-processed items within 
each category.

Ingredient trees
An ingredient list is a reflection of the recipe used to prepare a branded 
food item. The ingredient lists are sorted based on the amount of 
ingredients used in the preparation of an item as required by the FDA. 
An ingredient tree can be created in two ways: (a) with emphasis on 
capturing the main and sub-ingredients, similar to a recipe, as illus-
trated in Supplementary Fig. 17a; (b) with emphasis on the order of 
ingredients as a proxy for their amount in a final product, as illustrated 
in Supplementary Fig. 17b, where the distance from the root, d, reflects 
the amount of an individual ingredient relative to all ingredients. We 
opted for (b) to calculate IgFPro, as ranking the amount of an ingredient 
in a food is essential to quantify the contribution of individual ingre-
dients to ultra-processing. In equation (1), r f

g = 1/d f
g  ranks the amount 

of an ingredient g in food f, where d f
g  captures the distance from the 

root (Supplementary Fig. 17b for an example). Finally, IgFPro shows 
remarkable variability when compared with the average FPro of prod-
ucts containing the selected ingredient (Supplementary Fig. 18), sug-
gesting distinctive patterns of correlation between the products’ FPro 
and the ranking of ingredients in their ingredient lists75.

Database structure
The database comprises two main files, both stored in CSV format for 
ease of use and accessibility:

1. GroceryDB Foods File. This file contains comprehensive infor-
mation about all the foods included in GroceryDB. Each row 
represents a distinct food item. This file includes the following 
columns: 

• name: The name of the food item, typically as it appears 
on the product packaging.

• brand: The brand or manufacturer of the food item.
• harmonized single category: The general category or 

type of food (for example, seafood, cereal and so on).
• store: The retail store where the food item is available 

(for example, Walmart, Target, Whole Foods).
• f_FPro: Average FPro score of the food across the ensem-

ble of classifiers. The FPro score is calculated using the 
FoodProX algorithm, taking into account the nutrition 
facts of the food.

• f_FPro_P: A string indicating whether the food has enough 
nutritional descriptors as detailed in Supplementary Sec-
tion 4.

• f_min_FPro: Minimum FPro score across the ensemble of 
classifiers.

• f_std_FPro: The standard deviation of the FPro score 
across the ensemble of classifiers.

• f_FPro_class: Expected NOVA class assigned according to 
FoodProX.

• has10_nuts: Boolean value indicating whether the food 
is described by the 10 key nutrients described in Supple-
mentary Section 4.

• is_Nuts_Converted_100g: Indicator whether the food  
nutrients are converted per 100 g.

• nutritional information: Detailed nutritional informa-
tion for the food item, including protein, total fat, carbo-
hydrate, total sugars, total dietary fibre, calcium, iron, 
sodium, vitamin C, cholesterol, total saturated fatty acids 
and total vitamin A.

 Please note that the prices of the food items are not included in this 
public release due to potential restrictions on public disclosure. How-
ever, this information is available upon request. The file is available at 
https://github.com/Barabasi-Lab/GroceryDB/blob/main/data/Gro-
ceryDB_foods.csv.

2. GroceryDB IgFPro File. This file contains data related to the 
IgFPro score of the ingredients listed in GroceryDB. Each row 
corresponds to a specific ingredient. The file is available at 
https://github.com/Barabasi-Lab/GroceryDB/blob/main/data/
GroceryDB_IgFPro.csv. The columns in this file are as follows: 

• ingredient_name: The standardized name of the 
ingredient.

• count_of_products: The total number of products in the 
database that contain this ingredient.

• ingredient_FPro: IgFPro calculated for the selected 
ingredient.

• average_FPro_of_products: The average FPro score of 
the products containing the selected ingredient.

• average_distance_to_root: The average distance of the 
ingredient from the root in the ingredient tree, repre-
senting its relative amount in the food item. Ingredients 
closer to the root contribute more to the calculation of 
IgFPro.

