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To examine the mechanism by which moderate weight
reduction improves basal and insulin-stimulated rates
of glucose metabolism in patients with type 2 diabetes,
we used 1H magnetic resonance spectroscopy to assess
intrahepatic lipid (IHL) and intramyocellular lipid
(IMCL) content in conjunction with hyperinsulinemic-
euglycemic clamps using [6,6-2H2]glucose to assess rates
of glucose production and insulin-stimulated peripheral
glucose uptake. Eight obese patients with type 2 diabe-
tes were studied before and after weight stabilization
on a moderately hypocaloric very-low-fat diet (3%). The
diabetic patients were markedly insulin resistant in
both liver and muscle compared with the lean control
subjects. These changes were associated with marked
increases in IHL (12.2 � 3.4 vs. 0.6 � 0.1%; P � 0.02)
and IMCL (2.0 � 0.3 vs. 1.2 � 0.1%; P � 0.02) compared
with the control subjects. A weight loss of only �8 kg
resulted in normalization of fasting plasma glucose
concentrations (8.8 � 0.5 vs. 6.4 � 0.3 mmol/l; P <
0.0005), rates of basal glucose production (193 � 7 vs.
153 � 10 mg/min; P < 0.0005), and the percentage sup-
pression of hepatic glucose production during the clamp
(29 � 22 vs. 99 � 3%; P � 0.003). These improvements
in basal and insulin-stimulated hepatic glucose metabo-
lism were associated with an 81 � 4% reduction in IHL
(P � 0.0009) but no significant change in insulin-stim-
ulated peripheral glucose uptake or IMCL (2.0 � 0.3 vs.
1.9 � 0.3%; P � 0.21). In conclusion, these data support
the hypothesis that moderate weight loss normalizes
fasting hyperglycemia in patients with poorly controlled
type 2 diabetes by mobilizing a relatively small pool of
IHL, which reverses hepatic insulin resistance and nor-
malizes rates of basal glucose production, independent
of any changes in insulin-stimulated peripheral glucose
metabolism. Diabetes 54:603–608, 2005

P
revious studies have demonstrated that relatively
modest weight reduction in obese patients with
poorly controlled type 2 diabetes can markedly
reduce plasma glucose concentrations, but the

mechanism responsible for this phenomenon is not known
(1). Henry et al. (1) showed that a weight loss of 16.8 � 2.7
kg led to a reduction in fasting plasma glucose concentra-
tions from 15.3 � 1.2 to 6.8 � 0.4 mmol/l and that the
individual fasting glucose concentrations were highly cor-
related with rates of basal hepatic glucose production.

We hypothesized that a relatively small pool of intrahe-
patic lipid (IHL) might be responsible for the hepatic
insulin resistance and increased rates of glucose produc-
tion in patients with poorly controlled type 2 diabetes and
that hepatic steatosis and hepatic insulin resistance would
reverse with modest weight reduction before any changes
in peripheral insulin resistance and intramyocellular lipid
(IMCL) content.

To test these hypotheses, we used 1H magnetic reso-
nance spectroscopy (MRS) to noninvasively assess IHL
and IMCL content in eight obese type 2 diabetic patients
before and after weight stabilization on a hypocaloric diet,
which was maintained until they reached normal fasting
plasma glucose concentrations. Hepatic glucose production
and insulin sensitivity of liver and muscle were assessed
with a hyperinsulinemic (�480 pmol/l)-euglycemic (�6.0
mmol/l) clamp, using [6,6-2H2]glucose. In addition, rates of
net hepatic glycogenolysis and gluconeogenesis were as-
sessed in a subgroup of patients before and after weight
loss by 13C MRS as previously described (2).

