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Abstract: Diabetes and obesity are globally prevalent metabolic disorders posing significant
public health challenges. The effective management of these conditions requires integrated
and personalized strategies. This study conducted a systematic literature review, iden-
tifying 335 relevant papers, with 129 core articles selected after screening for duplicates
and irrelevant studies. The focus of the study is on the synergistic roles of functional
foods, microbiotics, and nutrigenomics. Functional foods, including phytochemicals (e.g.,
polyphenols and dietary fibers), zoochemicals (e.g., essential fatty acids), and bioactive
compounds from macrofungi, exhibit significant potential in enhancing insulin sensitivity,
regulating lipid metabolism, reducing inflammatory responses, and improving antioxidant
capacity. Additionally, the critical role of gut microbiota in metabolic health is highlighted,
as its interaction with functional foods facilitates the modulation of metabolic pathways.
Nutrigenomics, encompassing nutrigenetics and genomics, reveals how genetic varia-
tions (e.g., single-nucleotide polymorphisms (SNPs)) influence dietary responses and gene
expression, forming a feedback loop between dietary habits, genetic variations, gut mi-
crobiota, and metabolic health. This review integrates functional foods, gut microbiota,
and genetic insights to propose comprehensive and sustainable personalized nutrition
interventions, offering novel perspectives for preventing and managing type 2 diabetes
and obesity. Future clinical studies are warranted to validate the long-term efficacy and
safety of these strategies.
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1. Introduction
The escalating prevalence of diabetes and obesity has intensified the search for innovative,

integrative strategies for prevention and management. The NCD Risk Factor Collaboration
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reported that over 1 billion people globally were obese in 2022, with nearly 0.3 billion classified as
overweight or obese [1]. The prevalence of obesity among adults in the South-East Asia Region
was about 6%, while in the Western Pacific Region, it was approximately 8%. The primary
concern with obesity is its strong association with chronic metabolic disorders, including insulin
resistance (IR), cardiovascular diseases, and type 2 diabetes (T2DM) [2].

In 2021, an estimated 537 million people globally were living with diabetes, including
approximately 206 million adults in the South-East Asia Region (8.7%) and 206 million in the
Western Pacific Region (10.9%). These numbers are projected to rise significantly, reaching
643 million globally by 2030 and 783 million by 2045, with a 69% increase anticipated in the
South-East Asia Region and similar growth trends in the Western Pacific Region [3]. Beyond con-
ventional pharmaceutical interventions, dietary strategies have emerged as pivotal approaches
in health management, emphasizing the roles of functional foods, probiotics, and personalized
nutrition guided by advancements in nutrigenomics and nutrigenetics [4]. Functional foods,
enriched with bioactive compounds, offer health benefits that extend beyond basic nutrition
by modulating physiological functions. Probiotics, as beneficial microorganisms, contribute
significantly to gut health and are associated with various systemic health benefits [5]. Person-
alized nutrition, leveraging insights from nutrigenomics and nutrigenetics, provides tailored
dietary recommendations based on individual genetic profiles, recognizing the critical influence
of genetic variation on nutrient metabolism and dietary responses [6]. These disciplines explore
the intricate interactions between diet, the gut microbiome, and individual genetic profiles,
offering insights into metabolic modulation and the potential to mitigate metabolic disorders.

Functional foods, which offer health benefits beyond basic nutrition, include a wide
range of bioactive components such as fiber, polyphenols, and omega-3 fatty acids. These
foods have been shown to significantly influence the metabolic processes associated with
obesity and T2DM by improving insulin sensitivity, regulating blood sugar levels, and
modulating fat metabolism [7,8]. Fiber, for example, promotes satiety, regulates blood
glucose, and reduces IR, while polyphenols exhibit antioxidant and anti-inflammatory
properties that help to mitigate oxidative stress and inflammation—key contributors to
metabolic disorders [9–11]. Omega-3 fatty acids, found in fatty fish and certain plant
oils, have been linked to improved lipid profiles and reduced cardiovascular risks, which
are often elevated in individuals with obesity and T2DM [12,13].

Microbiotics, including probiotics, prebiotics, postbiotics, and synbiotics, are essential
for maintaining a healthy gut microbiota composition and play a pivotal role in maintaining
metabolic and immune homeostasis. Probiotics, live beneficial microorganisms, and prebiotics,
non-digestible fibers that support the growth of beneficial microbes, work together to maintain
a balanced microbiota critical for optimal gut function, while postbiotics, the byproducts of
microbial metabolism, and synbiotics, combinations of probiotics and prebiotics, further en-
hance gut health by fostering a favorable microbiome [14–18]. The gut microbiota profoundly
influences metabolic regulation, affecting processes such as insulin sensitivity, lipid metabolism,
and inflammation, dysregulation linked to the progression of diabetic kidney disease (DKD)
and chronic kidney disease (CKD) [14,16,19,20]. Dysbiosis contributes to systemic inflammation
and the production of gut-derived uremic toxins, exacerbating kidney damage. Studies, such
as those by Brugman et al., have demonstrated the critical role of gut microbiota in disease
modulation, including the prevention of type 1 diabetes (T1D) onset in a diabetes-prone rat
model through antibiotic treatment and dietary interventions [21]. Additionally, gut microbiome
imbalances are strongly associated with metabolic disorders such as obesity, type 2 diabetes,
and kidney diseases [22,23]. Probiotics, by modulating the gut microbiota, offer a promising
therapeutic approach to mitigate these effects through mechanisms such as reducing uremic tox-
ins, enhancing gut barrier integrity, attenuating inflammation, and inhibiting pathogen bacteria
growth [24,25]. This review investigates the potential of probiotics as a complementary strategy
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primarily for managing type 2 diabetes and obesity, while also addressing their secondary
benefits in mitigating complications, such as DKD and CKD, emphasizing current evidence and
future research directions.

Nutrigenetics and nutrigenomics provide insights into how genetic variations influence
dietary responses and how diet modulates gene expression, offering new opportunities for
managing complex metabolic disorders such as T2DM and obesity. Key genetic variations,
including SNPs in FTO (fat mass and obesity-associated) and PPARγ (peroxisome proliferator-
activated receptor gamma), play significant roles in metabolic regulation, affecting insulin
sensitivity, lipid metabolism, and energy balance [26–28]. Additionally, host genetics influence
gut microbiota composition, which in turn impacts the production of metabolites, such as
short-chain fatty acids (SCFAs), critical for metabolic health. The emerging field of nutrige-
nomics further highlights the interaction between the gut microbiome and the host’s genetic
makeup, emphasizing how genetic variations shape individual responses to dietary components
and microbiota, affecting susceptibility to metabolic diseases. Integrating genetic and micro-
biota profiling into personalized nutrition strategies has demonstrated potential in improving
metabolic outcomes. Moreover, microbiome modulation—through diet, functional foods, and
microbiotic supplementation—is increasingly recognized as a critical mechanism for enhancing
metabolic health, offering a promising approach to tailored interventions for preventing and
managing obesity and T2DM [29,30].

This review aims to explore the synergistic roles of functional foods, microbiotics, nutrige-
nomics, and nutrigenetics in modulating the metabolic pathways associated with T2DM and
obesity. Figure 1 illustrates the systematic literature review process conducted in this study,
which identified 335 relevant papers, with 129 core articles selected after screening for duplicates,
non-English, and irrelevant studies. By integrating these approaches, researchers and practi-
tioners can advance holistic and individualized dietary interventions, potentially improving
metabolic health and providing sustainable solutions for managing these pervasive conditions.
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2. Impact of Bioactive Compounds on Metabolic Health in Type 2
Diabetes and Obesity

The role of bioactive compounds in modulating metabolic health has become a focal point
in the management of T2DM and obesity. These naturally occurring substances, found in
phytochemical, zoochemical, and microchemical forms, offer various mechanisms to influence
key metabolic pathways, particularly those involved in insulin sensitivity, fat metabolism, and
inflammation. Research into their potential therapeutic effects highlights the importance of
bioactive compounds in preventing and managing these chronic diseases (Figure 2).
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2.1. Phytochemicals

Phytochemicals are natural plant compounds, first introduced by chemist Julius Sachs,
with antioxidant, anti-inflammatory, and metabolic-regulating properties, aiding in prevent-
ing chronic diseases, like T2DM and obesity, and are key to nutritional interventions [31].