• ingredient_normalization_term: A numerical value used 
to normalize a food’s contribution to the IgFPro score, 
based on the ingredient’s overall ranking across all foods.

Substitution algorithm at TrueFood.Tech
The site https://www.TrueFood.tech/ provides food substitution rec-
ommendations aimed at gently nudging consumers towards less pro-
cessed alternatives. To accomplish this, we first identify food items that 
belong to the same category and share partial semantic similarity with 
the targeted item (range 0.10–0.95), based on both food names and 
ingredient lists. This approach increases the diversity of displayed rec-
ommendations while ensuring they remain within the same category.

The popular term frequency-inverse document frequency (Tf-idf) 
algorithm is used to measure the significance of words to foods in 
GroceryDB, adjusting for commonality across entries76. The similarity 
between weighted word vectors is calculated leveraging cosine similar-
ity. The final similarity between the queried food and other food items 
is determined by multiplying the ingredient-list-based similarity and 
the food-name-based similarity.

Next, the semantically filtered foods are sorted by their FPro 
scores, ranking the recommendations in ascending order of FPro. 
This method can identify the most similar food items with a lower FPro 
compared with the targeted item. Up to 50 items, listed in increasing 
order of FPro, are displayed on the website.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data in GroceryDB was scraped from Walmart, Target and Whole 
Foods in 2021. GroceryDB is available to the public and consumers at 
https://www.TrueFood.tech/. The data are also openly available on 
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MongoDB servers with a read-only key available via BarabasiLab GitHub 
repository at https://github.com/Barabasi-Lab/GroceryDB/. The USDA 
FNDDS dataset is available via the same GitHub repository. Source data 
are provided with this paper.

Code availability
All code generated for the analysis are available via the BarabasiLab 
GitHub repository at https://github.com/Barabasi-Lab/GroceryDB/. 
The analysis was done in Python==3.11.7 with the following pack-
ages: jupyter notebook==6.5.4, pymongo==4.8.0, pandas==2.1.4, 
numpy==1.26.4, seaborn==0.12.2, statsmodels==0.14.0, scipy==1.11.4, 
matlabplot==3.8.0, plotly==5.9.0 and certifi==2024.6.2.

References
1. Seferidi, P. et al. The neglected environmental impacts of 

ultra-processed foods. Lancet Planet. Health 4, e437–e438 
(2020).

2. Fardet, A. & Rock, E. Ultra-processed foods and food system 
sustainability: what are the links? Sustainability 12, 6280 (2020).

3. Macdiarmid, J. I. The food system and climate change: are 
plant-based diets becoming unhealthy and less environmentally 
sustainable? Proc. Nutr. Soc. 81, 162–167 (2022).

4. Ambikapathi, R. et al. Global food systems transitions have 
enabled affordable diets but had less favourable outcomes for 
nutrition, environmental health, inclusion and equity. Nat. Food 3, 
764–779 (2022).

5. Lane, M. M. et al. Ultra-processed food exposure and adverse 
health outcomes: umbrella review of epidemiological 
meta-analyses. BMJ 384, e077310 (2024).

6. Lustig, R. H. Processed food—an experiment that failed. JAMA 
Pediatr. 171, 212–214 (2017).

7. Milanlouei, S. et al. A systematic comprehensive longitudinal 
evaluation of dietary factors associated with acute myocardial 
infarction and fatal coronary heart disease. Nat. Commun. 11,  
1–14 (2020).

8. Martínez Steele, E., Popkin, B. M., Swinburn, B. & Monteiro, C. A. 
The share of ultra-processed foods and the overall nutritional 
quality of diets in the US: evidence from a nationally representative 
cross-sectional study. Popul. Health Metr. 15, 6 (2017).

9. Monteiro, C. A. et al. NOVA. The star shines bright. World Nutr. J. 7, 
28–38 (2016).

10. Steele, E. M. et al. Ultra-processed foods and added sugars 
in the U.S. diet: evidence from a nationally representative 
cross-sectional study. BMJ Open 6, e009892 (2016).

