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setting healthful dietary guidelines, advising individuals, 
patients, and groups, and communicating sound nutri-
tion advice to the public. At present, dietary guidelines 
commonly recommend limiting the intake of SFA-rich 
foods and the energy contribution from saturated fat to 
less than 10% of total calories [10–13]. It is the official 
policy in the United States, Australia, and many Euro-
pean nations, as well as of the World Health Organization 
(WHO). The controversy that has arisen over saturated 
fat and its role in a healthy diet propagates some doubt 
as to the validity of the recommendation, highlighting a 
need for scientific scrutiny.

Much of the work in the area has focused on investi-
gating the physiologic effects of dietary components. 
While necessary, this research is limited in scope and 
liable to yield some inconclusive and contradictory 
results, due to variations in study design, methods, and 
samples, confounding variables, uncertainty regarding 

Introduction
Saturated fat has incited significant controversy in the 
nutrition community. A longstanding notion is that a 
high intake of saturated fatty acids (SFAs) increases low-
density lipoprotein cholesterol (LDL-C) and heart dis-
ease risk; however, this position has been challenged by 
studies finding no conclusive evidence of such an effect 
[1–4]. The discrepancy has given rise to opposing views 
and discussion, both in the scientific literature and popu-
lar press [5–9].

Ascertaining what constitutes an appropriate nutrient 
intake level is important for a number of reasons, such as 
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Abstract
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental 
recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, 
shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and 
resolve issues in nutrition, including the contentious issue of fat consumption. In the present paper, the intake of 
saturated fat in ancestral and contemporary dietary settings is discussed. It is shown that while saturated fatty acids 
have been consumed by human ancestors across time and space, they do not feature dominantly in the diets of 
hunter-gatherers or projected nutritional inputs of genetic accommodation. A higher intake of high-fat dairy and 
meat products produces a divergent fatty acid profile that can increase the risk of cardiovascular and inflammatory 
disease and decrease the overall satiating-, antioxidant-, and nutrient capacity of the diet. By prioritizing fiber-
rich and micronutrient-dense foods, as well as items with a higher proportion of unsaturated fatty acids, and in 
particular the long-chain polyunsaturated omega-3 fatty acids, a nutritional profile that is better aligned with that 
of wild and natural diets is achieved. This would help prevent the burdening diseases of civilization, including 
heart disease, cancer, and neurodegenerative conditions. Saturated fat is a natural part of a balanced diet; however, 
caution is warranted in a food environment that differs markedly from the one to which we are adapted.
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risk markers, and the length of time it takes for major 
disease to develop, among other factors. An evolutionary 
perspective can supplement and clarify the data derived 
from other methods by providing insights into the food 
types and nutrient intake levels that were characteristic 
of the human past, and hence, that are likely to be suit-
able for the evolved human biology.

Like other organisms, Homo sapiens have adapted to 
environmental circumstances and exposures over time, 
through natural selection. This Darwinian concept, cen-
tral to evolutionary biology and medicine, has been 
invoked to explain the rise of various diseases and health 
disorders in contemporary societies, including, but not 
limited to, obesity, acne vulgaris, heart disease, can-
cer, and diabetes [14–20]. A mismatch between current 
dietary practices and those to which we are accustomed, 
is a core issue [14–20].

Previous scientific publications have discussed how 
changes in dietary FA profile have contributed to the dis-
cordance [21–24]; however, to this author’s knowledge, 
no published paper has specifically and broadly reviewed 
saturated fat in an evolutionary context. In the present 
consideration, dietary SFA sources, yields, and effects are 
presented and discussed.

Considerations
Sources
Rich sources of SFAs in contemporary diets are fatty 
domesticated meats, high-fat dairy products, coconut oil, 
cocoa butter, palm oil, and highly processed foods con-
taining one or more of these ingredients (e.g., chocolate) 
(Fig. 1). None of these were available to human hunter-
gatherer (HG) ancestors, and hence, were not a part of 
the diets that exerted selective forces on the human 
genome over millions of years prior to the agricultural 
and industrial revolutions [25–27]. Of the foods that are 
presently consumed, meats and dairy products are major 
sources of SFAs.

Meats
Meats have long been a part of the human dietary con-
stitution, with a larger contribution tracing back 2–3 mil-
lion years [30–32]. Meats consumed were of the wild 
type, which are generally lean compared to more novel 
varieties sourced from domesticated animals [29, 30, 
33]. Excess dietary carbohydrate from hay and grain-feed 
is transformed through ruminal fermentation, yielding 
short-chain fatty acids, and through de novo lipogenesis, 
yielding mostly palmitic acid (PA) (C16:0), which can be 

Fig. 1 Saturated fatty acids in selected foods. Values are for raw (uncooked) products. A: Grams of saturated fat per 100 g of the foods. B: Saturated fat as 
a percentage of the total fat content. Values for all foods are derived from official nutrient tables [28], except those of marrow and brain, which are from 
fatty acid analyses of wild ruminant tissues [29]. *Rear metatarsal bone marrow and homogenized brain. Fat content of the tissues vary. The values in A 
are based on a medium fat percentage of 70% (of total weight) in the marrow, and 60% in the brain
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desaturated, elongated, or stored, promoting lipid accu-
mulation in livestock. Wild game meat generally con-
tains a higher proportion of unsaturated FAs (UFAs) [29, 
33]. In a 2002 analysis, it was found that grain-fed beef 
contains 2–3 times more absolute saturated fat and 3–4 
times less n-3 polyunsaturated FAs (PUFAs) than game 
meat [29]. In grass-fed beef, the saturated fat content is 
not as high, and the n-3 PUFA content is higher than in 
grain-fed beef, but still significantly lower than in game 
meat [29, 34].