Mechanism of Action

Natural compounds have shown significant potential in improving the metabolic dysregu-
lation associated with T2DM and obesity by regulating glucose and lipid metabolism, alleviating
oxidative stress, and enhancing insulin sensitivity. Studies indicate that epigallocatechin-3-
gallate (EGCG), a major active component of green tea, effectively ameliorates glucose and
lipid metabolism while reducing oxidative stress in type 2 diabetic rat models [32]. Dihydro-
resveratrol mitigates oxidative stress, adipogenesis, and insulin resistance in high-fat diet-
induced obese mouse models and in in vitro systems via AMPK activation [33]. Additionally,
the fruits of Rosa laevigata and their bioactive principal sitostenone promote glucose uptake and
improve insulin sensitivity in hepatic cells through AMPK/PPAR-γ signaling pathways [34].
Resveratrol, a polyphenolic compound, has garnered significant attention for its clinical ap-
plications in managing T2DM and obesity, demonstrating potential in addressing metabolic
disorders. However, its limited bioavailability can be overcome through nanotechnology, further
enhancing its therapeutic efficacy [35]. Table 1 summarizes the effects of key phytochemicals
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on metabolic health, highlighting their roles in modulating glucose metabolism, lipid profiles,
and oxidative stress. Chronic low-grade inflammation is a key pathological feature of both
obesity and T2DM. Phytochemicals, including flavonoids (e.g., quercetin), polyphenols (e.g.,
curcumin, resveratrol), and carotenoids (e.g., β-carotene), exert potent anti-inflammatory effects
by inhibiting NF-κB (nuclear factor kappa B), a major transcription factor involved in the expres-
sion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6
(IL-6), and C-reactive protein (CRP). By suppressing NF-κB activation, these phytochemicals
reduce the production of inflammatory mediators that promote insulin resistance and β-cell dys-
function, which are key contributors to the development of diabesity [21,36–38]. Additionally,
certain flavonoids (e.g., quercetin) have been shown to shift macrophage polarization from the
pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, further mitigating
the inflammatory burden in adipose tissue and improving metabolic health [36,39].

Oxidative stress, primarily driven by the overproduction of reactive oxygen species (ROS),
plays a pivotal role in the pathogenesis of obesity and T2DM by impairing insulin signaling
and inducing β-cell dysfunction [40,41]. Phytochemicals, such as polyphenols (e.g., resvera-
trol, curcumin) and carotenoids (e.g., lutein, zeaxanthin), exhibit potent antioxidant properties
by activating Nrf2 (nuclear factor erythroid 2-related factor 2), a transcription factor that pro-
motes the expression of endogenous antioxidant enzymes, including superoxide dismutase
(SOD), catalase, and glutathione peroxidase. These antioxidants neutralize ROS, thereby re-
ducing oxidative damage to cellular structures, improving insulin signaling, and protecting
pancreatic β-cells from oxidative stress [42–44]. Consequently, phytochemicals help to maintain
glucose homeostasis by improving insulin sensitivity and preventing β-cell dysfunction.

The accumulation of visceral fat is closely associated with insulin resistance and metabolic
dysfunction [45]. Several phytochemicals, including omega-3 fatty acids (ALA from flaxseeds)
and polyphenols (e.g., resveratrol, curcumin), regulate lipid metabolism by modulating key
transcription factors such as PPAR-α and SREBP-1c (sterol regulatory element-binding protein
1c) [46–48]. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) promote fatty acid oxidation
in skeletal muscle by activating PPAR-α, thereby improving metabolic regulation, reducing
triglyceride levels, and enhancing insulin sensitivity rather than directly influencing HDL (high-
density lipoprotein) cholesterol levels [47]. Polyphenols, such as resveratrol, inhibit SREBP-1c,
a key regulator of fat synthesis in the liver, thereby reducing hepatic fat accumulation and
improving liver function [46,49]. Together, these phytochemicals help to decrease visceral fat,
improve lipid metabolism, and enhance fat oxidation, all of which contribute to reducing the
risk of obesity-related metabolic diseases like T2DM.

The gut microbiome, including bacteria, archaea, fungi, and viruses, plays a critical role
in host metabolism and immune regulation. While probiotics and prebiotics are well-established
in gut health, emerging evidence highlights the gut virome’s role in microbial modulation and
disease prevention. Probiotics, such as Bifidobacteria, and prebiotics, such as inulin, enhance
gut microbiota composition, cognitive function, and metabolic health. Randomized controlled
trials demonstrate that their intake improves cognition, reduces body fat, and strengthens gut
barrier integrity [50–52]. Optimized prebiotic formulations (inulin, FOS, GOS) further enhance
probiotic efficacy [53]. Beyond probiotics, the gut virome, particularly bacteriophages, modu-
lates microbial diversity and gut homeostasis. Phages selectively target bacterial populations,
influencing obesity, T2DM, and metabolic disorders, while also interacting with immune path-
ways to regulate inflammation [54]. Integrating probiotics, prebiotics, and microbiotics (phages
and virome modulation) offers a holistic strategy for improving gut health and metabolic func-
tion. Future research should explore their synergistic potential in precision microbiome-based
therapies. Integrating these findings, Table 1 provides a detailed summary of the beneficial
effects of phytochemicals on various metabolic pathways, highlighting their multifaceted roles
in managing obesity and T2DM.
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Table 1. Effects of phytochemicals.

Phytochemical Species Experiment Model/Dosage Key Findings Reference

Epigallocatechin-3-gallate
(EGCG)
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in the curcumin group (61.58 vs. 48.72; p < 0.01). 

- Adiponectin levels increased by 22%, while HOMA-IR (insulin 
resistance index) decreased by 20%. 

[60] **** 

Obese human participants with 
type 2 diabetes (n = 229)/6 
capsules per day (1500 mg/day) 
for 12 months *. 

- Fasting blood glucose reduced significantly in the curcumin group 
(115.49 mg/dL vs. 130.71 mg/dL in placebo; p < 0.05). 

- HbA1c levels dropped by 6.12% vs. 6.47%; p < 0.05. 
- HOMA-β (β-cell function) scores improved by 30%, while leptin levels 

decreased by 55%. 
- Adiponectin levels increased by 40%, and HOMA-IR (insulin 

resistance) decreased by 20%. 

[61] **** 

Dihydro-Resveratrol (DR2) 
Dendrobium spp., 
Dioscorea spp., 
Bulbophyllum spp. 

3T3-L1 cells and insulin-
resistant HepG2 and C2C12 
cells/DR2 (10, 20, 40 µM) for 48 
h **. 

- Reduced body weight gain, improved glucose tolerance, and 
enhanced insulin sensitivity. 

- Decreased adipocyte size, lipid accumulation in adipose tissue and 
liver, and oxidative stress by activating AMPK and Nrf2 pathways. 

[33] ** 

White tea

Obese human participants (BMI ≥ 30
kg/m2)/consumed 2 cups of white
tea daily (brewed from sachets) along
with a calorie-restricted diet
(1400–1600 kcal/day) and exercise for
12 weeks *.

- A 15.2% reduction in body weight, a 15.1 cm decrease in
waist circumference, and a 5.55-unit drop in BMI.

- Inflammatory markers, such as TNF-α, IL-6, and IL-1β,
decreased by 21%, 25%, and 20%, respectively.

- An 18% reduction in oxidative stress marker MDA and
a 22% increase in antioxidant GSH.

- Improvements in lipid profiles included a 15%
reduction in LDL cholesterol, a 12% decrease in
triglycerides, and a 10% increase in HDL cholesterol.

[57] ****



Nutrients 2025, 17, 608 7 of 27

Table 1. Cont.

Phytochemical Species Experiment Model/Dosage Key Findings Reference

Curcumin

Nutrients 2025, 17, x FOR PEER REVIEW 8 of 28 
 

 

 

Curcumin 

 

Turmeric  
(Curcuma longa) 

3T3-L1 preadipocytes/optimal 
effects at 10 µM 
 Male C57BL/6J mice with diet 
induced obesity)/50 mg/kg/day 
for 8 weeks. 

- Improved basal respiration (+16.5%) and ATP production (+27.9%) at 
10 µM in vitro. 

- Increased expression of UCP1 (4.7-fold) and PGC-1α (6.0-fold) in 
white adipose tissue. 

- Enhanced mitochondrial function and adipocyte browning via PPARγ 
activation. 

[58] ** 

Male C57BL/6J mice with diet-
induced obesity and genetically 
obese mice/3% dietary 
curcumin mixed in the diet for 
6 weeks *. 

- Reduction in random blood glucose levels up to 20%, HbA1c levels 
reduced by 15%. 

- Macrophage infiltration in adipose tissue decreased by 35%, and 
adiponectin production increased by 25%. 

- It reduced body fat, increased lean mass, decreased macrophage 
infiltration in adipose tissue, and lowered hepatic inflammation and 
NF-κB activity.  

[59] *** 

Prediabetic human participants 
(n = 240)/6 capsules per day 
(1500 mg/day) for 9 months *. 