11. Steele, E. M. & Monteiro, C. A. Association between dietary 
share of ultra-processed foods and urinary concentrations of 
phytoestrogens in the US. Nutrients 9, 209 (2017).

12. Adjibade, M. et al. Prospective association between 
ultra-processed food consumption and incident depressive 
symptoms in the French NutriNet-Santé cohort. BMC Med. 17,  
1–13 (2019).

13. Fiolet, T. et al. Consumption of ultra-processed foods and cancer 
risk: results from NutriNet-Santé prospective cohort. BMJ 360, 
k322 (2018).

14. Srour, B. et al. Ultra-processed food intake and risk 
of cardiovascular disease: prospective cohort study 
(NutriNet-Santé). BMJ 365, l1451 (2019).

15. Hall, K. D. et al. Ultra-processed diets cause excess calorie intake 
and weight gain: an inpatient randomized controlled trial of ad 
libitum food intake. Cell Metab. 30, 1–11 (2019).

16. Martínez Steele, E., Khandpur, N., da Costa Louzada, M. L. & 
Monteiro, C. A. Association between dietary contribution of 
ultra-processed foods and urinary concentrations of phthalates 
and bisphenol in a nationally representative sample of the US 
population aged 6 years and older. PLoS ONE 15, 1–21 (2020).

17. Nerín, C., Aznar, M. & Carrizo, D. Food contamination during food 
process. Trends Food Sci. Technol. 48, 63–68 (2016).

18. Rather, I. A., Koh, W. Y., Paek, W. K. & Lim, J. The sources of 
chemical contaminants in food and their health implications. 
Front. Pharmacol. 8, 830 (2017).

19. Arisseto, A. P. Furan in processed foods. In Food Hygiene and 
Toxicology in Ready-to-Eat Foods (ed. Kotzekidou, P.) Ch. 21, 
383–396 (Academic, 2016).

20. Buckley, J. P., Kim, H., Wong, E. & Rebholz, C. M. Ultra-processed 
food consumption and exposure to phthalates and bisphenols 
in the US National Health and Nutrition Examination Survey, 
2013–2014. Environ. Int. 131, 105057 (2019).

21. Mozaffarian, D., Fleischhacker, S. & Andrés, J. R. Prioritizing 
nutrition security in the US. JAMA 325, 1605–1606 (2021).

22. Livings, M. S. et al. Food and nutrition insecurity: experiences that 
differ for some and independently predict diet-related disease, 
Los Angeles County, 2022. J. Nutr. 154, 2566–2574 (2024).

23. Food and Nutrition Security (USDA, 2024); https://www.
usda.gov/about-usda/general-information/priorities/
food-and-nutrition-security

24. Volpp, K. G. et al. Food is medicine: a presidential advisory from 
the American Heart Association. Circulation 148, 1417–1439 (2023).

25. Mozaffarian, D., Andrés, J. R., Cousin, E., Frist, W. H. &  
Glickman, D. R. The White House Conference on Hunger, Nutrition 
and Health is an opportunity for transformational change.  
Nat. Food 3, 561–563 (2022).

26. Mozaffarian, D., Rosenberg, I. & Uauy, R. History of modern 
nutrition science-implications for current research, dietary 
guidelines, and food policy. BMJ 361, k2392 (2018).

27. Sadler, C. R. et al. Processed food classification: conceptualisation 
and challenges. Trends Food Sci. Technol. 112, 149–162 (2021).

28. Gibney, M. J. & Forde, C. G. Nutrition research challenges for 
processed food and health. Nat. Food 3, 104–109 (2022).

29. Lacy-Nichols, J. & Freudenberg, N. Opportunities and limitations 
of the ultra-processed food framing. Nat. Food 3, 975–977 (2022).

30. Braesco, V. et al. Ultra-processed foods: how functional is the 
NOVA system? Eur. J. Clin. Nutr. 76, 1245–1253 (2022).

