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A B S T R A C T

Despite evolving definitions, dietary fibre classifications remain simplistic, often reduced to soluble and insoluble 
types. This binary system overlooks the complexity of fibre structures and their diverse health effects. Indeed, 
soluble fibre is not just soluble but has important qualities such as fermentability, attenuating insulin secretion, 
and lowering serum cholesterol. However, this limited classification fails to account for dietary fibre diversity 
and predict their full range of physiological effects. This article proposes a holistic classification framework that 
accounts for different fibre types and can be used to accurately infer their physiological outcomes. This proposed 
classification framework comprises of five constituents: backbone structure, water-holding-capacity, structural 
charge, fibre matrix and fermentation rate. This model more accurately captures the structural and functional 
diversity of dietary fibres, offering a refined approach to predicting their health benefits.

1. Introduction

Hippocrates espoused the relationship of diet to human health cen-
turies earlier, purportedly stating, “Let food be thy medicine and med-
icine thy food” (Smith, 2004). During the mid-twentieth century the 
modern Western diet established itself as an effective means to feed the 
growing populace. The modern Western diet, characterized by high 
levels of refined sugar, sodium, and trans-fats, and low in fruits and 
vegetables, has been linked to gut dysbiosis and the rise of non- 
communicable diseases, including type 2 diabetes, obesity, and can-
cer. These diseases are responsible for causing more than 70 % of 
annually reported deaths (Ayakdaş & Ağagündüz, 2023; Birt et al., 
2013; Cheng et al., 2022; Clemente-Suárez et al., 2023; Rakhra et al., 
2020). A healthy diet has been shown to reduce inflammation, improve 
insulin sensitivity, and support endothelial function, antithrombotic 
factors and microbiota diversity (Devi et al., 2014; Locke et al., 2018; 
Rakhra et al., 2020; Schwingshackl et al., 2020).

Dietary fibre is known to alleviate constipation, lower cholesterol, 
reduce cancer metastasis, and improve overall mortality rates (Buttriss 

& Stokes, 2008; Grigor et al., 2016; Reynolds et al., 2022). Although, 
discussed for centuries, the term “dietary fibre” was formally introduced 
by Hipsley in 1953 (Cui & Roberts, 2009; Hijová et al., 2019; Hipsley, 
1953). Hipsley described fibre as parts of the plant cell wall that cannot 
be digested. However, different disciplinary groups and organisations 
continually modified it until 2009, when the CODEX Alimentarius 
Commission defined dietary fibre as carbohydrate polymers consisting 
of ten or more monomeric units that can move through the small in-
testine without hydrolysing. Dietary fibres can be naturally present in 
the consumed food, derived from food materials and synthetic carbo-
hydrates that induce health benefits. Additionally, lignin or other plant 
wall substances can be included, and carbohydrates between 3 and 9 
monomeric units are left to national authorities to determine their 
suitability as a dietary fibre (Jones, 2014).

Dietary fibre is composed of a finite number of monosaccharides 
including (glucose, galactose, mannose, fructose, arabinose, xylose, 
rhamnose and fucose, linked in varying ways to form complex struc-
tures). Despite the limited types of monosaccharides, these simple sugars 
can form a large variety of secondary and tertiary structures, 
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contributing to the great complexity of fibres (Hamaker & Tuncil, 2014). 
Dietary fibres include non-starch polysaccharides, resistant starches, 
non-digestible oligosaccharides and synthetic carbohydrates (Buttriss & 
Stokes, 2008; Fu et al., 2022). Their structures are summarised in 
Table 1. Each dietary fibre has a unique primary, secondary or tertiary 
structures that contributes to its physiological effects.

The current classification of dietary fibres has them grouped into 
soluble and insoluble fibres which is based on their solubility in water 
(Buttriss & Stokes, 2008; Jia et al., 2020). Purported therapeutic effects 
of insoluble fibres are that they aid in laxation, regularity and are seldom 

fermented in the large intestine. Whereas soluble fibres reduce serum 
cholesterol, reduce glucose absorption, increase satiation, and are 
readily fermented (Foschia et al., 2013; Tang et al., 2024; Widaningrum 
et al., 2020). This current classification does not adequately account for 
dietary fibre’s complexity and therapeutic effects. The simplicity of the 
current classification system needs to be advanced to a comprehensive 
system that accounts for various fibre structure and improves health 
effect deduction. This perspective article proposes a framework for 
describing different dietary fibres and their related physiological effects.