In nature there is significant variation, with some wild 
animals depending on increased adiposity for insula-
tion or surviving hibernation, migration, and/or food 
fluctuation [35]. Animal parts also vary in their fat con-
tent. Optimal foraging theory dictates that naturally liv-
ing humans of the past sought to obtain the maximum 
number of calories for the energy they expended, imply-
ing a preference for lipid-rich sections. One such option 
is marrow, which was undoubtedly exploited by human 
ancestors and may have been a significant energy source 
in the ancestral human HG niche. The fatty acid compo-
sition of marrow varies between species and animals, as 
well as locationally within each animal, but tends to be 
dominated by monounsaturated FAs (MUFAs), chiefly 
oleic acid (OA) (C18:1), followed by SFAs mostly in the 
form of PA (C16:0) and stearic acid (SA) (C18:0) [29, 36–
38]. The degree of unsaturation increases distally (e.g., 
from the proximal femur to the metatarsus), with MUFA 
percentages from 40 to 75% of total fat reported in dif-
ferent skeletal sections [29, 36–38]. Availability of fat-rich 
animal parts can vary across the seasons, with higher ani-
mal body fat percentages seen during foliage-rich sum-
mer and fall than late winter and spring [39], and would 
have depended on large game hunting and scavenging 
opportunities and success.

Dairy
Early evidence of dairy consumption traces back approxi-
mately 6000–7000 years [40–42]. Prior to the cultivation 
of livestock, humans may only have sporadically ingested 
the milk of other mammals, as part of hunting and eat-
ing such prey. The intake must have been limited, both 
due to low accessibility and digestibility. In the absence 
of lactase enzymatic capacity, milk consumption results 
in gastrointestinal distress, such as bloating and diarrhea. 
The severity of the symptoms depends on the amount 
consumed and the degree of small intestinal lactase defi-
ciency, as well as gut microbiota composition [43, 44]. 
With the advent of dairy farming and availability of non-
human animal milk, lactase persistence alleles increased 
in frequency in certain parts of the world [45, 46], allow-
ing for more unrestrained consumption of milk and 
products derived from it.

Milk is a complex fluid, consisting of a variety of special 
growth regulators and factors (e.g., microRNAs, estro-
gen) [47–49], in addition to common vitamins, minerals, 
and macronutrients. The composition varies from spe-
cies to species, as well as inter-individually, depending on 
genetics, diet, and other factors, and across the lactation 
period [47, 50, 51]. Human breast milk, consumed by the 
suckling infant, has mean values of 42.2% SFAs, 36.6% 
MUFAs, and 21.1% PUFAs across worldwide studies, 
with OA (C18:1) being the most abundant FA, followed 
by PA (C16:0), together making up ∼70% of a mean total 
fat content of 3.40 g per 100 ml [52]. Ancestral compo-
sitions may have been somewhat similar, but affected by 
maternal FA profiles and intakes. Cow’s milk, which is 
more generally and most regularly consumed by contem-
porary humans in western countries, consists of approxi-
mately double the amount of saturated fat relative to 
unsaturated fat, with PA (C16:0) being the predominant 
FA [53, 54]. This composition is reflected in the profile 
of milk-originating products such as butter, cheese, and 
cream [55–57].

Yields
SFA intakes vary widely across the globe, from a few 
percentages of the total energy intake to more than 25% 
[58, 59]. In the United States, saturated fat contributes 
on average approximately 12% of total calories, accord-
ing to National Health and Nutrition Examination Sur-
vey (NHANES) data from 2017 to 2020 [60]. In almost 
all European countries, intake estimates exceed 10%, 
with means ranging from 9 to 19%, the bulk of the con-
tribution coming from meats, dairy, and fats and oils [61, 
62]. A backdrop for these values has emerged through 
research on evolutionary intakes.

HG intakes
In their original and seminal 1985 paper on Paleolithic 
nutrition, Eaton and Konner estimated that Stone Age 
HGs consumed more PUFAs than SFAs, with the oppo-
site being true for the American diet, which contained 
more than twice as much of the latter [25]. In subsequent 
publications, they have updated their nutritional consid-
erations on the basis of new data and insights, but main-
tain that HG FA profiles feature most of the unsaturated 
types, with relatively high intakes of n-3 PUFAs [26, 63, 
64]. In 2010, Kuipers et al. analyzed the likely FA com-
position of East African Paleolithic diets with different 
food combinations [65]. They proposed and emphasized 
a greater contribution of aquatic food resources relative 
to terrestrial ones, raising the levels of marine fats, but 
also included other subsistence models in the analysis. 
As for the percentage of total calories derived from SFAs, 
estimates generally range from 6 to 12%, depending on 
plant/animal subsistence ratio, the types of plants and 
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animals consumed, and eating behavior [21, 23, 65, 66]. 
Assuming an energy intake of 3000  kcal/d (12552 kj/d), 
which may approximate anatomically modern human 
male HG energy requirement [67], 6 to 12 E% from satu-
rated fat amounts to 20 to 40 g/d.

Consumption of significant amounts of meat, and 
in particular the most fat-rich animal parts, results in 
higher fat and SFA intakes relative to more plant-based 
menus. In a book chapter on the subject, Loren Cordain 
arrived at a moderately high estimate (14.5 E%) assum-
ing a predominant energy contribution from animal 
source foods (55 E%), protein (26 E%), and fat (46 E%) 
[68]. Other authors have argued for a more prominent 
role of carbohydrate-rich plant foods (e.g., tubers) and 
honey in current and prehistoric HG diets [25, 69–71]. 
In addition to providing glucose for oxidation and gly-
cogen, dietary carbohydrate would have been a potential 
substrate for hepatic, adipocytic, colonic, and mammary 
SFA generation (Fig. 2). The rate of transformation would 
particularly have depended on total intakes, activity level, 
and meal pattern. In the case of relative energy balance, 
but with intermittent periods of food depletion and sub-
sequent acquisition through movement, intrinsic to self-
sustaining lifeways in ancestral natural environments [72, 
73], some fat could have been produced and stored in the 
absorptive and post-absorptive phase, and then utilized 
as FAs and ketones in the fasted state.