RESEARCH DESIGN AND METHODS

Eight healthy, nonsmoking, obese type 2 diabetic patients (five men and three
women; 47 � 3 years of age) were studied (Table 1). At the time of study
enrollment, three patients’ diabetes was controlled with diet and the five
others were taking sulfonylurea agents to control their diabetes. They did not
take any other medications. The patients discontinued this antidiabetic
diet/medication 10 days before the baseline study. The control group con-
sisted of 10 lean, nonsmoking, healthy volunteers (5 men and 5 women; 30 �
2 years of age) who were studied once at baseline. The control subjects were
not taking any medications. All of the study participants had a sedentary
lifestyle, and none were engaged in any regular exercise regimens. For 3 days
before each of the studies, the subjects were given an isocaloric diet (35
kcal/kg; 60% carbohydrate, 20% protein, 20% fat) that was prepared by the
metabolic kitchen of the Yale/New Haven Hospital General Clinical Research
Center (GCRC). The calories in this diet were divided evenly among the three
daily meals. At 4 P.M. on the 3rd day, they were admitted to the GCRC, given
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dinner at 6 P.M., and then fasted until the end of the baseline study the
following day.
Body composition. On the day of admission, dual energy X-ray absorptiom-
etry scan (Hologic QDR-4500 W, Bedford, MA) was performed with the subject
lying in the supine position as previously described (3).
MRS measurements of liver and muscle triglyceride content. After an
overnight fast, the subjects were brought to the Yale-Magnetic Resonance
Center and positioned in a 2.1T NMR Biospec system (Bruker Instruments,
Billerica, MA) spectrometer for measurement of lipid content in the liver and
the right soleus muscle. After percussion of the liver borders, a circular 1H
observation coil (12 cm) was placed rigidly over the lateral aspect of the
abdomen and localized 1H magnetic resonance spectra of the liver were
obtained. Placement of the liver volume of interest (15 mm3) was confirmed
by imaging the liver with a multislice gradient echo sequence. Before each
measurement, the water signal was optimized during a shimming procedure
and localized 1H spectra were collected using a PRESS sequence (repetition
time of 3 s, echo time of 24.1 ms, 8,192 data points over 5,000-Hz spectral
width and 64 scans) complemented by a spatially localized suppression pulse
centered into the adipose tissue (4). A Lorentzian filter of 5 Hz was applied
before Fourier transformation and manual phase correction. Hepatic triglyc-
eride content was calculated from the area of intrahepatic CH2 resonance
relative to the area of the water resonance, using the integration routine of
Paravision software (Bruker Instruments) and then expressed as a percentage
of water content. Localized 1H magnetic resonance spectra of the soleus
muscle to assess IMCL content were obtained as previously described (4).
Indirect calorimetry. Continuous indirect calorimetry was performed with a
SensorMedics calorimeter (SensorMedics, Anaheim, CA) as previously de-
scribed (5,6).
Euglycemic-hyperinsulinemic clamp. On the morning of the study, after the
overnight fast and the MRS measurements of lipid in liver and muscle, a
catheter was placed in an antecubital vein for infusions and a retrograde
catheter was placed in a hand vein for blood withdrawal. The hand was kept
warm in a heated box at 55°C to “arterialize” the blood. Basal rates of glucose
turnover were assessed after a 180-min baseline period with a primed-
continuous (3.4 mg � m�2 � min�1) infusion of [6,6-2H2]glucose (99% atom
percent enrichment [APE]; Cambridge Isotopes Laboratories, Andover, MA).
The priming dose was corrected for ambient fasting plasma glucose levels as
previously described (7). After this baseline period, a hyperinsulinemic-
euglycemic clamp was initiated. A primed-constant infusion of insulin (40 mU
� m�2 � min�1; U-100 Humulin-R; Eli Lilly, Indianapolis, IN) was given, and
when plasma glucose concentrations had decreased to 6.1 � 0.3 mmol/l, the
basal 99% APE [6,6-2H2]glucose infusion was stopped and for 240 min plasma
glucose concentrations were maintained with a variable D-20 glucose infusion
that contained 3% [6,6-2H2]glucose (7).
Rates of net hepatic glycogenolysis and gluconeogenesis. In a subgroup
of three diabetic patients, the contributions of net hepatic glycogenolysis and
gluconeogenesis were assessed before and after weight loss. At 6 P.M. on the
day of admission, a 1,000-kcal liquid dinner that contained 60% carbohydrate
(80% of which was glucose), 20% fat, and 20% protein was given to ensure
maximum hepatic glycogen stores and uniform meal absorption (2). The meal
was consumed over 15 min, and the patients then fasted overnight until the
end of the study the next day.