- None of the participants in the curcumin group progressed to type 2 
diabetes, compared to 16.4% in the placebo group. 

- HOMA-β scores (indicating β-cell function) were significantly higher 
in the curcumin group (61.58 vs. 48.72; p < 0.01). 

- Adiponectin levels increased by 22%, while HOMA-IR (insulin 
resistance index) decreased by 20%. 

[60] **** 

Obese human participants with 
type 2 diabetes (n = 229)/6 
capsules per day (1500 mg/day) 
for 12 months *. 

- Fasting blood glucose reduced significantly in the curcumin group 
(115.49 mg/dL vs. 130.71 mg/dL in placebo; p < 0.05). 

- HbA1c levels dropped by 6.12% vs. 6.47%; p < 0.05. 
- HOMA-β (β-cell function) scores improved by 30%, while leptin levels 

decreased by 55%. 
- Adiponectin levels increased by 40%, and HOMA-IR (insulin 

resistance) decreased by 20%. 

[61] **** 

Dihydro-Resveratrol (DR2) 
Dendrobium spp., 
Dioscorea spp., 
Bulbophyllum spp. 

3T3-L1 cells and insulin-
resistant HepG2 and C2C12 
cells/DR2 (10, 20, 40 µM) for 48 
h **. 

- Reduced body weight gain, improved glucose tolerance, and 
enhanced insulin sensitivity. 

- Decreased adipocyte size, lipid accumulation in adipose tissue and 
liver, and oxidative stress by activating AMPK and Nrf2 pathways. 

[33] ** 

Turmeric
(Curcuma longa)

3T3-L1 preadipocytes/optimal effects
at 10 µM
Male C57BL/6J mice with diet
induced obesity)/50 mg/kg/day for
8 weeks.

- Improved basal respiration (+16.5%) and ATP
production (+27.9%) at 10 µM in vitro.

- Increased expression of UCP1 (4.7-fold) and PGC-1α
(6.0-fold) in white adipose tissue.

- Enhanced mitochondrial function and adipocyte
browning via PPARγ activation.

[58] **

Male C57BL/6J mice with
diet-induced obesity and genetically
obese mice/3% dietary curcumin
mixed in the diet for 6 weeks *.

- Reduction in random blood glucose levels up to 20%,
HbA1c levels reduced by 15%.

- Macrophage infiltration in adipose tissue decreased by
35%, and adiponectin production increased by 25%.

- It reduced body fat, increased lean mass, decreased
macrophage infiltration in adipose tissue, and
lowered hepatic inflammation and NF-κB activity.

[59] ***

Prediabetic human participants
(n = 240)/6 capsules per day
(1500 mg/day) for 9 months *.

- None of the participants in the curcumin group
progressed to type 2 diabetes, compared to 16.4% in the
placebo group.

- HOMA-β scores (indicating β-cell function) were
significantly higher in the curcumin group (61.58 vs.
48.72; p < 0.01).

- Adiponectin levels increased by 22%, while HOMA-IR
(insulin resistance index) decreased by 20%.

[60] ****

Obese human participants with type
2 diabetes (n = 229)/6 capsules per
day (1500 mg/day) for 12 months *.

- Fasting blood glucose reduced significantly in the
curcumin group (115.49 mg/dL vs. 130.71 mg/dL in
placebo; p < 0.05).

- HbA1c levels dropped by 6.12% vs. 6.47%; p < 0.05.
- HOMA-β (β-cell function) scores improved by 30%,

while leptin levels decreased by 55%.
- Adiponectin levels increased by 40%, and HOMA-IR

(insulin resistance) decreased by 20%.

[61] ****
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High-fat diet (HFD)-induced 
obese C57BL/6J mice/DR2 (40 
or 80 mg/kg/day) for 3 weeks *. 

- Downregulated pro-inflammatory MCP-1 and adipogenic markers 
(PPAR-γ, C/EBPα, FASN). 

Resveratrol 

 

Grapes (Vitis 
vinifera), berries, 
peanuts (Arachis 
hypogaea). 

Patients with type 2 diabetes (n 
= 110)/200 mg/day (99% pure 
trans-resveratrol) for 24 weeks. 

- Fasting plasma glucose decreased by 7.56%. 
- HbA1c reduced by 6.31%. 
- Insulin levels dropped by 9.96%, and HOMA-IR improved by 17.96%. 
- Inflammatory markers decreased: TNF-α by 13.67%, IL-6 by 13.27%, 

and hs-CRP by 13.12%. 
- Oxidative stress marker MDA reduced by 8.46% 

[62] **** 

Grapes (Vitis 
vinifera), peanuts 
(Arachis hypogaea), 
red wine. 

Obese but otherwise healthy 
male volunteers (n = 11)/150 
mg/day (99% pure trans-
resveratrol, resVida™) for 30 
days. 

- Decreased resting metabolic rate. 
- Enhanced mitochondrial efficiency and activity through AMPK-SIRT1-

PGC-1α pathways. 
- Plasma glucose, triglycerides, and alanine aminotransferase (ALT) 

levels decreased significantly. 
- Systolic blood pressure is reduced by ~5 mmHg. 
- HOMA-IR (insulin resistance) improved by 25%. 
- Lowered inflammation markers (IL-6, TNF-α). 

[63] **** 

Quercetin 

 

Apples (Malus 
domestica), onions 
(Allium cepa), and 
berries. 

Male C57BL/6J mice were fed a 
high-fat diet (HF) or HF 
supplemented with 0.05% 
quercetin (HFQ) for 6 weeks. 
 

- Reduced obesity biomarkers: body weight by 69.7%, liver weight by 
19.6%, and adipose weight by 58.3%.  

- Inflammatory markers decreased significantly, with plasma insulin 
reduced by 88%, leptin by 92%, resistin by 27%, and glucagon by 97%. 

- Metabolic biomarkers improved, including a 25.4% decrease in blood 
glucose, 62.9% reduction in triglycerides, 37.6% reduction in LDL 
cholesterol, and an 82.3% improvement in the HOMA-IR index. 

- Modulated the gut microbiome, reducing the Firmicutes/Bacteroidetes 
ratio by 65.6%. 

[64] *** 

Patients with type 2 diabetes 
mellitus (n = 170)/500 mg/day 
of quercetin dihydrate for 12 
weeks. 

- Improved glycemic control, reducing HbA1c levels by up to 4.0% and 
increasing telomere length by 0.52 kb, suggesting benefits in metabolic 
health and cellular aging. 

- A reduction in systolic blood pressure by an average of 6.55 mmHg. 

[65,66] **** 

β-sitosterol 
Chia (Salvia 
hispanica L.) 

Non-polar fractions (light 
petroleum and 

- Antioxidant activity: strong DPPH scavenging (IC50 = 14.73 µg/mL), 
comparable to ascorbic acid. 

[67] * 

Dendrobium spp.,
Dioscorea spp.,
Bulbophyllum spp.

3T3-L1 cells and insulin-resistant
HepG2 and C2C12 cells/DR2 (10, 20,
40 µM) for 48 h **.
High-fat diet (HFD)-induced obese
C57BL/6J mice/DR2 (40 or
80 mg/kg/day) for 3 weeks *.

- Reduced body weight gain, improved glucose tolerance,
and enhanced insulin sensitivity.

- Decreased adipocyte size, lipid accumulation in adipose
tissue and liver, and oxidative stress by activating
AMPK and Nrf2 pathways.

- Downregulated pro-inflammatory MCP-1 and
adipogenic markers (PPAR-γ, C/EBPα, FASN).

[33] **

Resveratrol
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High-fat diet (HFD)-induced 
obese C57BL/6J mice/DR2 (40 
or 80 mg/kg/day) for 3 weeks *. 

- Downregulated pro-inflammatory MCP-1 and adipogenic markers 
(PPAR-γ, C/EBPα, FASN). 

Resveratrol 

 

Grapes (Vitis 
vinifera), berries, 
peanuts (Arachis 
hypogaea). 

Patients with type 2 diabetes (n 
= 110)/200 mg/day (99% pure 
trans-resveratrol) for 24 weeks. 

- Fasting plasma glucose decreased by 7.56%. 
- HbA1c reduced by 6.31%. 
- Insulin levels dropped by 9.96%, and HOMA-IR improved by 17.96%. 
- Inflammatory markers decreased: TNF-α by 13.67%, IL-6 by 13.27%, 

and hs-CRP by 13.12%. 
- Oxidative stress marker MDA reduced by 8.46% 

[62] **** 

Grapes (Vitis 
vinifera), peanuts 
(Arachis hypogaea), 
red wine. 