There may have been some intake differences between 
the sexes and/or age groups, depending on community 
roles, dispositions, and food procurement (e.g., hunting 

vs. gathering) and consumption practices. In contem-
porary societies and groups, a greater male than female 
preference for meat has frequently been reported, with 
women showing a comparably greater appetite for veg-
etable foods [78–81]. During lactation, female energy 
requirements are elevated, with both exogenous and 
endogenous FAs capable of contributing to milk lipids. 
Breast milk is the natural sole or majority nutrition for 
very small children, with a mean lactation duration per 
birth of 2.9 years reported in some recent and current 
HG groups [82]. The characteristics of these patterns in 
past societies would have affected intra-group and inter-
individual macronutrient intakes.

Precise nutrient intake values are difficult to obtain for 
communities with a sole or predominant hunting and 
gathering subsistence economy, due to seasonal varia-
tion, eating out of camp, and insufficient data on wild 
food nutrient composition. However, inferences and 
rough estimates can be made from general nutritional 
data and knowledge. Major types of foods consumed 
include wild berries, fruits, roots, honey, meats, seafood, 
nuts, seeds, and certain legumes [25, 64, 69, 83]. These 
nutrient resources contain low to moderate amounts of 
SFAs compared to denser sources such as bacon, but-
ter, ghee, cream, cheese, and sausages. 50  g of each of 
the penultimate two foods, together with 200  g of the 
ultimate, can singlehandedly provide upwards of 35 g of 
saturated fat (> 10 E% on a 3000 kcal diet) [28], an intake 
level that is much harder to attain through the ancestral 
sources, in that it mostly requires vastly greater quantita-
tive consumption. If fatty food types (e.g., marrow, brain, 
lipidous seafood) are sought and obtained, SFA intake 
will rise more rapidly than if leaner meats and vegetable 
foods are exclusively or mostly consumed, but due to the 
comparably greater concentration of UFAs than SFAs, 
the overall fatty acid profile will feature more MUFAs and 
PUFAs than if atypically SFA-rich dairy foods and meat 
cuts from modern domesticated animals are taken in. An 
example is shown in Table 1. Insects is an ancient source 
of nutrition that sometimes contain significant amounts 
of SFAs; however, they are generally not consumed in 
large quantities, as staple foods. Furthermore, they tend 
not to contain disproportionate amounts of SFAs rela-
tive to MUFAs and PUFAs. An overview is provided in 
Table 2.

Temporal and spatial variation
Africa features prominently in hominin history, as the 
birthplace of humanity and a central site of the devel-
opment of archaic species (e.g., Homo habilis, Homo 
erectus) and early Homo sapiens [101]. A much-studied 
indigenous population is the Hadza, who occupy parts 
of Northern Tanzania. Their native diet consists mainly 
of honey, berries, fruit, meat, and tubers [83, 102]. This 

Fig. 2 Primary sources of saturated fat in the human organism. SFA = satu-
rated fatty acid. Short-chain: ≤6 carbon. Medium-chain: >6, ≤ 12 carbon. 
Long-chain: >12 carbon. Information on chain-lengths is from published 
works on endogenous generation in different tissues [74–77]
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constitution would be expected to yield moderately low 
total fat and SFA intakes. When honey is consumed 
with larvae, somewhat more lipids would be taken in. 
Based on collected dietary data, fat has been estimated 
to account for 13–36% of the total energy intake, with 
significant seasonal variation [83]. To which extent the 
current Hadza diet is representative of ancestral Afri-
can intakes is uncertain. It probably features many of the 
same characteristics; however, changes in environment, 
culture, and lifestyle may have caused some alterations. 
This is true for all groups, and a limitation in terms of 
extrapolating characteristics of current communities 
to past ones. A possibility is that large game animals 

were more abundant in the past African landscape and 
diet than in the present and more depleted milieu. Low 
to moderate total fat and SFA intakes have also been 
reported for a variety of other groups, including, but not 
limited to, the  !Kung, Tsimane, Aboriginals, and Yano-
mami [103–106].

Other populations have historically had a higher fat 
intake. The continued northward migration of Homo 
sapiens following the exodus from Africa would have 
engendered nutritional challenges in the form of colder 
climes. There is some uncertainty about the dietary char-
acteristics of early Asian and European settlers, with 
scattered evidence for exploitation of different food 

Table 1 An example of animal food combinations that provide > 10% energy from saturated fat on a 3000-kcal diet
Modern foods Amount

g
SFAs
g (%)

MUFAs 
g (%)

PUFAs 
g (%)

Ancestral foods Amount 
g

SFAs 
g (%)

MUFAs 
g (%)

PUFAs 
g (%)

Sour cream 
(Cow)

100 22.2 (70.7) 8.4 (26.7) 0.8 (2.6) Brain
(Antelope)*

100 19.4 (39.7) 16.1 (33) 13.3 (27.3)

Yoghurt 
(Cow)

100 2.2 (71) 0.8 (25.8) 0.1 (3.2) Marrow 
(Deer)*

100 15.8 (24) 46.1 (70) 4 (6)

Sausages 
(Swine and cattle)

100 6 (38) 7.6 (48.1) 2.2 (13.9) Steak 
(Elk)

100 0.4 (36.4) 0.4 (36.4) 0.3 (27.2)

Minced meat
(Sheep)

100 6.7 (55) 4.9 (40.1) 0.6 (4.9) Liver
(Reindeer)

100 1.3 (44.8) 0.7 (24.1) 0.9 (31)

Total 400 37.1 (59.4) 21.7 (34.7) 3.7 (5.9) Total 400 36.9 (31.2) 63.3 (53.4) 18.2 (15.4)
% of 3000 kcal 11.1 6.5 1.1 % of 3000 kcal 11.1 19 5.5
SFAs = saturated fatty acids. MUFAs = monounsaturated fatty acids. PUFAs = polyunsaturated fatty acids. Values for all foods are derived from official nutrient tables 
[28], except those of marrow and brain, which are from fatty acid analyses of wild ruminant tissues [29]. *Rear metatarsal bone marrow and homogenized brain. Fat 
content of the tissues vary. The values are based on a medium fat percentage of 70% (of total weight) in the marrow, and 60% in the brain. Note that the percentage 
values within each fatty acid class for each food are calculated from the totaled SFA, MUFA, and PUFA contents. Other lipids that may exist in the foods are not 
included