From 11 P.M. to midnight and again from 6 to 7 A.M., hepatic glycogen
concentrations were measured using 13C nuclear MRS as previously described
(2). The liver glycogen measurements were followed by measurements of lipid
content in the liver and the right soleus muscles.
Weight loss diet. After completion of the baseline studies, the patients with
type 2 diabetes started a weight-loss regimen. The diet consisted of a liquid
diet formula (Medibase II; Advanced Healthcare, Avadyne, Monterey, CA)

with 50% carbohydrate, 43% protein, 3% fat, and 12 g of dietary fiber, which
was supplemented with raw fruit and vegetables to �1,200 kcal/day. This diet
contained all essential nutrients and vitamins. The weekly visits for 1H MRS of
IHL and IMCL were combined with recording of body weight and vital signs;
measurements of plasma electrolytes, glucose, and insulin concentrations;
and nutritional counseling. The weight-loss program continued until achieve-
ment of normoglycemia (between 3 and 12 weeks) and was followed by
4 weeks of weight stabilization on an isocaloric diet of regular food similar
to the diet given before the start of the baseline study (35 kcal/kg; 60%
carbohydrate, 20% protein, 20% fat). The calories were divided evenly among
the three daily meals. At 4 P.M. on the day before the follow-up study, the
diabetic patients were admitted to the GCRC, given dinner at 6 P.M., and then
fasted until the end of the follow-up study the next day.
Analytical procedures. Plasma glucose concentrations were measured using
a YSI STAT 2700 Analyzer (YSI, Yellow Springs, CA). Plasma immunoreactive
insulin, glucagon, leptin, adiponectin, and resistin concentrations were mea-
sured using antibody radioimmunoassay kits (Linco Research, St. Charles,
MO). Plasma concentrations of fatty acids were determined using a microfluo-
rimetric method (8). Plasma tumor necrosis factor-� and interleukin-6 (IL-6)
were measured by Quantine High Sensitivity kits (R&D Systems, Minneapolis,
MN).
Gas chromatography–mass spectrometry analysis. 2H APE in plasma
glucose was determined by gas chromatography–mass spectrometry using a
Hewlett-Packard (Palo Alto, CA) 5890 gas chromatograph interfaced with a
Hewlett-Packard 5971A Mass Selective detector as described (4).
Data analysis. Differences between the control subjects and the type 2
diabetic patients were assessed by Student’s t test, and differences between
pre– and post–weight loss effects were assessed by paired t tests. All data are
presented as means � SE.

RESULTS

Before the weight-loss regimen, all diabetic patients were
in moderate control as reflected by increased HbA1c (7.0 �
0.4%), fasting hyperglycemia, hypertriglyceridemia, and
hypercholesterolemia (Table 2). Rates of fasting glucose
production were 42% higher in the diabetic patients than in
the control subjects (Fig. 1A). The diabetic patients were
severely insulin resistant as reflected by very low rates of
glucose infusion required to maintain euglycemia during
the hyperinsulinemic-euglycemic clamp (diabetic 4.8 � 1.2
mg � kg LBM�1 � min�1 vs. control 10.9 � 0.6 mg � kg LBM�1

� min�1; P � 0.0002) as well as by a marked reduction in
insulin-stimulated whole-body glucose metabolism (Fig.
1B). This was associated with a 70% increase in IMCL (Fig.
1E). Furthermore, the diabetic patients had severe hepatic
insulin resistance as reflected by decreased insulin sup-
pression of glucose production during the hyperinsuline-
mic clamp (diabetic 29 � 22% vs. control 99 � 3%; P �
0.003; Fig. 1C). These alterations were associated with
severe hepatic steatosis in all of the diabetic patients (Fig.
1D). Hepatic enzymes, ALT and AST, were normal (24 � 3
and 21 � 2 units/l, respectively; normal range 0–35 units/l).