2. Ambiguities and shortcomings of the current dietary fibre 
classification

The binary classification of fibres into soluble and insoluble cate-
gories is practical for isolated fibre studies but fails to capture the 
complexities of fibres within mixed food systems. Pure fibre’s homog-
enous nature makes its effects predictable, making it useful within the 
food industry. However, accurately determining physiological effects 
from this classification is ineffective, considering that foods consist of 
multiple fibre types and are not consumed individually. This binary 
classification into soluble and insoluble inadequately encapsulates the 
diverse structures and multifaceted mechanisms by which dietary fibres 
act on human physiology (Guillon & Champ, 2000; Harris et al., 2023; 
Khorasaniha et al., 2023; Qin et al., 2021; Ratanpaul et al., 2023; Slavin, 
2013; Stribling & Ibrahim, 2023; Williams et al., 2017; Williams et al., 
2019). Realistically, fibre intake is consumed in a whole food system 
that consists of both categories of fibres, creating a situation where every 
food containing fibre is described as soluble and insoluble with different 
percentages of each; thus, the functional effects become unclear. For 
example, pectin, typically classified as soluble, demonstrates insoluble- 
like behaviour when integrated into complex matrices, illustrating the 
fluidity of fibre categorization based on physical interactions (Buttriss & 
Stokes, 2008). Moreover, purified fibre fermentability is not represen-
tative of a composite food system. A purified fibre provides the micro-
biota more access to the fibre structure, which will affect the microbiota 
along the gastrointestinal tract (GIT) differently than in a composite 
food system (Williams et al., 2017).

It is commonly purported in the literature that soluble fibres are 
readily fermented, and insoluble fibres are not, but this is only occa-
sionally true. Examples of incongruity include that soluble psyllium 
fibre being partially fermentable, cereal flours that can have similar 
fermentation profiles of both soluble and insoluble fibres, and 
completely insoluble cellulose and lignin can be fermented to an extent 
in the human colon (Carlsen & Pajari, 2023; Gidley & Yakubov, 2019; 
Harris et al., 2023; Widaningrum et al., 2020). Additionally, the current 
classification implies that only soluble fibres inhibit α-amylase, but both 
insoluble (e.g., cellulose) and soluble (e.g., guar gum) can inhibit 
α-amylase activity, albeit through different mechanisms. Where 
α-amylase binds to cellulose with a mixed inhibition mechanism and is 
physically prevented from accessing a substrate in the presence of guar 
gum. (Dhital et al., 2015; Gill et al., 2021). Clinical studies on dietary 
fibres’ effectiveness on blood pressure have given contradicting results. 
A systematic review by Khan et al. found that soluble fibres can affect 
systolic and diastolic blood pressure differently. For example, psyllium 
can significantly reduce blood pressure, whereas konjac glucomannan 
does not (Khan et al., 2018). However, data from cohort studies such as 
the international study on macro/micronutrients and blood pressure 
(INTERMAP) suggested that insoluble fibre reduces blood pressure by up 
to 1.81 mmHg systolic blood pressure if 4.6 g/4184 kJ of insoluble fibre 
is consumed. In contrast, soluble fibre has no effect (Aljuraiban et al., 
2015). The umbrella description of some dietary fibres as “soluble” 
makes it unclear what exactly is causing clinical effects. Moreover, a 
binary classification poorly accounts for resistant starch and its physi-
ological effects. Resistant starch solubility varies from insoluble for type 
1 to medium solubility for type 5 while all being fermentable (Aljuraiban 
et al., 2015; Carlsen & Pajari, 2023; Li et al., 2024). Additionally, some 

Table 1 
Types of dietary fibre.