Table 2 Fat content of different food types

SFA=saturated fatty acid. MUFA=monounsaturated fatty acid. PUFA=polyunsaturated fatty acid. Low: < 3 g per 100 g. Medium: 3–10 g per 100 g. High: > 10 g per 100 
g. Yellow to orange represents the typical content for the food group, with stronger color for higher contents. Pink represents the typical ratio for the food group, 
with stronger color for higher ratios. When multiple colors are seen, the content or ratio is more variable and spans several areas. Purple represents some notable 
exceptions within each food group. Based on nutrient values from official food databases [28, 84]. Supplementary data: nuts [85], eggs [86, 87], seafood [88–90], 
meats [29, 33], insects [91–94], seeds [95, 96], mushrooms [97, 98], fruits [99], vegetables [100]



Page 6 of 17Garnås Lipids in Health and Disease           (2025) 24:28 

resources, such as megafauna (e.g., mammoths) [107–
109] and grasses (e.g., cereals) [110–112], at different 
sites. In the well-preserved juvenile Yuka mammoth, sub-
cutaneous fat from the hind leg has been analyzed and 
calculated to have originally contained approximately 1/4 
PA (C16:0) and SA (C18:0), combined, with the bulk of 
the rest of the FAs being MU and PU [113]. Similar val-
ues were obtained for frozen hind leg fat from ancient 
horses, whereas belly fats from bison were found to be 
more enriched in SFAs [113]. These types of fat deposits 
may have been significant energy sources in certain areas, 
particularly those in which plant growth and carbohy-
drates were less abundant.

More research is required to elucidate the diet com-
position of Cro-Magnon and other non-African human 
ancestors, as well as the nutritional biological imprint left 
on descendants. Falling temperatures and glacial expan-
sion of the last ice age would have forced a greater reli-
ance on animal source foods, particularly in northern 
areas and during parts of the year. However, there is evi-
dence that various southern refugia functioned as a safe 
harbor for groups of humans that later went on to popu-
late more northern areas of Eurasia as the temperatures 
rose following the last glacial maximum some 20.000 
years ago [114, 115]. Moving further away from equator, 
to higher latitudes, correlates with increasing HG fat/car-
bohydrate ratio [116]. An extreme example is the Inuit, 
whose traditional diet consists mainly of animals, and 
in particular sea-dwelling creatures. While being high 
in total fat, much of the fat is of the unsaturated type, 
with high concentrations of the n-3 PUFAs eicosapen-
taenoic acid (C20:5) and docosahexaenoic acid (C22:6) 
found in Eskimo food [117, 118]. Another group consum-
ing a higher fat diet is the Maasai, whose pastoral sub-
sistence revolves heavily around meat, milk, and blood 
from herded animals [119]. The diet has been estimated 
to contain approximately 2/3 fat as a proportion of total 
calories, supplying fairly high amounts of SFAs [119].

Besides dairy and meats from livestock, coconut is a 
SFA rich food. In this regard, it is unusual among vege-
table foods, which generally contain little saturated fat. In 
1989 and into the 1990s, the late Swedish researcher Staf-
fan Lindeberg conducted a survey of the health condition 
and diet of the Kitavan islanders in Papua New-Guinea. 
Among the foods consumed, coconuts contributed sig-
nificantly to the overall diet, with the three other dietary 
staples being fruit, fish, and tubers [120]. A rough intake 
estimate of 40 g of daily saturated fat from coconut was 
made by Lindeberg et al., with saturated fat thus contrib-
uting approximately 17% of total calories [120]. The coco-
nut, which also features in the diets of other equatorial 
groups, contains predominantly lauric acid (LA) (C12:0), 
as opposed to SFAs with a longer chain length, which 
are more concentrated in animal source foods. To which 

extent coconut was a part of humans’ ancestral nutri-
tional matrix requires further investigation.

Effects
SFAs can be produced endogenously and are not con-
sidered essential nutrients to be ingested, as no minimal 
intake requirement or overt deficiency symptoms have 
been identified. This implies that Homo sapiens have 
not evolved a dependence on regular or high SFA con-
sumption. However, it does not exclude the possibility 
that very low intakes can have undesirable effects, with 
some research emphasizing significant cellular and physi-
ological roles of SFAs (e.g., pertaining to protein acyla-
tion, gene transcription, and PUFA bioavailability) [121, 
122]. These functions can be maintained by lipogenesis 
from precursor material (e.g., glucose) catabolized to ace-
tyl CoA; however, the production of certain SFAs, most 
notably myristic acid (MA) (C14:0), may be insufficient 
to completely meet demand. While noteworthy, and a 
potential issue in situations of long-term energy deficit 
and restrictive vegan dieting, the capacity for endogenous 
production, coupled with the widespread presence of 
SFAs across the plant and animal kingdom, make insuf-
ficiency unlikely in most cases. Rather than discovering 
and investigating deficiency existences and symptoms, 
research in the area has principally revealed and been 
concerned with potential adverse effects of saturated fat 
consumption.

LDL and cardiovascular disease risk
While certain studies have not found evidence of adverse 
cardiovascular effects [1–4], others do show unfavor-
able outcomes [123–126]. As an example of the for-
mer, a 2017 cohort study published in The Lancet found 
no association between saturated fat intake and major 
cardiovascular disease, myocardial infarction, or car-
diovascular disease mortality among 135 335 individu-
als from 18 countries [127]. However, a 2020 updated 
Cochrane review of RCTs found evidence that reducing 
saturated fat intake for at least two years causes a poten-
tially important reduction in combined cardiovascular 
events [124]. Studies attempting to ascertain the effects 
of specific food groups (e.g., dairy) and their fat also show 
some variation in reported cardiovascular outcomes 
[128–131].

The somewhat heterogenous findings in the area are 
connected to the intrinsic difficulty of accurately assess-
ing the effects of particular nutrients and their sources on 
long-term health and disease outcomes. Much of the data 
comes from prospective cohort and other observational 
studies, which have major limitations compared to RCTs. 
There is a high risk of unmeasured and residual con-
founding, imprecise dietary data collection methods may 
be used, and a wide variety of foods are consumed by the 
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participants. The impact of a lower intake of a particu-
lar food type or nutrient would be expected to depend on 
the nature of the replacement consumption, a facet that 
is both difficult to control and adjust for over the lengths 
of time leading up to cardiovascular morbidity and mor-
tality. Hence, soft endpoints are frequently utilized as 
surrogates.