Obese but otherwise healthy 
male volunteers (n = 11)/150 
mg/day (99% pure trans-
resveratrol, resVida™) for 30 
days. 

- Decreased resting metabolic rate. 
- Enhanced mitochondrial efficiency and activity through AMPK-SIRT1-

PGC-1α pathways. 
- Plasma glucose, triglycerides, and alanine aminotransferase (ALT) 

levels decreased significantly. 
- Systolic blood pressure is reduced by ~5 mmHg. 
- HOMA-IR (insulin resistance) improved by 25%. 
- Lowered inflammation markers (IL-6, TNF-α). 

[63] **** 

Quercetin 

 

Apples (Malus 
domestica), onions 
(Allium cepa), and 
berries. 

Male C57BL/6J mice were fed a 
high-fat diet (HF) or HF 
supplemented with 0.05% 
quercetin (HFQ) for 6 weeks. 
 

- Reduced obesity biomarkers: body weight by 69.7%, liver weight by 
19.6%, and adipose weight by 58.3%.  

- Inflammatory markers decreased significantly, with plasma insulin 
reduced by 88%, leptin by 92%, resistin by 27%, and glucagon by 97%. 

- Metabolic biomarkers improved, including a 25.4% decrease in blood 
glucose, 62.9% reduction in triglycerides, 37.6% reduction in LDL 
cholesterol, and an 82.3% improvement in the HOMA-IR index. 

- Modulated the gut microbiome, reducing the Firmicutes/Bacteroidetes 
ratio by 65.6%. 

[64] *** 

Patients with type 2 diabetes 
mellitus (n = 170)/500 mg/day 
of quercetin dihydrate for 12 
weeks. 

- Improved glycemic control, reducing HbA1c levels by up to 4.0% and 
increasing telomere length by 0.52 kb, suggesting benefits in metabolic 
health and cellular aging. 

- A reduction in systolic blood pressure by an average of 6.55 mmHg. 

[65,66] **** 

β-sitosterol 
Chia (Salvia 
hispanica L.) 

Non-polar fractions (light 
petroleum and 

- Antioxidant activity: strong DPPH scavenging (IC50 = 14.73 µg/mL), 
comparable to ascorbic acid. 

[67] * 

Grapes (Vitis
vinifera), berries,
peanuts
(Arachis hypogaea).

Patients with type 2 diabetes
(n = 110)/200 mg/day (99% pure
trans-resveratrol) for 24 weeks.

- Fasting plasma glucose decreased by 7.56%.
- HbA1c reduced by 6.31%.
- Insulin levels dropped by 9.96%, and HOMA-IR

improved by 17.96%.
- Inflammatory markers decreased: TNF-α by 13.67%,

IL-6 by 13.27%, and hs-CRP by 13.12%.
- Oxidative stress marker MDA reduced by 8.46%

[62] ****

Grapes (Vitis
vinifera), peanuts
(Arachis hypogaea),
red wine.

Obese but otherwise healthy male
volunteers (n = 11)/150 mg/day (99%
pure trans-resveratrol, resVida™) for
30 days.

- Decreased resting metabolic rate.
- Enhanced mitochondrial efficiency and activity through

AMPK-SIRT1-PGC-1α pathways.
- Plasma glucose, triglycerides, and alanine

aminotransferase (ALT) levels decreased significantly.
- Systolic blood pressure is reduced by ~5 mmHg.
- HOMA-IR (insulin resistance) improved by 25%.
- Lowered inflammation markers (IL-6, TNF-α).

[63] ****
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High-fat diet (HFD)-induced 
obese C57BL/6J mice/DR2 (40 
or 80 mg/kg/day) for 3 weeks *. 

- Downregulated pro-inflammatory MCP-1 and adipogenic markers 
(PPAR-γ, C/EBPα, FASN). 

Resveratrol 

 

Grapes (Vitis 
vinifera), berries, 
peanuts (Arachis 
hypogaea). 

Patients with type 2 diabetes (n 
= 110)/200 mg/day (99% pure 
trans-resveratrol) for 24 weeks. 

- Fasting plasma glucose decreased by 7.56%. 
- HbA1c reduced by 6.31%. 
- Insulin levels dropped by 9.96%, and HOMA-IR improved by 17.96%. 
- Inflammatory markers decreased: TNF-α by 13.67%, IL-6 by 13.27%, 

and hs-CRP by 13.12%. 
- Oxidative stress marker MDA reduced by 8.46% 

[62] **** 

Grapes (Vitis 
vinifera), peanuts 
(Arachis hypogaea), 
red wine. 

Obese but otherwise healthy 
male volunteers (n = 11)/150 
mg/day (99% pure trans-
resveratrol, resVida™) for 30 
days. 

- Decreased resting metabolic rate. 
- Enhanced mitochondrial efficiency and activity through AMPK-SIRT1-

PGC-1α pathways. 
- Plasma glucose, triglycerides, and alanine aminotransferase (ALT) 

levels decreased significantly. 
- Systolic blood pressure is reduced by ~5 mmHg. 
- HOMA-IR (insulin resistance) improved by 25%. 
- Lowered inflammation markers (IL-6, TNF-α). 

[63] **** 

Quercetin 

 

Apples (Malus 
domestica), onions 
(Allium cepa), and 
berries. 

Male C57BL/6J mice were fed a 
high-fat diet (HF) or HF 
supplemented with 0.05% 
quercetin (HFQ) for 6 weeks. 
 

- Reduced obesity biomarkers: body weight by 69.7%, liver weight by 
19.6%, and adipose weight by 58.3%.  

- Inflammatory markers decreased significantly, with plasma insulin 
reduced by 88%, leptin by 92%, resistin by 27%, and glucagon by 97%. 

- Metabolic biomarkers improved, including a 25.4% decrease in blood 
glucose, 62.9% reduction in triglycerides, 37.6% reduction in LDL 
cholesterol, and an 82.3% improvement in the HOMA-IR index. 

- Modulated the gut microbiome, reducing the Firmicutes/Bacteroidetes 
ratio by 65.6%. 

[64] *** 

Patients with type 2 diabetes 
mellitus (n = 170)/500 mg/day 
of quercetin dihydrate for 12 
weeks. 

- Improved glycemic control, reducing HbA1c levels by up to 4.0% and 
increasing telomere length by 0.52 kb, suggesting benefits in metabolic 
health and cellular aging. 

- A reduction in systolic blood pressure by an average of 6.55 mmHg. 

[65,66] **** 

β-sitosterol 
Chia (Salvia 
hispanica L.) 

Non-polar fractions (light 
petroleum and 

- Antioxidant activity: strong DPPH scavenging (IC50 = 14.73 µg/mL), 
comparable to ascorbic acid. 

[67] * 

Apples (Malus
domestica), onions
(Allium cepa), and
berries.

Male C57BL/6J mice were fed
a high-fat diet (HF) or HF
supplemented with 0.05% quercetin
(HFQ) for 6 weeks.

- Reduced obesity biomarkers: body weight by 69.7%,
liver weight by 19.6%, and adipose weight by 58.3%.

- Inflammatory markers decreased significantly, with
plasma insulin reduced by 88%, leptin by 92%, resistin
by 27%, and glucagon by 97%.

- Metabolic biomarkers improved, including a 25.4%
decrease in blood glucose, 62.9% reduction in
triglycerides, 37.6% reduction in LDL cholesterol, and
an 82.3% improvement in the HOMA-IR index.

- Modulated the gut microbiome, reducing the
Firmicutes/Bacteroidetes ratio by 65.6%.

[64] ***

Patients with type 2 diabetes mellitus
(n = 170)/500 mg/day of quercetin
dihydrate for 12 weeks.

- Improved glycemic control, reducing HbA1c levels by
up to 4.0% and increasing telomere length by 0.52 kb,
suggesting benefits in metabolic health and cellular
aging.

- A reduction in systolic blood pressure by an average of
6.55 mmHg.

[65,66] ****

β-sitosterol
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dichloromethane) from the 
aerial parts of Salvia hispanica. 

- Anti-inflammatory activity: effective histamine release inhibition (IC50 
= 61.8 µg/mL). 

- Antidiabetic activity: moderate α-amylase inhibition (IC50 = 673.25 
µg/mL). 

- Anti-obesity activity: significant pancreatic lipase inhibition (IC50 = 
59.3 µg/mL). 

- Cytotoxicity: moderate activity against cancer cell lines (IC50 = 35.9 
µg/mL for A-549, IC50 = 42.4 µg/mL for PC-3, IC50 = 47.5 µg/mL for 
HCT-116). 

n-6 and n-3 PUFA 

 

 

 

- ALA from 
linseed oil. 

- SDA from 
Echium 
plantagineum L. 
oil. 