There were no differences between basal rates of glu-

TABLE 1
Body weight, BMI, and body composition in control subjects and patients with type 2 diabetes before and after weight loss

Control

P value,
control vs. before

weight loss
Before

weight loss
After

weight loss

P value,
before vs. after

weight loss

n 10 8 8
Body weight (kg) 77 � 4 NS 86 � 3 78 � 3 0.002
BMI (kg/m2) 25.2 � 1.0 �0.005 30.1 � 0.9 27.5 � 0.8 0.002
Fat mass (kg) 18.5 � 2.1 NS 23.6 � 2.1 20.0 � 1.6 0.009
Fat mass (%) 24.3 � 2.6 NS 27.6 � 2.5 25.7 � 2.2 0.02
Lean body mass (kg) 58.1 � 3.6 NS 62.0 � 3.2 58.5 � 3.2 0.0003
Truncal fat mass (kg) 7.60 � 1.13 �0.005 13.09 � 1.22 10.72 � 0.80 0.007

Data are means � SE.
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cose and lipid oxidation as compared with the control
subjects and no significant changes after the weight loss
(Table 3). During the clamp study, rates of glucose oxida-
tion were 47 � 11% lower (P � 0.0006) and rates of lipid
oxidation were 167 � 44% higher (P � 0.0001) than in the
control subjects.

After an average 7 weeks of the diet and an average
weight loss of 8.0 � 1.4 kg (range 3.3–16.0 kg), or 8 � 2%
of the initial body weight (Table 1), there was a marked
reduction in the fasting plasma glucose concentration
(Table 2). The reduction in fasting plasma glucose concen-
tration and body weight were associated with a 53 � 7 and
32 � 7% decreases in mean fasting plasma insulin and glu-
cagon concentrations, respectively (Table 2). There were
no significant changes in serum ALT and AST with the
weight loss (17 � 3 and 20 � 3 units/l, respectively).

After the weight reduction, plasma concentrations of
total cholesterol decreased by 13 � 4% (P � 0.05). HDL,
LDL, and triglycerides all tended to decrease in a similar
manner after completion of the weight-loss program, but
these changes were not significant (Table 2).

This improvement in glycemic control could be attrib-
uted to a large increase in whole-body insulin sensitivity,
as reflected by an approximately twofold increase in the
rate of glucose infusion required to maintain euglycemia
(7.6 � 1.2 vs. 4.8 � 1.2 mg � kg LBM�1 � min�1; P � 0.01),
although there were no changes in the rate of insulin-
stimulated whole-body glucose metabolism (Fig. 1B). In
contrast, there was a marked improvement in hepatic in-
sulin responsiveness, as reflected by an increase of insulin
suppression of glucose production to 93 � 5% during the
clamp compared with 29 � 22% before the weight loss
(P � 0.04; Fig. 1C). These changes in hepatic sensitivity
were associated with an 81 � 4% reduction in hepatic
triglyceride content (P � 0.009; Fig. 1D) to nearly normal
levels (2.2 � 0.8%; P � 0.005 versus before weight loss).
There was no significant correlation between hepatic tri-
glyceride content and insulin suppression of hepatic glu-
cose production. In contrast to the large decrease in IHL
content, the weight loss and improvement in hepatic

insulin sensitivity were not associated with any changes in
the IMCL content (Fig. 1E).

Energy expenditure was lower in all of the diabetic
patients after weight loss (1,754 � 61 vs. 1,544 � 68
kcal/day; P � 0.001). The fasting respiratory quotient was
unaffected by the weight loss (before weight loss 0.82 �
0.02 vs. after weight loss 0.80 � 0.01; NS).
Rates of net hepatic glycogenolysis and gluconeogen-

esis. To examine the mechanism responsible for the
reduced rates of hepatic glucose production after weight
reduction, we measured rates of net hepatic glycogenoly-
sis and gluconeogenesis in a subgroup of three diabetic
patients. Before the weight reduction, the increased rates
of glucose production could be entirely accounted for by
increased rates of gluconeogenesis (185.7 � 18.1 mg/min).
After weight loss, rates of net hepatic glycogenolysis
increased (7.1 � 3.4 vs. 27.4 � 1.5 mg/min; P � 0.03), and
the reduced rates of glucose production could be attrib-
uted to a reduction in the rates of gluconeogenesis
(153.4 � 14.0 mg/min; P � 0.02 versus before weight loss).