The effect of saturated fat on cardiovascular events is 
commonly attributed to LDL-C increases followed by 
accumulation in atherosclerotic plaque, arterial narrow-
ing with decreased nutrient and oxygen passage, and 
thrombogenesis with concomitant risk of heart attack 
and stroke. A causal relationship between LDL-C and 
cardiovascular disease is appreciable from several lines of 
evidence [132, 133], making population lipoprotein data 
relevant to health and risk assessments.  Contemporary 
Americans have total cholesterol (TC) and LDL-C levels 
greatly exceeding those of HGs and other free-living pri-
mates (e.g., baboons, monkeys) [134, 135]. In a 2004 anal-
ysis, the normal LDL-C concentrations of the latter were 
asserted to be in the range of 50 to 75 mg/dl, as opposed 
to approximately 130  mg/dl in the former [134]. Other 
known heart disease risk factors, such as high body mass 
index and blood pressure, are generally absent or negli-
gible as well [14, 135, 136]. In the Hadza, superb mark-
ers of circulatory health have been reported [136, 137]. 
Excluding early deaths, and despite limited or no access 
to modern medical advancements, it is not uncommon 
for foragers to reach older ages, with a modal age of adult 
death of 65–75 years reported in the cross-cultural exam-
ination by Gurven & Kaplan [138], highlighting that the 
favorable characteristics are not due to a lack of elders.

Cholesterol values intermediate to those in HG com-
munities and industrialized societies have been reported 
in horticultural, farming, and pastoral populations [15, 
106, 120, 139, 140]. As compared to Swedes, Lindeberg et 
al. found that TC was lower for Kitavan males, as well as 
for women over 60 years of age [120]. There is evidence 
to suggest that the primary LDL-C-raising FAs are MA 
(C14:0) and PA (C16:0) [141, 142]. In a meta-analysis of 
60 controlled trials, LA (C12:0) was found to predomi-
nantly raise high-density lipoprotein (HDL),  which is 
involved in cholesterol efflux and removal to the liver 
[143]. In comparison to the Swedish reference sample, 
the LDL/HDL cholesterol ratio of the Kitavans was mark-
edly lower in both men and women over 60 years of age, 
with no significant difference in the lower age brackets. 
The reported cholesterol values for this population are 
relatively high as compared to other preindustrial groups, 
but overall there was a striking absence of traditional car-
diovascular risk factors [120, 144], accompanied by no 
detected cases of stroke or ischaemic heart disease [145]. 
To which extent non-dietary factors, such as routinely 
utilized tobacco, affected the lipid values and ratios, and 

if the Kitavans have genetically adapted to coconut fat, is 
uncertain.

The Tsimane, a Bolivian farming-foraging popula-
tion that has recently been the subject of some research, 
have mean TC and LDL-C concentrations of 151  mg/
dl and 91  mg/dl, respectively [139]. They have elevated 
C-reactive protein (CRP) levels, due to a high parasite 
burden, yet little coronary atherosclerosis [139]. Other 
groups with a mixed subsistence strategy, such as the 
Yanomami and Kren-Akorore Indians, exhibit even lower 
cholesterol concentrations, in the range seen in pure HGs 
[106, 146]. In that low range, the Inuit are at the higher 
end [134]. There have been ultrasonographic and autopsy 
reports of atherosclerosis both in the traditional Inuit 
and the Maasai, yet low rates of cardiovascular complica-
tions and mortality [147–149]. This points to physiologic 
mechanisms and/or lifestyle factors (e.g., high n-3 PUFA 
consumption, rigorous physical activity) exerting a pro-
tective influence. The Maasai show an unusual capacity 
for downregulating endogenous cholesterol synthesis 
in response to higher intakes [119]. They have relatively 
low mean TC of 135 mg/dl [140], as compared to values 
closer to or exceeding 200 mg/dl in industrialized coun-
tries like Croatia, Finland, Germany, Austria, Greece, 
Italy, Netherlands, and the U.S [150, 151]. The overall 
pattern is depicted in Fig. 3.

Different factors can cause and contribute to choles-
terol elevation, including obesity, physical inactivity, and 
cigarette smoking [152]. SFA consumption is also a rele-
vant factor [123, 124, 143, 153, 154]. Replacing SFAs with 
UFAs lowers cholesterol [124, 154–157]. In a WHO sys-
tematic review and regression analysis of 84 studies with 
a randomized parallel or crossover design and thorough 
control of food intake, replacing 1 E% from SFAs with an 
equivalent amount of cis–PUFAs significantly decreased 
TC by 0.064 mmol/l (2.47  mg/dl) and LDL-C by 0.055 
mmol/l (2.12 mg/dl) [156]. Replacement with cis-MUFA 
yielded slightly lower reductions, of -0.046 mmol/l 
(1.78  mg/dl) TC and − 0.042 mmol/l (1.62  mg/dl) LDL-
C. Substituting with carbohydrate also produced signifi-
cant reductions, but to a somewhat smaller extent. The 
mechanisms linking higher SFA to higher LDL remain to 
be fully elucidated but appear to involve decreased LDL 
receptor activity [158, 159].

The cholesterol-reducing effects were detected across a 
range of SFA intakes, including ones below 10% of total 
energy intake. According to these data, having 4 E% in 
the form of PUFAs rather than SFAs could translate to 
10  mg/dl lower TC and 8.5  mg/dl lower LDL-C, with a 
somewhat smaller difference for SFAs versus MUFAs or 
carbohydrate. The nutrient categories included mixtures 
of compounds, such as monosaccharides, disaccharides, 
and polysaccharides in the carbohydrate category. The 
effects on cholesterol may vary depending on which 



Page 8 of 17Garnås Lipids in Health and Disease           (2025) 24:28 

of these are consumed, however, the included studies 
did not provide sufficient dietary information for ana-
lyzing such distinctions. It is noted that low-glycemic 
index diets have previously been found to reduce TC and 
LDL-C to a greater extent than high-glycemic ones [160].