- DHA from 
microalgae oil. 

Hypertriglyceridemic adults (n 
= 59)/ALA group: 20 g/day of 
linseed oil (7.42 g ALA/day); 
SDA group: 20 g/day of 
echium oil (1.57 g SDA/day); 
DHA group: 12 g/day of 
microalgae oil (1.64 g 
DHA/day) for 10 weeks. 

- Increased EPA levels in plasma lipids (ALA: +38%, SDA: +73%. 
- Decreased total cholesterol (ALA: −0.81 mmol/L) and improved 

LDL/HDL ratio. 
- Increased DHA levels in plasma and HDL cholesterol by +137% and 

10%, respectively. 
- Decreased n-6/n-3 ratio and improved AA/EPA ratio in SDA and DHA 

groups. 

[68] **** 

* in vitro; ** in vitro and in vivo; *** animal model; **** human clinical study. Abbreviation: γH2AX, Phosphorylated H2A histone family member X; 8-OHdG, 8-
Hydroxy-2′-deoxyguanosine; ROS, Reactive Oxygen Species; Nrf2, Nuclear Factor Erythroid 2-Related Factor 2; GPX4, Glutathione Peroxidase 4; HO-1, Heme 
Oxygenase-1; TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; IL-1β, Interleukin-1 Beta; MDA, Malondialdehyde; GSH, Glutathione; LDL, Low-Density 
Lipoprotein; HDL, High-Density Lipoprotein; UCP1, Uncoupling Protein 1; PGC-1α, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha; 
ATP, Adenosine Triphosphate; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; HbA1c, Hemoglobin A1c (Glycated Hemoglobin); NF-κB, Nuclear 
Factor Kappa B; AMPK, AMP-Activated Protein Kinase; MCP-1, Monocyte Chemoattractant Protein-1 (also known as CCL2); C/EBPα, CCAAT/Enhancer-Binding 
Protein Alpha; FASN, Fatty Acid Synthase; hs-CRP, High-Sensitivity C-Reactive Protein; AMPK-SIRT1-PGC-1α, AMP-Activated Protein Kinase—Sirtuin 1—Pe-
roxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha Pathway; DPPH, 2,2-Diphenyl-1-Picrylhydrazyl (a free radical used in antioxidant assays); 
EPA, Eicosapentaenoic Acid; ALA, Alpha-Linolenic Acid; SDA, Stearidonic Acid; DHA, Docosahexaenoic Acid. 

Chia
(Salvia hispanica L.)

Non-polar fractions (light petroleum
and dichloromethane) from the aerial
parts of Salvia hispanica.

- Antioxidant activity: strong DPPH scavenging
(IC50 = 14.73 µg/mL), comparable to ascorbic acid.

- Anti-inflammatory activity: effective histamine release
inhibition (IC50 = 61.8 µg/mL).

- Antidiabetic activity: moderate α-amylase inhibition
(IC50 = 673.25 µg/mL).

- Anti-obesity activity: significant pancreatic lipase
inhibition (IC50 = 59.3 µg/mL).

- Cytotoxicity: moderate activity against cancer cell lines
(IC50 = 35.9 µg/mL for A-549, IC50 = 42.4 µg/mL for
PC-3, IC50 = 47.5 µg/mL for HCT-116).

[67] *
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- Increased EPA levels in plasma lipids (ALA: +38%, SDA: +73%. 
- Decreased total cholesterol (ALA: −0.81 mmol/L) and improved 

LDL/HDL ratio. 
- Increased DHA levels in plasma and HDL cholesterol by +137% and 

10%, respectively. 
- Decreased n-6/n-3 ratio and improved AA/EPA ratio in SDA and DHA 

groups. 

[68] **** 

* in vitro; ** in vitro and in vivo; *** animal model; **** human clinical study. Abbreviation: γH2AX, Phosphorylated H2A histone family member X; 8-OHdG, 8-
Hydroxy-2′-deoxyguanosine; ROS, Reactive Oxygen Species; Nrf2, Nuclear Factor Erythroid 2-Related Factor 2; GPX4, Glutathione Peroxidase 4; HO-1, Heme 
Oxygenase-1; TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; IL-1β, Interleukin-1 Beta; MDA, Malondialdehyde; GSH, Glutathione; LDL, Low-Density 
Lipoprotein; HDL, High-Density Lipoprotein; UCP1, Uncoupling Protein 1; PGC-1α, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha; 
ATP, Adenosine Triphosphate; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; HbA1c, Hemoglobin A1c (Glycated Hemoglobin); NF-κB, Nuclear 
Factor Kappa B; AMPK, AMP-Activated Protein Kinase; MCP-1, Monocyte Chemoattractant Protein-1 (also known as CCL2); C/EBPα, CCAAT/Enhancer-Binding 
Protein Alpha; FASN, Fatty Acid Synthase; hs-CRP, High-Sensitivity C-Reactive Protein; AMPK-SIRT1-PGC-1α, AMP-Activated Protein Kinase—Sirtuin 1—Pe-
roxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha Pathway; DPPH, 2,2-Diphenyl-1-Picrylhydrazyl (a free radical used in antioxidant assays); 
EPA, Eicosapentaenoic Acid; ALA, Alpha-Linolenic Acid; SDA, Stearidonic Acid; DHA, Docosahexaenoic Acid. 

- ALA from
linseed oil.

- SDA from
Echium
plantagineum L.
oil.

- DHA from
microalgae oil.

Hypertriglyceridemic adults
(n = 59)/ALA group: 20 g/day of
linseed oil (7.42 g ALA/day); SDA
group: 20 g/day of echium oil (1.57 g
SDA/day); DHA group: 12 g/day of
microalgae oil (1.64 g DHA/day) for
10 weeks.

- Increased EPA levels in plasma lipids (ALA: +38%,
SDA: +73%.

- Decreased total cholesterol (ALA: −0.81 mmol/L) and
improved LDL/HDL ratio.

- Increased DHA levels in plasma and HDL cholesterol
by +137% and 10%, respectively.

- Decreased n-6/n-3 ratio and improved AA/EPA ratio in
SDA and DHA groups.

[68] ****

* in vitro; ** in vitro and in vivo; *** animal model; **** human clinical study. Abbreviation: γH2AX, Phosphorylated H2A histone family member X; 8-OHdG, 8-Hydroxy-2′-deoxyguanosine; ROS, Reactive Oxygen Species;
Nrf2, Nuclear Factor Erythroid 2-Related Factor 2; GPX4, Glutathione Peroxidase 4; HO-1, Heme Oxygenase-1; TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; IL-1β, Interleukin-1 Beta; MDA, Malondialdehyde;
GSH, Glutathione; LDL, Low-Density Lipoprotein; HDL, High-Density Lipoprotein; UCP1, Uncoupling Protein 1; PGC-1α, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha; ATP, Adenosine
Triphosphate; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; HbA1c, Hemoglobin A1c (Glycated Hemoglobin); NF-κB, Nuclear Factor Kappa B; AMPK, AMP-Activated Protein Kinase; MCP-1, Monocyte
Chemoattractant Protein-1 (also known as CCL2); C/EBPα, CCAAT/Enhancer-Binding Protein Alpha; FASN, Fatty Acid Synthase; hs-CRP, High-Sensitivity C-Reactive Protein; AMPK-SIRT1-PGC-1α, AMP-Activated
Protein Kinase—Sirtuin 1—Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha Pathway; DPPH, 2,2-Diphenyl-1-Picrylhydrazyl (a free radical used in antioxidant assays); EPA, Eicosapentaenoic Acid;
ALA, Alpha-Linolenic Acid; SDA, Stearidonic Acid; DHA, Docosahexaenoic Acid.
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2.2. Zoochemicals

Zoochemicals are natural compounds from animal-based foods, such as omega-3
fatty acids and linoleic acid (CLA), with antioxidant, anti-inflammatory, and metabolic-
regulating effects that reduce the risks of cardiovascular diseases and T2DM. The term was
introduced by nutrition researchers in the late 20th century to describe health-promoting
animal-derived components [69]. Table 2 provides a comprehensive summary of the effects
of zoochemicals, highlighting their roles in improving metabolic health and reducing the
risks associated with obesity, T2DM, and cardiovascular diseases.