31. Data Crunch Report: The Impact of Bad Data on Profits and 
Customer Service in the UK Grocery Industry (accessed April 4, 
2022) (GS1 UK and Cranfield University School of Management, 
2009); https://dspace.lib.cranfield.ac.uk/bitstream/
handle/1826/4135/Data_crunch_report.pdf

32. THE 17 GOALS ∣ Sustainable Development (United Nations, 2020); 
https://sdgs.un.org/goals

33. Methods and Standards (Food and Agriculture Organization 
of the United Nations, 2021); https://www.fao.org/statistics/
methods-and-standards/en/

34. Sarku, R., Clemen, U. A. & Clemen, T. The application of artificial 
intelligence models for food security: a review. Agriculture 13, 
2037 (2023).

35. Hu, G., Ahmed, M. & L’Abbé, M. R. Natural language processing 
and machine learning approaches for food categorization and 
nutrition quality prediction compared with traditional methods. 
Am. J. Clin. Nutr. 117, 553–563 (2023).

36. Impact Initiative (AI for Good, 2019); https://aiforgood.itu.int/
37. Menichetti, G., Ravandi, B., Mozaffarian, D. & Barabási, A.-L. 

Machine learning prediction of the degree of food processing. 
Nat. Commun. 14, 2312 (2023).

38. Chen, X. et al. Consumption of ultra-processed foods and health 
outcomes: a systematic review of epidemiological studies. Nutr. J. 
19, 86 (2020).

39. Mendoza, K. et al. Ultra-processed foods and cardiovascular 
disease: analysis of three large US prospective cohorts and 
a systematic review and meta-analysis of prospective cohort 
studies. Lancet Reg. Health Am. 37, 100859 (2024).

http://www.nature.com/natfood
https://github.com/Barabasi-Lab/GroceryDB/
https://github.com/Barabasi-Lab/GroceryDB/
https://www.usda.gov/about-usda/general-information/priorities/food-and-nutrition-security
https://www.usda.gov/about-usda/general-information/priorities/food-and-nutrition-security
https://www.usda.gov/about-usda/general-information/priorities/food-and-nutrition-security
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/4135/Data_crunch_report.pdf
https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/4135/Data_crunch_report.pdf
https://sdgs.un.org/goals
https://www.fao.org/statistics/methods-and-standards/en/
https://www.fao.org/statistics/methods-and-standards/en/
https://aiforgood.itu.int/


Nature Food

Resource https://doi.org/10.1038/s43016-024-01095-7

40. Slimani, N. et al. Contribution of highly industrially processed 
foods to the nutrient intakes and patterns of middle-aged 
populations in the European prospective investigation into cancer 
and nutrition study. Eur. J. Clin. Nutr. 63, S206–S225 (2009).

41. Poti, J. M., Mendez, M. A., Ng, S. W. & Popkin, B. M. Is the degree 
of food processing and convenience linked with the nutritional 
quality of foods purchased by US households? Am. J. Clin. Nutr. 
101, 1251–1262 (2015).

42. Davidou, S., Christodoulou, A., Fardet, A. & Frank, K. The 
holistico-reductionist SIGA classification according to the degree 
of food processing: an evaluation of ultra-processed foods in 
French supermarkets. Food Funct. 11, 2026–2039 (2020).

43. U.S. Population: Consumption of Breakfast Cereals (Cold) 
from 2011 to 2024 (accessed February 2022) (Statista, 
2021); https://www.statista.com/statistics/281995/
us-households-consumption-of-breakfast-cereals-cold-trend/

44. Bray, G. A., Nielsen, S. J. & Popkin, B. M. Consumption of 
high-fructose corn syrup in beverages may play a role in the 
epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).

45. Guidance for Industry: Food Labeling Guide (accessed 
1 November 2021) (USFDA, 2021); https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/
guidance-industry-food-labeling-guide

46. Igoe, R. S. Dictionary of Food Ingredients (Springer Science & 
Business Media, 2011).

47. Goyal, A., Sharma, V., Upadhyay, N., Gill, S. & Sihag, M. Flax and 
flaxseed oil: an ancient medicine & modern functional food.  
J. Food Sci. Technol. 51, 1633–1653 (2014).