It is difficult to estimate the precise and total effects 
of the substitutions on cardiovascular outcomes, due 
to the length of time it takes for cardiovascular disease 
to develop, differential responses (e.g., due to differ-
ent initial cholesterol levels), subsets of LDLs unevenly 
affecting heart disease risk [161, 162], and other physi-
ological effects of altering the fatty acid intake. Pooled 
data from experimental statin studies suggest that 1 
mmol/l (38.67 mg/dl) LDL-C reduction corresponds to a 
little over 20% reduced risk of major vascular events over 
4–5 years [163–165], implying a ∼5% lowered risk from 
reducing LDL-C by 8.5  mg/dl. While indicative of the 
effect of LDL-C change, the number is unlikely to repre-
sent the full and true cardiovascular influence of replac-
ing SFAs with other nutrients. Higher SFA consumption 
is associated with other components of dyslipidemia (e.g., 
triglyceride elevation) in addition to LDL-C elevation, 
while certain other FAs, most notably n-3 PUFAs, show 
inverse protective effects [156, 166, 167]. The progressive 
nature of atherosclerosis also implies that the effects of 
lipid alterations may accrue and manifest over time.

Overall, the evidence suggests that current western 
cholesterol values are abnormally high from an evolu-
tionary point of view and that lowering the levels will 
benefit cardiovascular health. In stark contrast to the 
absence or rarity of heart disease frequently reported for 

unacculturated traditional groups [15, 139, 145], postin-
dustrial societies suffer at epidemic proportions. It is 
currently the leading cause of death worldwide [168], 
underscoring the importance of sound etiological under-
standing and effective prevention. Reducing saturated fat 
intake is one viable measure; however, additional inter-
ventions (e.g., weight loss, physical activity) would be 
required to approach ancestral standards.

Endotoxemia and inflammation
Another line of research concerns the effects of SFAs on 
gut microbiota and immune system activity. Repeated 
experiments, with different designs and food products, 
have linked high SFA intakes with endotoxemia and 
inflammation [169–174]. A single high-SFA meal elicits 
a response, with significantly elevated endotoxin levels 
[170, 171]. UFAs (particularly PUFAs) do not produce 
the same result [169, 170, 172, 174]. The consistency 
of the pattern across multiple studies suggests that it is 
not dependent on particular conditions but represents a 
true and relevant difference. Endotoxins originate from 
gram-negative bacteria, implying that high-SFA distorts 
gut microbiota composition and/or increases endotoxin 
absorption from the intestine. They are sensed by and 
activate toll-like receptor 4, inciting an inflammatory 
response [175, 176].

While shorter-chain SFAs such as caprylic acid (C8:0) 
and LA (C12:0) have antimicrobial activity, longer chain 
SFAs do not exhibit the same influence, and may in some 
instances favor the growth of opportunistic pathogens, 
leading some researchers to theorize that they could 

Fig. 3 Ranges and medians of mean circulating cholesterol values of different population types: Hunter-gatherer (Hadza, Inuit, Aborigines, Pygmy, San) 
[15, 134], Preindustrial (horticulturalists, farmer-foragers, and pastoralists) [15, 106, 120, 139, 140], and Western (United States, Canada, Australia, and 
Western European nations) [151]. Values are unadjusted for age and sex. When LDL cholesterol (LDL-C) measurements were not available, estimates were 
made on the basis of measured total cholesterol (TC). Hunter-gatherer LDL-C estimates are from O’Keefe et al. [134]. Preindustrial LDL-C range spans from 
50% of the lowest TC measure of 100 (in the Brazilian Kren-Akorore Indians) to the measured LDL-C value of 135 in the group with the highest measured 
TC (the Kitavans in Papua-New Guinea). Western LDL-C values are all measured
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trigger an inflammatory response by acting as warning 
signals of impeding gut microbial alteration and danger 
[177]. In one small but noteworthy study published in the 
British Journal of Nutrition, the immunological effects of 
fatty SFA-rich modern wagyu meat was compared with 
that of lean low-SFA traditional kangaroo meat [178]. 
Interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-
α), and CRP were significantly elevated postprandially to 
the first meal as compared to the second. While it can-
not be decisively concluded that the effects were due to 
saturated fat, it is likely, in light of other data, that it was a 
significant factor.

The inflammatory effects plausibly contribute to 
high-SFA-induced dyslipidemia, as lipoprotein altera-
tions are commonly seen in situations of infection and 
inflammation, serving a protective function, yet pro-
moting atherosclerosis over the long term [179–181]. 
Inflammation is critically involved at all stages of arte-
rial plaque development and dysfunction [176, 182], 
with statins likely exerting some of their effects through 
anti-inflammatory influence [183–185]. Another wide-
spread issue that involves inflammatory pathways is acne 

vulgaris. Currently endemic in westernized societies, this 
aesthetically and psychologically straining skin disease 
is reported to have been absent among the Aché, the 
Inuit, the Kitavans, and the Okinawans, as well as much 
less common in other traditional and rural groups [18, 
186]. Dietary factors are important in the pathogenesis, 
with PA (C16:0) emerging as a contributing factor to the 
inflammatory aspects [187, 188]. Other conditions that 
have increased dramatically in prevalence, such as dia-
betes and depression, also have inflammation in their 
pathogenesis [189–191]. In both, endotoxins are capable 
inducers [192–195]. Chronic inflammation is a common 
denominator of diseases of civilization [196–198], impli-
cated in several different types of disorders (Fig. 4).