Mechanism of Action

Zoochemicals, including omega-3 fatty acids (EPA and DHA), CLA, and milk-derived
bioactive peptides, play pivotal roles in improving metabolic health by targeting glucose
and lipid metabolism, inflammation, and fat accumulation. Polyunsaturated fatty acids
(PUFAs), conjugated linoleic acid (CLA), and bioactive compounds in dairy products play
critical roles in metabolic health and inflammation regulation. A balanced dietary ratio
of n-6:n-3 PUFAs has been shown to improve the total fatty acid profile in red blood cells
and reduce inflammatory markers, positively impacting inflammation in individuals with
obesity [70]. Omega-3 fatty acids were found to reduce the number of adipose tissue
macrophages in insulin-resistant subjects, thereby mitigating inflammatory responses [71].
A randomized controlled trial demonstrated that the consumption of goat cheese naturally
rich in Omega-3 and CLA improved cardiovascular and inflammatory biomarkers in
overweight and obese subjects [72]. Additionally, cis-9, trans-11 conjugated linoleic acid
exhibited anti-inflammatory effects in bovine mammary epithelial cells stimulated by
Escherichia coli, mediated via inhibition of the NF-κB signaling pathway [73]. A study of
Korean adults further revealed that dairy and soy product intake was associated with a
reduced 10-year risk of coronary heart disease [74]. Moreover, bioactive peptides derived
from goat milk showed potential anticancer effects on the HCT-116 human colorectal
carcinoma cell line [75]. As summarized in Table 2, these findings collectively demonstrate
that zoochemicals such as PUFAs, CLA, and bioactive components in dairy products hold
significant potential in improving metabolic health, reducing inflammation, and lowering
the risks of cardiovascular and cancer-related diseases.

Collectively, PUFAs, CLA, and bioactive components in dairy products demonstrate
significant potential in improving metabolic health, reducing inflammation, and lowering
the risk of cardiovascular and cancer-related diseases.

Chitin and its derivatives (e.g., chitosan, chitosan oligosaccharides, and chitin–glucan
fibers) exhibit extensive potential in improving metabolic health by modulating gut mi-
crobiota, promoting metabolic signaling, and enhancing therapeutic efficacy. Formulated
chitosan microspheres have been shown to remodel gut microbiota and regulate liver
miRNA in diet-induced type 2 diabetic rats, improving metabolic functions [76]. According
to Lopez-Santamarina et al., insect-based ingredients and insect powder exhibit both bene-
ficial and harmful effects on gene modification regulation, likely due to their high protein
content. In contrast, chitin-derived compounds (e.g., chitosan) demonstrate better prebiotic
activity in low-protein diets, promoting beneficial bacteria while inhibiting pathogenic
microbes. Additionally, chitin derivatives show potential in anti-inflammatory responses,
immune stimulation, diabetes prevention, and obesity control. Further research is needed
to enhance their application as a dietary fiber source in human nutrition [77].

Carboxymethyl chitin demonstrated anti-obesity effects in 3T3-L1 adipocytes via
AMPK and aquaporin-7 signaling pathways [78]. A randomized controlled trial revealed
that chitin–glucan fibers reduced oxidized low-density lipoprotein (ox-LDL) levels, indicat-
ing potential cardiovascular protective effects [79]. Clinically, chitosan oligosaccharides
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significantly enhanced the therapeutic efficacy of sitagliptin in Chinese elderly patients
with T2DM [80]. Furthermore, dietary chitin–glucan fibers modulated gut bacteria, such
as Roseburia spp. (Clostridial cluster XIVa), and improved high-fat diet-induced metabolic
alterations in mice [81]. These findings highlight the significant potential of chitin and
its derivatives in managing T2DM, obesity, and cardiovascular diseases, providing new
avenues for functional foods and therapeutic interventions. As summarized in Table 2,
these findings collectively demonstrate that zoochemicals such as PUFAs, CLA, bioactive
components in dairy products, and chitin and its derivatives hold significant potential in im-
proving metabolic health, reducing inflammation, and lowering the risks of cardiovascular,
obesity-related, and cancer-related diseases.
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Table 2. Effects of zoochemicals.

Zoochemical Experiment Model Dosage and Duration Key Findings Reference

Cis-9, Trans-11-Conjugated Linoleic
Acid (CLA 9,11)
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EA.hy926 endothelial
cells (human umbilical
vein endothelial cell
lineage)

1 and 10 µM for CLA9,11
and CLA10,12 for 48 h

- CLA9,11 reduced MCP-1, IL-6, IL-8, and RANTES, while CLA10,12 showed
mixed effects, reducing MCP-1 and RANTES but increasing IL-6 levels.

- Both CLA isomers decreased COX-2, PPAR-α, and IL-6 gene expression but
increased NF-κB1 expression.

[84] *

Lactating Holstein
dairy cows

120 g/day of CLA
supplement providing 12
g/day of each isomer from
21 days pre-calving to 60
days post-calving

- Increased milk yield (+3.04 kg/day) and lactose concentration, but decreased
milk fat content (−0.62%).

- Increased serum glucose (+9.5%, p = 0.01) and insulin levels (p = 0.02), with a
trend toward increased IGF-1.

- Increased conception rate at first insemination (60% vs. 40%) and elevated
progesterone (+28%) and estradiol levels.

[85] **

Overweight and obese
adults (n = 68; BMI ≥
27 and <40 kg/m2)

60 g/day of
PUFA-enriched goat
cheese for 12 weeks

- Increased HDL cholesterol (+4.5 mg/dL) and the LDL/HDL ratio.
- Decreased CRP levels by 36%.
- Increased HDL plasma vitamin D.

[72] ***
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Table 2. Cont.

Zoochemical Experiment Model Dosage and Duration Key Findings Reference
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subcutaneous and
visceral adipocytes

100 µM EPA and/or DHA
for 72 h

- Reduced expression of inflammatory markers (e.g., IL6, CCL2, CX3CL1) in
adipocytes and tissue.

- Promoted M2 (anti-inflammatory) over M1 (pro-inflammatory) macrophage
differentiation.

- Decreased lipid droplet size and lipogenic gene expression (e.g., perilipin A,
CIDEA).

- DHA had stronger effects on lipogenesis and lipolysis than EPA.

[86] *

Omega-3 fatty acids
(EPA and DHA)

~H 

Eicosapentaenoic acid 
(EPA, C 20H 3002) 

~COOH 

Docosahexaenoic acid 
(DHA, C22 H320 2) 

Fish oil such as:
Salmo salar (Atlantic
salmon)
Clupea harengus
(Atlantic herring)
Engraulis encrasicolus
(European anchovy)
Sardinops sagax
(Pacific sardine)

Wistar rats on a high-fat
diet (HFD)/3.4% fish oil of
total dietary energy for
8 weeks.

- Plasma insulin levels decreased by 39% (1.8 ± 0.2 to 1.1 ± 0.1 ng/mL), and
HOMA-IR improved by 39% (3.8 ± 0.4 to 2.3 ± 0.2).

- Harmful lipid intermediates, ceramide and diacylglycerol, were reduced by
40% in visceral adipose tissue and by up to 42% in subcutaneous tissue.

- Plasma adiponectin increased by 50% (5.2 ± 0.3 to 7.8 ± 0.5 µg/mL), and
mitochondrial fatty acid oxidation markers, like CPT1 expression, rose by
60%.

[87] **

Twelve obese women (BMI
≥ 35) and 12 healthy
women (BMI < 24)/4.8
g/day (3.2 g EPA + 1.6 g
DHA) for 3 months.

- Insulin levels decreased significantly in the obese group from 13.0 ± 8.8
mU/L to 6.9 ± 3.4 mU/L.

- HOMA-IR index decreased by 53% (from 3.2 ± 2.3 to 1.5 ± 0.9).
- Reduction in pro-inflammatory TNF-α levels in the obese group.

[88] ***

60 diabetic patients with
NAFLD/2 g/day (180 mg
EPA and 120 mg DHA per
capsule, 2 capsules daily)
for 12 weeks.

- FLI decreased significantly by 3.6 in the omega-3 group compared to 0.9 in
the placebo group.

- LAP reduced by 14.2 in the omega-3 group versus an increase of 8.0 in the
placebo group.

- VAI decreased by 0.5 in the omega-3 group compared to 0.0 in the placebo
group.

[89] ***
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Table 2. Cont.

Zoochemical Experiment Model Dosage and Duration Key Findings Reference
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Rats fed with
a high-sugar
and high-fat diet
(HSFD) to induce Type
2 diabetes

Wistar rats on a
HSHF/Chitosan
microsphere (CMS)
supplement providing
40 mg/day for 90 days.

- Remodelled gut microbiota, increasing beneficial bacteria, like Lactobacillus,
and reducing pathogenic bacteria.

- CMS treatment upregulated miR-203 and downregulated miR-103,
modulating glucose and lipid metabolism.

- Antidiabetic and anti-inflammatory effects.