DISCUSSION

All of the type 2 diabetic patients manifested severe
hepatic and peripheral insulin resistance associated with
hepatic steatosis and increased IMCL. A moderate weight
loss of �8 kg, or �8% of their body weight, normalized
fasting plasma glucose concentrations and was associated
with an �10% decrease in plasma cholesterol concentra-
tions. This improved glycemic control could be attributed
to a marked improvement in their insulin responsiveness,
as reflected by an approximately fourfold increase in the
glucose infusion rate required to maintain euglycemia
during the hyperinsulinemic-euglycemic clamp. To ascer-
tain the mechanism for the improved insulin responsive-
ness, we also assessed rates of hepatic and peripheral
glucose metabolism using deuterated glucose and found
that the weight reduction normalized insulin suppres-
sion of hepatic glucose production but had no effects on
peripheral insulin sensitivity. This improvement in hepatic

TABLE 2
Fasting plasma metabolite concentrations in control subjects and patients with type 2 diabetes before and after weight loss

Control

P value,
control vs. before

weight loss
Before

weight loss
After

weight loss

P value,
before vs. after

weight loss

n 10 8 8
Glucose (mmol/l) 4.9 � 0.2 �0.0001 8.8 � 0.5 6.4 � 0.3 0.00037
Insulin (pmol/l) 60 � 6 NS 174 � 48 66 � 6 0.03
C-peptide (pmol/l) ND ND 1.14 � 0.36 0.73 � 0.06 NS
Glucagon (pg/ml) 57 � 6 NS 77 � 7 58 � 6 0.02
Cortisol (�g/dl) 19 � 3 NS 16 � 1 12 � 2 NS
Total cholesterol (mg/dl) 168 � 8 NS 202 � 18 177 � 17 �0.05
HDL (mg/dl) 57 � 3 NS 40 � 2 36 � 3 NS
LDL (mg/dl) 91 � 5 NS 119 � 17 102 � 10 NS
Triglycerides (mg/dl) 104 � 16 0.01 212 � 38 187 � 58 NS
Free fatty acids (mmol/l) 0.49 � 0.07 NS 0.49 � 0.05 0.49 � 0.05 NS
Leptin (pg/ml) 4.9 � 1.0 NS 11.9 � 2.5 7.5 � 1.9 0.01
Resistin (ng/ml) 25.5 � 1.4 NS 24.5 � 2.5 21.8 � 1.7 NS
IL-6 (pg/ml) ND ND 0.49 � 0.16 0.81 � 0.29 NS
Adiponectin (�g/ml) 14.3 � 2.0 0.00146 5.8 � 1.1 5.1 � 0.6 NS
TNF-� (pg/ml) ND ND 1.524 � 0.071 1.347 � 0.047 0.03

Data are means � SE.
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insulin sensitivity was associated with an �80% reduction
of hepatic triglyceride content. In contrast, there was no
change in IMCL content with weight reduction. Previous
studies by our group (3,4,9,10) and others (11–13) have
demonstrated a strong relationship between hepatic tri-
glyceride content and hepatic insulin resistance. The
mechanism by which hepatic steatosis causes hepatic
insulin resistance is unknown but may be related to

activation of a serine kinase cascade by accumulation of
intracellular fatty acid metabolites that in turn inhibit
insulin signaling at the level of the insulin receptor and
insulin receptor substrates (IRS) 1 and 2 (IRS-1 and IRS-2)
(14). Studies in transgenic mice with hepatic steatosis as a
result of liver-specific overexpression of lipoprotein lipase
(9) or mice with lipodystrophy and hepatic steatosis (15)
have shown that intracellular accumulation of fatty acid–

FIG. 1. A: Rates of fasting glucose production in control subjects
and type 2 diabetic patients before and after weight loss. B: Rates
of insulin stimulates glucose metabolism in control subjects and
type 2 diabetic patients before weight loss and after weight loss. C:
Percentage of insulin suppression of glucose production in control
subjects and type 2 diabetic patients before weight loss and after
weight loss. D: IHL content in control subjects and type 2 diabetic
patients before weight loss and after weight loss. E: IMCL content
in control subjects and type 2 diabetic patients before weight loss
and after weight loss.
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derived metabolites, such as long-chain fatty acyl CoAs,
results in reduced insulin activation of IRS-2–associated
phosphatidylinositol 3-kinase activity (9,16). More recent
studies that have examined this question have shown that
3 days of high-fat feeding in rats resulted in hepatic
steatosis–associated and liver-specific insulin resistance.
These changes were associated with increases in hepatic
fatty acyl CoAs, reduced insulin activation of IRS-1– and
IRS-2–associated phosphatidylinositol 3-kinase, activation
of protein kinase C�, and increased gluconeogenesis (10).
Furthermore, all of these changes, including the hepatic
steatosis, were reversed by treating the rats with a low
dose of the mitochondrial uncoupling agent 2,4 dinitrophe-
nol (10).