Limited data from traditional groups show some varia-
tion in inflammatory markers, with median CRP values 
ranging from 0.5 mg/l in Shuar and Kitavan forager-hor-
ticulturalists [207, 208], across values closer to or exceed-
ing 1 mg/l in rural Ghanaians and the Hadza [136, 209], 
to 3 mg/l or more in the Tsimane [139, 210]. As compared 
to the Dutch and Swedish reference samples, the CRP 
levels in the Ghanaians and Kitavans were significantly 

Fig. 4 Some diseases and issues associated with chronic inflammation. Connections are reviewed in overview articles [196–198], as well as publications 
on autism [199], Alzheimer’s [200], acne [187], eczema [201], atherosclerosis & thrombosis [182], fatigue [202], depression [190], arthritis & colitis [203], 
carcinoma & leukemia [204], miscarriages [205], impotence [206], and obesity & diabetes [189]
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lower [208, 209], while the opposite is true for the Tsi-
mane as compared to people in the United States [210]. 
The high CRP in the Tsimane, yet low rates of chronic 
degenerative disease, suggests unique adaptation (e.g., to 
specific pathogen loads) and/or protective lifestyle fac-
tors (e.g., low-SFA, high-fiber diet). Elevated CRP and/
or cytokine levels have been found in disorders such as 
obesity, prediabetes, depression, and chronic fatigue syn-
drome [191, 202, 211, 212], suggesting low-grade chronic 
inflammation among significant proportions of contem-
porary industrialized populations.

Inflammation is energetically costly, requiring sig-
nificant nutritional support for the activated immune 
system, redirecting priorities and resources away from 
physical function and reproduction towards tissue repair 
and homeostatic restoration; hence, chronic activation 
would have constituted a significant fitness disadvantage 
in prehistoric times. It is contended that the installations 
and mechanisms that are active in inflammatory diseases, 
governing the immune activity, energy allocation, and 
behavioral effects, were principally selected for acute, 
short-term insults (e.g., infection, injury) [213, 214]. 
Resolution of chronic inflammation could have broad-
spectrum effects, improving hormone (e.g., insulin) sen-
sitivity, circulatory function, moods, energy levels, and 
reproductive capability, thereby unstraining health ser-
vices, lowering medical costs, and increasing produc-
tive and healthy life years. It necessities describing and 
addressing proinflammatory aspects of modern diets and 
lifestyles, including alterations of the FA profile.

High-fat diets and health
Ketogenic and very-low-carbohydrate diets can produce 
rapid and meaningful fat loss [215, 216], and have been 
suggested to hold therapeutic promise for some diseases 
[217]. However, they do have nutritional shortcomings. 
As a result of severely restricting fruits, most vegetables, 
berries, and other plant foods, the intake and variation 
of dietary fibers and phytochemicals will be limited. This 
can result in gut microbiota depletion, oxidative stress, 
and impaired neuronal health [218–220]. Colonic fer-
mentation of dietary fibers yields acetic acid (C2:0), pro-
pionic acid (C3:0), and butyric acid (C4:0), which lower 
the luminal pH, making it less hospitable to pathogens, 
contribute to mucosal health and integrity, serve as an 
energy substrate for the body, and act on the immune 
system and distant organs (e.g., the brain) [77, 221, 222]. 
Hence, a low fiber intake can compromise intestinal, 
general, and mental health through underproduction of 
short-chain fatty acids. The acquisition of micronutrients 
that are abundant in plant foods, but scarce or absent in 
animal products, such as magnesium and potassium, may 
also be compromised on a very-low-carbohydrate diet.

A high intake of acid-yielding animal source foods, 
coupled with a low intake of base-yielding fruits and 
vegetables, can distort acid-base balance [223–225]. 
Low-grade metabolic acidosis has been suggested to be 
a factor in current western disease, and in particular in 
bone and kidney disorders [223–225]. Additionally, keto-
acidosis has been reported in certain cases of low carbo-
hydrate, high fat dieting [226, 227], revealing a potential 
complication that physicians and dieticians should be 
aware of. Moving into athletic endeavors, exercisers are 
liable to experience fatigue and suboptimal performance 
and recovery when dietary fat is markedly elevated rela-
tive to carbohydrate, due to a lack of glycogen and glu-
cose required for rapid and anaerobic energy metabolism 
[228, 229]. Some 300–700 g of glycogen can be stored in 
the muscles [230], serving as an important energy sub-
strate particularly at higher training intensities. Yet, in 
cases of physical inactivity, dietary carbohydrate, and in 
particular refined carbohydrate, is more easily consumed 
in excess, causing elevated endogenous SFA production, 
fat gain, and risk of metabolic dysfunction with insulin 
resistance and hyperglycemia.

High-fat diets typically contain anywhere from 50 to 
80% of the total calories in the form of fat, usually with 
a significant contribution from SFAs. This fat-enriched 
macronutrient profile is not consistent with the general 
pattern observed in naturally living foraging and hor-
ticulture populations [27, 64, 69, 83]. Populations with 
an unusually high intake of a macronutrient may pres-
ent signs of good health and longevity; however, it is 
uncertain whether this is due to unique genetic adapta-
tions, to which extent other factors are contributing, 
or if dietary adjustments could generate an even more 
favorable condition. In the Inuit and the Maasai, there 
have been reports of genetic selections related to lipid 
metabolism and regulation [231, 232], highlighting that 
general human nutritional adaptation can not be inferred 
from such groups with special food staples and nutrient 
intakes.

In nature, it is difficult to obtain extremely high fat 
concentrations, as wild animals tend to be (but are not 
always) lean. There is a protein ceiling, with intakes above 
approximately 35% resulting in toxicity [233], sometimes 
referred to as rabbit starvation. Plant fats are available 
and eaten in their natural form, as part of whole foods, 
as opposed to in the form of mechanically extracted 
oils. Nuts must first be foraged, and then deshelled, 
before consumed. Low to moderate fat concentrations, 
as opposed to the very high concentrations seen in oils 
and high-fat dairy and meats, is the norm. Being largely 
composed of energy-rich fat, a major intake of the latter 
foods would result in an overall lower fiber-, phytochemi-
cal-, and micronutrient density of the diet. A relatively 
high contribution of SFAs relative to UFAs would also tilt 
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the dietary ratio, potentially compromising optimal UFA 
intake.