[76] **
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3T3-L1 preadipocytes
as a cell model

Carboxymethyl chitin
(CM-chitin) was tested in
3T3-L1 adipocytes at
concentrations of 50, 100,
and 200 µg/mL

- Carboxymethyl chitin activates AMPK signaling.
- Aquaporin-7 regulation reduces triglyceride accumulation.
- Anti-obesity potential through adipogenesis inhibition.

[78] *
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[79] ***
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2.3. Macrofungi

In addition to the roles of phytochemical and zoochemical functional components,
we have previously reviewed the clinical potential of medicinal components from edible
fungi for T2DM treatment and in the prevention of noncommunicable diseases [90]. Macro-
fungi, including edible and medicinal mushrooms, are emerging as rich sources of bioactive
compounds with promising potential for managing metabolic health in T2DM and obesity.
These mushrooms are abundant in polysaccharides, terpenoids, phenolic compounds,
and sterols, each contributing unique therapeutic properties [91]. For instance, phenolic
compounds in Agaricus bisporus (white button mushroom) act as potent antioxidants, allevi-
ating oxidative stress, a key factor in IR and β-cell dysfunction. Their antihyperglycemic
activity was demonstrated in alloxan-induced diabetic rats, where ethanol (ABEE) and
methanol (ABME) extracts reduced serum glucose levels, improved lipid profiles, and
restored liver function, with ABEE showing superior efficacy [92]. Similarly, aqueous
extracts of Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom)
exhibited strong antioxidant, antiviral, and anticancer activities, mediated by bioactive
proteins, like superoxide dismutase, and compounds such as catechin and quercetin [93].

Vitamin D plays a role in regulating glucose metabolism and inflammation, potentially
reducing the risk of T2DM and obesity. Studies have shown that vitamin D deficiency is
associated with insulin resistance, T2DM, and adipose tissue inflammation; appropriate sup-
plementation may improve metabolic health [94]. Hsu et al. first demonstrated that pulsed
UV light-treated Pleurotus citrinopileatus significantly increased serum 25-hydroxyvitamin
D [25(OH)D] levels in healthy adults, addressing vitamin D deficiency. This technique
enhances vitamin D2 content in mushrooms, providing a safe and sustainable way to boost
daily vitamin D intake. It also offers a novel solution for addressing global vitamin D
insufficiency and related metabolic issues [95].

Further studies highlight the in vivo therapeutic potential of Pleurotus ostreatus-derived
insoluble dietary fiber (POIDF) in addressing obesity and metabolic dysregulation. POIDF
supplementation in rats reduced body weight, serum lipid levels, and hepatic fat deposi-
tion, while enhancing antioxidant capacity and modulating gut microbiota composition.
Proteomic and metabolomic analyses revealed its influence on key metabolic pathways,
including PPAR and adipocytokine signaling, and increased SCFA production [96]. Addi-
tionally, Lentinula edodes has been shown to contain novel bioactive compounds with potent
antioxidant and anti-inflammatory properties, surpassing the efficacy of standard drugs,
like indomethacin, in inhibiting NO and TNF-α production [97].

The submerged cultivation of Trametes sp. further emphasizes the potential of mush-
rooms as functional foods. A phytochemical analysis revealed high levels of saponins,
anthraquinones, phenolic compounds, flavonoids, and β-glucan, contributing to strong
antioxidant activity and potential applications in managing oxidative stress and metabolic
disorders [98]. Evidence from in vitro and in vivo studies supports the therapeutic po-
tential of macrofungi, with their bioactive compounds contributing to anti-inflammatory,
antihyperglycemic, and lipid-regulating effects [99,100]. Moreover, a prospective cohort
study demonstrated an inverse relationship between mushroom consumption and the
risk of T2DM, with higher intakes associated with improved glucose metabolism and
reduced oxidative stress. The bioactive compound ergothioneine and other metabolites
were identified as significant contributors to these effects. These findings position macro-
fungi as sustainable and effective dietary components for mitigating inflammation and
managing T2DM, particularly when consumed raw or minimally processed to preserve
their bioactivity [101].

Hyperglycemia-induced renal damage often triggers inflammation and fibrosis, lead-
ing to DKD. Studies on Cordyceps species have highlighted their antidiabetic and nephro-
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protective potential. Fermented Cordyceps sinensis (CS) demonstrated an ability to reduce
cytotoxicity, inhibit apoptosis, and promote cell proliferation in high-glucose-induced HK-2
cells by modulating key molecular markers, including bax, caspase-3, VEGFA, phosphory-
lated AKT (P-AKT), and phosphorylated ERK (P-ERK) and PTEN [102]. Similarly, aqueous
extracts of Cordyceps militaris (CM) in diet streptozotocin-induced diabetic rats significantly
lowered blood glucose, improved lipid profiles, and enhanced renal function by reducing
albuminuria, serum creatinine, and urea nitrogen levels. CM also attenuated oxidative
stress and modulated inflammatory markers, showcasing its potential for managing type 2
diabetes and DKD [103].

3. The Potential of Probiotics and Gut Microbiota Modulation in the
Treatment of Diabetic Kidney Disease and Chronic Kidney Disease

DKD and CKD are caused by multiple factors, including diabetes, hypertension,
chronic inflammation, oxidative stress, and metabolic dysregulation. Persistent hyper-
glycemia and hypertension lead to glomerular hyperfiltration and high pressure, causing
glomerular damage and renal fibrosis. Inflammation and oxidative stress also play critical
roles in kidney injury. Dysbiosis of the gut microbiota has been linked to the progression of
CKD and DKD, as impaired gut barrier function increases the production of uremic toxins,
such as indoxyl sulfate and p-cresyl sulfate, which exacerbate kidney damage. Probiotics,
by modulating the gut microbiota, can reduce the generation of harmful metabolites, lower
systemic inflammation, and improve renal function, making them a promising approach in
the management of CKD and DKD [104–106].

Lactiplantibacillus plantarum NKK20 has been shown to significantly reduce renal
inflammation, serum oxidative stress, and advanced glycation end-product (AGE) levels in
diabetic mice, thereby improving kidney damage. Treatment with NKK20 increases the anti-
inflammatory metabolite butyrate in feces; metabolomics analysis reveals alterations in 24
metabolites involved in glycerophospholipid and arachidonic acid metabolism. In human
renal HK-2 cells, butyrate enhances tight junction gene expression, inhibits fibrosis, and
suppresses the PI3K–AKT pathway activation. These findings suggest that NKK20 can
effectively prevent and treat diabetic kidney injury by reducing blood glucose levels,
decreasing AGE concentrations, and promoting butyrate production [107].

Huang’s study also developed the probiotic Lactobacillus mix (Lm), which demon-
strated efficacy in improving gut dysbiosis caused by chronic kidney disease (CKD). The
probiotic increased short-chain fatty acid production, reduced uremic toxins and related
metabolites, alleviated oxidative stress and inflammation, and improved renal function.
Both animal and clinical trials revealed that Lm enhanced gut microbiota diversity, reduced
toxin accumulation, and mitigated the decline in glomerular filtration rate. Additionally,
variable responses in human and feline trials highlighted potential connections between
microbial species and metabolites, emphasizing Lm’s precision potential in delaying CKD
progression [108].

Vazir et al. highlighted that the gut microbiota functions as a symbiotic ecosystem
with both nutritional and protective roles, influenced by the biochemical environment.
Their study examined the effects of dietary and pharmacological interventions in uremia
and CKD on the gut microbiome. Microbial DNA from the feces of 24 end-stage renal
disease (ESRD) patients and 12 healthy individuals was analyzed using phylogenetic
microarrays. The results showed significant differences in 190 operational taxonomic
units (OTUs) between the ESRD and control groups, with notable increases in OTUs from
Lactobacillus, Streptococcus, Enterobacteriaceae, Halomonadaceae, Moraxellaceae, Nesterenkonia,
Polyangiaceae, Pseudomonadaceae, and Thiotrichaceae in ESRD patients. A separate study
using 5/6 nephrectomized rats revealed significant changes in 175 OTUs, including a
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marked reduction in Lactobacillaceae and Prevotellaceae. These findings demonstrate that
uremia profoundly alters gut microbiota composition, although the biological implications
require further investigation [109].

Kuo et al. demonstrated that approximately one-third of end-stage CKD patients
suffer from diabetic nephropathy (DN), which exacerbates renal dysfunction, with few
preventive options available. A probiotic combination of Lactobacillus acidophilus TYCA06,
Bifidobacterium longum subsp. infantis BLI-02, and Bifidobacterium bifidum VDD088 (high
dose: 5.125 × 109 CFU/kg/day; low dose: 1.025 × 109 CFU/kg/day) significantly reduced
blood urea nitrogen (BUN), serum creatinine, blood glucose, and urinary protein fluctuation
rates after 8 weeks in db/db mouse models. The probiotics also improved blood pressure,
glucose tolerance, and renal fibrosis. In vitro analysis revealed that TYCA06 and BLI-02
significantly increased acetate production, while all three strains demonstrated antioxi-
dant, anti-inflammatory, and glucose consumption activities. Collectively, this probiotic
combination effectively stabilizes glucose levels and slows CKD progression induced by
diabetes [110].