48. Hashempour-Baltork, F., Torbati, M., Azadmard-Damirchi, S. & 
Savage, G. P. Vegetable oil blending: a review of physicochemical, 
nutritional and health effects. Trends Food Sci. Technol. 57, 52–58 
(2016).

49. Whole Foods Mission and Values (accessed 1 March 2022) (2012); 
https://www.WholeFoodsmarket.com/mission-values

50. Walmart History (accessed 1 March 2022) (2022); https://
corporate.walmart.com/about/history

51. Gupta, S., Hawk, T., Aggarwal, A. & Drewnowski, A. Characterizing 
ultra-processed foods by energy density, nutrient density, and 
cost. Front. Nutr. 6, 70 (2019).

52. Zenk, S. N., Tabak, L. A. & Pérez-Stable, E. J. Research 
opportunities to address nutrition insecurity and disparities. JAMA 
327, 1953–1954 (2022).

53. Venkataramani, A. S., O’Brien, R., Whitehorn, G. L. & Tsai, A. C. 
Economic influences on population health in the United States: 
toward policymaking driven by data and evidence. PLoS Med. 17, 
e1003319 (2020).

54. Erndt-Marino, J., O’Hearn, M. & Menichetti, G. An integrative 
analytical framework to identify healthy, impactful, and equitable 
foods: a case study on 100% orange juice. Int. J. Food Sci. Nutr. 74, 
668–684 (2023).

55. Coletro, H. N. et al. The combined consumption of fresh/
minimally processed food and ultra-processed food on food 
insecurity: COVID Inconfidentes, a population-based survey. 
Public Health Nutr. 26, 1414–1423 (2023).

56. Hutchinson, J. & Tarasuk, V. The relationship between diet quality 
and the severity of household food insecurity in Canada. Public 
Health Nutr. 25, 1013–1026 (2022).

57. Griffith, R., Jenneson, V., James, J. & Taylor, A. The Impact of a Tax 
on Added Sugar and Salt. Tech. Rep., IFS Working Paper  
(IFS, 2021); http://hdl.handle.net/10419/242920

58. Mozaffarian, D., Blanck, H. M., Garfield, K. M., Wassung, A. & 
Petersen, R. A Food is Medicine approach to achieve nutrition 
security and improve health. Nat. Med. 28, 2238–2240 (2022).

59. The National Food Strategy: The Plan (accessed 23 March 2022) 
(2019); https://www.nationalfoodstrategy.org/

60. True Cost of Food: Measuring What Matters to Transform the U.S. 
Food System (The Rockefeller Foundation, 2021); https://www.
rockefellerfoundation.org/report/true-cost-of-food-measuring- 
what-matters-to-transform-the- u-s-food-system/

61. Nasirian, F. & Menichetti, G. Molecular interaction networks and 
cardiovascular disease risk: the role of food bioactive small 
molecules. Arterioscler. Thromb. Vasc. Biol. 43, 813–823  
(2023).

62. Adams, J. Rebalancing the marketing of healthier versus less 
healthy food products. PLoS Med. 19, e1003956 (2022).

63. Shaw, S. C., Ntani, G., Baird, J. & Vogel, C. A. A systematic 
review of the influences of food store product placement on 
dietary-related outcomes. Nutr. Rev. 78, 1030–1045 (2020).

64. Shepherd, R. Resistance to changes in diet. Proc. Nutr. Soc. 61, 
267–272 (2002).

65. Kelly, M. P. & Barker, M. Why is changing health-related behaviour 
so difficult? Public Health 136, 109–116 (2016).

66. Barabási, A. L., Menichetti, G. & Loscalzo, J. The unmapped 
chemical complexity of our diet. Nat. Food 1, 33–37 (2020).