In particular the long-chain n-3 PUFAs are vital for 
brain development and function, immune homeostasis, 
and chronic disease prevention. This has been exten-
sively reviewed from an evolutionary point of view by 
Artemis Simopoulos, with a particular emphasis on the 
n-6/n-3 ratio [22, 23, 234]. Partly due to the FA compo-
sitional difference between wild and domesticated meats, 
but more so because of increased consumption of n-6 
PUFA rich processed foods and vegetable oils, current 
western diets contain significantly more n-6 PUFAs rela-
tive to n-3 PUFAs, as compared to ancestral natural diets, 
which were more balanced in the two types [22, 23, 234]. 
This shift is implicated in current ill-health and disease 
loads [22, 23, 234]. In conjunction with the elevated SFA 
content, it could contribute to a proinflammatory, ath-
erogenic, and carcinogenic potential of modern red meat 
products. Consistent with evolutionary prediction, sub-
stitution trials have found less favorable or adverse effects 
when SFAs are replaced with mostly n-6 relative to n-3 
PUFAs [235–237]. MUFAs like OA (C18:1), abundantly 
present in olive oil, nuts, and avocados, have been linked 
with beneficial health outcomes [238, 239]. While the 
cis-configuration is natural, trans FAs largely result from 
industrial partial hydrogenation and are widely recog-
nized as pathogenic.

Foods with a very high fat and energy density can be 
less satiating than foods with a greater concentration 
of water, protein, and/or fiber, on a calorie-by-calorie 
basis [240–242]. This does not necessarily imply that 
fat-reduced products are superior to whole or full fat 
varieties, which among other things may provide more 
fat-soluble vitamins; however, it does suggest that sig-
nificant consumption of high-fat foods could undermine 
the nourishing capacities of the diet and contribute to 

excessive energy intakes, fat gain, and obesity. Compar-
ing contemporary western diets with ancestral natural 
diets, a striking contrast is the relatively higher energy 
density of the former, owing largely to the inclusion of 
food products with a very high concentration of sugar 
and/or fat (e.g., chocolate, potato chips, cheese, bacon). 
As compared to butter (744  kcal per 100  g), a food like 
sweet potatoes is remarkably low in calories, only pro-
viding about 80  kcal per 100  g [28]. Both inflammation 
and food, fat, and energy overconsumption have been 
linked with cognitive impairment and neurodegenera-
tive disease [73, 200, 243–245]. This helps explain why 
SFA rich diets have been associated with such outcomes 
[246–252]. When isocaloric meals are consumed, SFA 
rich consumption causes cognitive impairment over and 
beyond that of MUFA consumption [250, 251], implying 
that SFA boluses are inherently more challenging for the 
brain. Alas, a previously adaptive propensity to seek fat 
and energy-richness appears a liability in dietary condi-
tions of abundance, highlighting a need for education, 
communication, and intervention guiding healthy con-
sumer choices.

The effects of SFAs on function and health will invari-
ably depend on the amount, type, and product that is 
consumed, as well as factors such as microbiota and 
dietary composition. More research, with different inter-
ventions and participants, are required to more fully elu-
cidate the relationships. An overview of the discussed 
adverse effects is provided in Fig. 5.

Conclusions
The discussion and controversy regarding fat and SFAs 
has largely revolved around epidemiological research, 
which is valuable, but prone to discrepancy and bias. It 
can benefit from evolutionary insights. Unknowingly, 
Charles Darwin provided a sound basis for nutritional 

Fig. 5 Adverse effects associated with a high intake of saturated fat
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investigation and conversation. Through the lens of evo-
lution, an understanding of what constitutes appropriate 
nutrient intake levels, matched with the naturally selected 
human biology, may be achieved. Ancestral human diets 
have varied temporally and spatially; however, systematic 
food and diet analyses can reveal nutritional patterns that 
may serve as a template for contemporary evaluations 
and recommendations.

High and increasing rates of diet-related dysfunc-
tion and disease highlight that nutritional changes have 
greatly outpaced genetic accommodation. Diet-related 
issues can affect fertility, but many (e.g., degenerative 
diseases associated with excessive and/or altered fat con-
sumption) develop over a long time, involve a myriad of 
genes, manifest later in life, and have little or no impact 
on reproductive outcomes under recent and present con-
ditions; hence, they are not rapidly eliminated by natural 
selection. Issues that are more acute and/or debilitating 
(e.g., indigestion of lactose) have spurred documented 
adaptations, but these are of a quite specific nature, not 
covering the range of effects novel diets and food types 
have on the organism. Recognizing and addressing insidi-
ous incongruences is of vital importance to public health 
in the 21st century.

As for SFAs, this subset of lipids has been consumed 
by human ancestors both recent and prehistoric. How-
ever, the densest dietary sources did not become avail-
able until fairly recently. Such products, which primarily 
include high-fat meat and dairy products from domes-
ticated animals, generally contain supernormal con-
centrations of SFAs relative to the foods that have been 
consumed evolutionarily, and that are still consumed by 
groups practicing hunting, gathering, and horticulture. 
A major intake of these products distorts the FA profile 
of the diet; increases chronic disease risk through choles-
terol elevation, inflammation, and cognitive dysfunction; 
and takes up space that could otherwise have been filled 
by more nutrient-dense and satiating foods. In advocat-
ing and designing dietary patterns, it appears prudent to 
prioritize foods with significant amounts of n-3 PUFAs, 
while restricting items with a very high n-6 PUFA or SFA 
content. Examples of non-SFA rich food types are sea-
food, avocados, olive oil, nuts, and seeds. Provided the 
diet contains a variety of natural whole foods, a balance 
between SFAs, MUFAs, and PUFAs will be attained.

For environmental and health reasons, public dietary 
guidelines are increasingly recommending higher plant 
food consumption relative to animal source foods. This 
necessarily entails a lower SFA intake and recommenda-
tion than if more animal-based diets were to be encour-
aged. The upper limit for what constitutes an acceptable 
SFA intake is up for debate. The evolutionary perspec-
tive offered here implies that it is in the vicinity of what 
is already recommended. For individuals and groups 

requiring and/or benefitting from caloric density, such 
as hard-training athletes, small children, and elders with 
low appetite, higher intakes of SFAs may be warranted; 
however, in general, a more restricted intake appears 
advisable.
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