Rates of gluconeogenesis were assessed in a subgroup
of type 2 diabetic patients before and after weight loss.
Before weight loss, these patients manifested increased
rates of glucose production, and, consistent with previous
studies (17–19), this increased glucose production could
be attributed to increased rates of gluconeogenesis. After
weight reduction, the normalization of rates of glucose
production could be attributed entirely to a reduction in
gluconeogenesis.

Recent studies have demonstrated a potentially impor-
tant role for circulating concentrations of fatty acids
(20–22) and adipocyte-derived cytokines (23–29) in alter-
ing insulin responsiveness in liver and muscle. Plasma
concentrations of fatty acids, triglycerides, resistin, IL-6,
adiponectin, and cortisol were not altered by the weight
loss, suggesting that they do not play a major role in
causing the reversal of hepatic insulin resistance in these
individuals. In contrast, plasma concentrations of gluca-
gon decreased by �25% after weight reduction, suggesting
a potentially important role of chronic hyperglucagonemia
in promoting increased gluconeogenesis and hepatic insu-
lin resistance in these patients with moderately to poorly
controlled type 2 diabetes (17,30–32). Plasma concentra-
tions of tumor necrosis factor-� also decreased by �10% in
these patients after weight loss and may also have played
a minor contributing role in this process given its known
ability to activate JNK1, which in turn will result in
increased IRS-1 Ser307 phosphorylation (33). In contrast,
plasma levels of leptin decreased with weight reduction,

which is consistent with its well-established relationship
with body fat mass (34).

These results have important clinical implications for
treatment of patients with poorly controlled type 2 diabe-
tes, demonstrating that a relatively modest weight reduc-
tion of �10% of their body weight leads to a marked
reduction of IHL content, improved hepatic insulin sensi-
tivity, and normalization of fasting plasma glucose concen-
trations. This modest weight reduction of �8 kg (on a low
fat [3%], moderately hypocaloric diet, defined as a diet that
contains 	800 kcal for adults) can be achieved by �3
months of aggressive nutrition counseling, and it is psy-
chologically an easier goal than the daunting task of
achieving normal body weight. Furthermore, these data
suggest that a relatively small pool of IHL, estimated by the
1H MRS results to be �200 g (35), may be a major factor
responsible for the hepatic insulin resistance and in-
creased gluconeogenesis.

In summary, these studies demonstrate that moderate
weight reduction (�8 kg) reverses hepatic steatosis and
hepatic insulin resistance and normalizes basal rates of
hepatic glucose production by decreasing gluconeogene-
sis. In contrast, there was no effect on peripheral insulin
resistance, IMCL content, or circulating levels of resistin,
IL-6, or adiponectin. These data support the hypothesis
that a relatively small pool of IHL may be responsible for
dysregulated hepatic glucose metabolism in patients with
type 2 diabetes.
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Control

P value,
control vs. type 2
diabetes before

weight loss

Type 2 diabetes
before weight

loss

Type 2 diabetes
after weight

loss

P value,
type 2 diabetes
before vs. after

weight loss

n 10 8 8
Basal glucose oxidation

(mg � kg LBM�1 � min�1) 1.01 � 0.13 NS 1.06 � 0.26 0.85 � 0.13 NS
Basal lipid oxidation

(mg � kg LBM�1 � min�1) 4.60 � 0.36 NS 4.03 � 0.66 4.63 � 0.49 NS
Basal RQ 0.81 � 0.01 NS 0.82 � 0.02 0.80 � 0.01 NS
Clamp glucose oxidation

(mg � kg LBM�1 � min�1) 3.05 � 0.52 0.014 3.85 � 0.55 3.06 � 0.68 NS
Clamp lipid oxidation

(mg � kg LBM�1 � min�1) 0.89 � 0.21 �0.00001 1.40 � 0.17 1.57 � 0.21 NS
Clamp RQ 0.93 � 0.01 0.018 0.85 � 0.02 0.87 � 0.02 NS
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