67. Menichetti, G., Barabasi, A.-L. & Loscalzo, J. Decoding the 
Foodome: molecular networks connecting diet and health.  
Annu. Rev. Nutr. 44, 257–288 (2024).

68. Davidou, S., Christodoulou, A., Frank, K. & Fardet, A. A study 
of ultra-processing marker profiles in 22,028 packaged 
ultra-processed foods using the Siga classification. J. Food 
Compos. Anal. 99, 103848 (2021).

69. Menichetti, G. & Barabási, A.-L. Nutrient concentrations in food 
display universal behaviour. Nat. Food 3, 375–382 (2022).

70. Hooton, F., Menichetti, G. & Barabási, A. L. Exploring food 
contents in scientific literature with FoodMine. Sci. Rep. 10, 16191 
(2020).

71. Chatterjee, A. et al. Improving the generalizability of protein- 
ligand binding predictions with AI-Bind. Nat. Commun. 14, 1989 
(2023).

72. Seabold, S. & Perktold, J. Statsmodels: Econometric and 
statistical modeling with Python. In Proc. 9th Python in Science 
Conference (eds van der Walt, S. & Millman, J.) 57–61  
(2010).

73. Huber, P. J. Robust regression: asymptotics, conjectures and 
Monte Carlo. Ann. Stat. 1, 799–821 (1973).

74. Croux, C. & Rousseeuw, P. J. Time-efficient algorithms for two 
highly robust estimators of scale. In Computational Statistics, 
411–428 (Springer, 1992).

75. Brown, G. G. & Rutemiller, H. C. Means and variances of stochastic 
vector products with applications to random linear models. 
Manag. Sci. 24, 210–216 (1977).

76. Beel, J., Gipp, B., Langer, S. & Breitinger, C. Research-paper 
recommender systems: a literature survey. Int. J. Digit. Libr. 17, 
305–338 (2016).

77. Substances Added to Food (FDA, accessed 1 November 2021); 
https://www.hfpappexternal.fda.gov/scripts/fdcc/index.
cfm?set=FoodSubstances

78. Substances Added to Food (FDA, accessed 1 November 2021) 
(2003); https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfcfr/CFRSearch.cfm?CFRPart=172

Acknowledgements
We thank D. Shanbhag at Northeastern University for his help on data 
collection and cleaning. We thank D. Koshkina for help in designing 
the figures. A.-L.B. is partially supported by National Institutes of 
Health grant 1P01HL132825, American Heart Association grant 
151708 and European Research Council grant 810115-DYNASET. G.M. 
is supported by National Institutes of Health/National Heart, Lung, 
and Blood Institute K25HL173665 and American Heart Association 
24MERIT1185447.

http://www.nature.com/natfood
https://www.statista.com/statistics/281995/us-households-consumption-of-breakfast-cereals-cold-trend/
https://www.statista.com/statistics/281995/us-households-consumption-of-breakfast-cereals-cold-trend/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide
https://www.WholeFoodsmarket.com/mission-values
https://corporate.walmart.com/about/history
https://corporate.walmart.com/about/history
http://hdl.handle.net/10419/242920
https://www.nationalfoodstrategy.org/
https://www.rockefellerfoundation.org/report/true-cost-of-food-measuring-what-matters-to-transform-the-u-s-food-system/
https://www.rockefellerfoundation.org/report/true-cost-of-food-measuring-what-matters-to-transform-the-u-s-food-system/
https://www.rockefellerfoundation.org/report/true-cost-of-food-measuring-what-matters-to-transform-the-u-s-food-system/
https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances
https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172


Nature Food

Resource https://doi.org/10.1038/s43016-024-01095-7

Author contributions
G.M., B.R. and A.-L.B. conceived and designed the research. B.R. 
performed data collection, data modelling, statistical analysis, and 
data querying and integration and contributed to the writing of the 
manuscript. G.I. and M.S. performed data cleaning, data curation, 
code cleaning and optimization, and fact checking and contributed to 
the writing of the manuscript. P.M. performed data cleaning and data 
integration and contributed to the writing of the manuscript. G.M. and 
A.-L.B. wrote the manuscript and contributed to the conceptual and 
statistical design of the study.