4. Interplay of Nutrigenetics and Nutrigenomics in Personalized
Interventions for Obesity and Type 2 Diabetes

The intersection of nutrigenetics and nutrigenomics represents a transformative ap-
proach to understanding the complex relationship between diet, genetic predisposition, and
metabolic health, particularly in managing T2DM and obesity. These two complementary
disciplines offer profound insights into the genetic and molecular mechanisms underlying
individual variability in response to dietary interventions, enabling the development of per-
sonalized nutrition strategies tailored to optimize metabolic outcomes [111,112]. Figure 3
illustrates an interactive model of nutrigenetics and nutrigenomics in the management of
T2DM and obesity. This model highlights the interconnections among dietary habits, gene
variations (e.g., single-nucleotide polymorphisms (SNPs)), gene expression, and gut mi-
crobiota, collectively influencing insulin sensitivity, lipid metabolism, and energy balance.
Nutritional components in the diet not only modulate gene expression but also reshape
the gut microbiota composition, further impacting metabolic functions and providing a
scientific basis for personalized nutritional.

To further clarify the distinction between nutrigenetics and nutrigenomics, the latter
focuses specifically on how dietary components influence gene expression through epige-
netic mechanisms such as DNA methylation, histone modification, and non-coding RNA
regulation. These mechanisms reveal how diet interacts with the genome to modulate
metabolic health beyond genetic predisposition. For instance, dietary polyphenols, fatty
acids, and vitamins have been shown to regulate epigenetic marks, influencing the genes
involved in glucose metabolism, lipid homeostasis, and inflammation. By incorporating
this expanded understanding of nutrigenomics, this model emphasizes its unique contri-
bution to personalized nutrition through the modulation of gene expression to optimize
metabolic outcomes [113,114].

Moreover, according to the study by Scala et al., dietary components, like polyphe-
nols, can activate specific epigenetic pathways, influencing non-coding RNA expression.
These mechanisms provide new insights into how diet can reshape gene activity and
metabolic health. Mediterranean diet plants, rich in bioactive compounds, such as polyphe-
nols, flavonoids, and terpenoids, have been shown to exert nutrigenomic effects by mod-
ulating gene expression through epigenetic mechanisms. Notably, indicaxanthin from
prickly pear, kaempferol and quercetin from capers, and terpenoids, like carvacrol and
γ-terpinene, from oregano and thyme, exhibit antioxidant, anti-inflammatory, and antimi-
crobial properties, contributing to metabolic regulation. Additionally, these plants thrive in
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arid environments, benefiting from plant growth-promoting (PGP) microorganisms that en-
hance stress resistance and sustainability. This expanded understanding of nutrigenomics
underscores its critical role in advancing personalized nutrition strategies by focusing on
the modulation of gene expression through epigenetic marks [115].
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Research in obesity genetics has significantly advanced our understanding of its
monogenic and polygenic forms. Monogenic obesity, often characterized by early-onset
and severe obesity, results from rare mutations in genes such as LEP (leptin), MC4R
(melanocortin 4 receptor), and SH2B1 (SH2B adaptor protein 1) [116,117]. In contrast,
polygenic obesity stems from the cumulative effects of numerous genetic variants, each
exerting a modest influence on body weight regulation and metabolic processes. Recent
genome-wide association studies (GWAS) have identified key loci associated with obesity-
related traits, deepening our understanding of the genetic architecture underlying polygenic
obesity [118,119]. These advancements lay a critical foundation for the development of
personalized strategies aimed at preventing and managing obesity.

Gene–diet interaction studies further emphasize the role of genetic variants in shaping
metabolic outcomes. For instance, the Pro12Ala polymorphism of the PPARγ2 gene was
shown to interact with dietary fat intake, where Ala12 carriers exhibited improved insulin
sensitivity and reduced BMI when following a Mediterranean diet [120]. Similarly, variants
in the FTO gene (rs9939609 and rs9930506) were associated with higher BMI and fat intake
in Emirati populations, as well as attenuated weight loss responses in Mediterranean diet
interventions [121,122].

In the South Indian population, polymorphisms in the ADIPOQ gene (e.g., rs2241766
and rs1501299) influenced serum adiponectin levels and conferred differential risks for
obesity and T2DM [123]. Additionally, TCF7L2 gene variants (rs7903146 and rs290487)
interacted with BMI and waist circumference to elevate T2DM risk, as shown in Chinese
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cohorts [124]. In Korean T2DM patients, the rs7903146 T allele of TCF7L2 was linked to
a significantly higher risk of peripheral arterial disease, particularly in those with long-
standing diabetes [125].

Furthermore, bioactive compounds from Hibiscus sabdariffa, including delphinidin-3-
sambubioside (DS3), quercetin (QRC), and hibiscus acid (HA), offer promising insights
for nutrigenomics through their interactions with key genes and pathways influencing
metabolic health. DS3 primarily targets genes such as AKT1, EGFR, and PIK3R1, modu-
lating the PI3K–AKT signaling pathway. These interactions regulate glucose metabolism,
inflammation, and angiogenesis, suggesting DS3’s role in addressing insulin resistance and
metabolic dysregulation. QRC affects multiple gene networks, including CDK2, CYP1B1,
and IGF1R, involved in metabolic regulation and inflammation. Its impact on the PI3K–
AKT pathway and lipid metabolism highlights its potential in personalized strategies for
managing obesity and glucose homeostasis. HA uniquely targets genes like PPARA and
GABRA2, influencing neurological pathways such as neuroactive ligand–receptor interac-
tions. These gene interactions suggest potential applications in neurodegenerative disease
management and brain health [126].

Izquierdo-Lahuerta’s study demonstrated that the parathyroid hormone-related pro-
tein/parathyroid hormone 1 receptor (PTHrP/PTH1R) axis plays a central role in adipose
tissue differentiation and remodeling. On the one hand, it is crucial in directing stem cells
toward either adipogenesis or osteogenesis. On the other hand, PTHrP/PTH1R appears to
be essential in adipose tissue “stress” conditions, whether due to excess fat accumulation in
obesity, metabolic syndrome, type 2 diabetes, and gestational diabetes, or disease-induced
metabolic dysfunction in cancer and chronic kidney disease [127].

Hernando Boigues et al. reported that PUFAs may regulate obesity-related parameters
through epigenetic mechanisms. Studies suggest that PUFAs reversibly alter adipogenesis
gene methylation, influencing gene expression and offering the potential for nutritional in-
terventions. Additionally, PUFAs may interact with miRNAs to modulate lipid metabolism,
although research on histone modifications remains limited. Current data do not establish
an optimal PUFA dosage; however, their role in functional foods and non-pharmacological
approaches warrants further study. Given the varying effects of different PUFAs, future
research must control for dosage, bioavailability, and genetic backgrounds to clarify their
epigenetic impact on obesity [128]. Saad et al. reported that anti-obesity drugs target dif-
ferent adipocyte stages, while polyphenol bioactive compounds (e.g., genistein, apigenin,
quercetin, resveratrol) inhibit adipogenesis or induce apoptosis. Phytochemicals regulate
epigenetic mechanisms, including DNA methylation, histone acetylation, miRNA, and
chromatin remodeling, offering a potential strategy for obesity management. Western diets
induce epigenetic alterations; however, natural phytochemicals and nutritional interven-
tions may reverse these effects, benefiting both individual health and future generations’
epigenomes [129].

5. Conclusions
This review explored the synergistic roles of functional foods, microbiotics, nutrige-

netics, and nutrigenomics in the comprehensive management of T2DM and obesity. The
findings demonstrated that bioactive components in functional foods, such as phytochem-
icals, zoochemicals, and fungal compounds, effectively modulate metabolic pathways,
improving insulin sensitivity, lipid metabolism, and inflammatory responses. Microbiotics
studies highlighted the critical relationship between gut microbiota and metabolic health,
emphasizing the benefits of probiotic and prebiotic supplementation in enhancing gut ecol-
ogy. Additionally, nutrigenetics and nutrigenomics underscored the influence of genetic
variations (e.g., SNPs) on dietary responses and gene expression, enabling personalized
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nutritional interventions. This research provides comprehensive and sustainable solutions
for T2DM and obesity prevention and management, emphasizing the need for further
clinical studies to validate the long-term efficacy and safety of these strategies.
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