Competing interests
A.-L.B. is the founder of Scipher Medicine and Naring Health, 
companies that explore the use of network-based tools in health and 
food, and Datapolis, which focuses on urban data. All other authors 
declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s43016-024-01095-7.

Correspondence and requests for materials should be addressed to 
Giulia Menichetti.

Peer review information Nature Food thanks Luca Pappalardo and the 
other, anonymous, reviewer(s) for their contribution to the peer review 
of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2025

http://www.nature.com/natfood
https://doi.org/10.1038/s43016-024-01095-7
http://www.nature.com/reprints


1

nature research  |  reporting sum
m

ary
April 2020

Corresponding author(s):
Giulia Menichetti 

Last updated by author(s): Nov 5, 2024

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used python to scrape data (food items, their nutrition facts, ingredient list, etc) from the website of grocery stores. If needed we can 
share the scraper python code that we designed to scrape data from Walmart, Target, and WholeFoods online stores.

Data analysis We used python==3.11.7 with the packages: jupyter notebook==6.5.4, pymongo==4.8.0, pandas==2.1.4, numpy==1.26.4, seaborn==0.12.2, 
statsmodels==0.14.0, scipy==1.11.4, matlabplot==3.8.0,  plotly==5.9.0, and certifi==2024.6.2 to analyze the data. All created codes are 
accessible through two Jupyter Notebooks and two py files as well as select datasets in our GitHub repository (https://github.com/Barabasi-
Lab/GroceryDB/tree/main/analysis). The large data we scraped is stored in MongoDB which is accessible via the codes in the GitHub and 
through our website (TrueFood.tech).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Since the data is large, we have information for over 50,000 foods, we used MongoDB to store the data. The key to access MongoDB (read only) is available in our 
GitHub repository. Also, we provide two notebooks to enhance data availability. The notebooks retrieve all data from MongoDB and recreate all the figures in the 
manuscript and SI. Please see the following folder in our public GitHub repository https://github.com/Barabasi-Lab/GroceryDB/tree/main/analysis
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Analyzing the prevalence of processed foods in the US grocery stores using quantitative methods

Research sample We scraped over 50,000 foods from the websites of Walmart, Target, and WholeFoods to create GroceryDB and analyze the extent 
of food processing in the US food supply. We chose these stores since most of the US use them as their source of groceries. By 
collecting all the foods from these stores, GroceryDB is a representative sample of many Americans food options. Each store has its 
own data structure to categorize and price items as well as offering different food items available for purchase. 

Sampling strategy We scraped all foods from Walmart, Target, and WholeFoods store online websites. There was no sampling procedure used since we 
collected every food item available for purchase. There was no sample size calculations performed. The rationale was to collect a 
holistic dataset of US consumption of foods, by collecting all foods from the stores, we believe the data size is sufficient.

Data collection We scraped foods from Walmart, Target, and WholeFoods store online websites by using Python to navigate their storefronts and 
automatically collect the name, ingredient list, price, and nutrition information of all food items. The data collection was blind to the 
study hypothesis and downstream analysis.

Timing We started creating the codes to scrape the online stores in September 2020, testing and debugging the codes until April 2021. We 
started collecting the data in May 2021 and completed the collection by the end of May 2021.

Data exclusions We analyzed all foods that had minimum of 10 nutrition facts reported by the grocery stores. Also, we analyzed the ingredient list of 
all foods

Non-participation No participants were involved in the study.

Randomization Our study is a holistic approach to assessing the processed foods within grocery stores Americans commonly use to purchase their 
groceries. Therefore, we are comparing the different food categories using the full list of food items within the categories as well as 
using the full list of food items that contain a specific ingredient for the calculation of IgFPro. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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