Fibre type Description Reference

Cellulose Composed of D-glucose units 
linked by β (1–4)-glycosidic 
bonds in a linear 
homopolymer which can 
reach up to 10 000 units long.

(Buttriss & Stokes, 2008; 
Gupta et al., 2019)

Hemicellulose Branched with acetyl group 
side chains and a backbone 
consisting of monomers −
xylose, arabinose, galactose, 
mannose or glucose.

(Debnath et al., 2021; 
Kumar & Dixit, 2021)

Lignin Not a polysaccharide but is 
mainly composed of alcohols 
(p-coumaryl, coniferyl, and 
sinapy) or collectively known 
as phenylpropanoid units.

(Kumar & Dixit, 2021)

Gums Gums are plant exudates that 
having varying structures and 
physiochemical properties.

(Amiri et al., 2021; 
Hamdani et al., 2019)

Beta- glucans It is a non-starch 
polysaccharide that can be 
branched or unbranched and 
is β-D-glucose monomer units 
linked by glycosidic linkages 
at β (1 → 3), (1 → 4), and/or 
(1 → 6). There are numerous 
hydroxyl groups along the β 
− glucan chain which create a 
hydrophilic molecule.

(Kaur et al., 2020; Wood, 
2007)

Resistant starches Resistant starches are 
comprised of starches that do 
not have their α-1,4-glycosidic 
bonds hydrolysed by salivary 
and pancreatic α-amylases 
which pass unabsorbed into 
the large intestine where it 
can be fermented. There are 5 
types of resistant starch: 
RS 1 which is physically 
inaccessible starch due to 
being enclosed within the 
food’s structure 
RS 2, a native starch granule 
which can be found in unripe 
bananas and raw potato. 
RS 3 is a retrograded starch 
RS 4 is a starch that has been 
chemically modified to resist 
digestion such as a starch with 
octenyl succinic groups. 
RS 5 occurs when amylose 
complexes with lipids or fatty 
acids during cooking – 
resulting in the starch being 
trapped in a amylose–lipid 
complex.

(Birt et al., 2013; 
Bojarczuk et al., 2022; 
Buttriss & Stokes, 2008; 
Dobranowski & Stintzi, 
2021; Gutiérrez & Tovar, 
2021)

Non-digestible 
oligosaccharides: 

Low molecular weight 
carbohydrates with 
monomeric units between 3 
and 10 which are recalcitrant 
to digestion by salivary and 
intestinal enzymes. 

(Mussatto & Mancilha, 
2007)
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resistant starch and inulin do not lower blood cholesterol, and oat bran 
increases stool weight although they are all soluble fibres (Slavin, 2013). 
Pectin can be either soluble or insoluble depending on what ions or other 
insoluble polysaccharides it has bound to (Hirst & Jones, 1946). Finally, 
no part of the classification accounts for the possibility that a fibre can be 
constipating, and so the constipating effects of fine wheat bran’s effects 
are undefined (McRorie et al., 2020).

The current classification also does not account for modified or 
treated fibres. Food items often undergo processing before being 
consumed, from heating and cooling to chemical treatments. Treatments 
can be chemical, for example, using ascorbic acid which reduces vis-
cosity (Kaur et al., 2020; Tang et al., 2024; Zhang et al., 2020). These 
treatments can break the glycosidic bonds and change the fibres matrix 
(Zhang et al., 2020). Processing techniques, including heat and enzy-
matic treatments, can alter fibre solubility and functionality, chal-
lenging the traditional classification system. Treatments extend to 
enzymatic, physical and combined methods, which significantly impact 
the fibre’s physiochemical properties and can change the ratio of 
insoluble to soluble fibres (Iqbal et al., 2022; Jia et al., 2020; Williams 
et al., 2019). Modifications can alter the properties of fibre, although it 
does not affect all fibres equally. For example, increased branching de-
creases solubility of β-glucan, but increases solubility for amylopectin 
(Gill et al., 2021; Kaur et al., 2020; Tang et al., 2024; Zhang et al., 2020). 
As such, a comprehensive fibre classification needs to account for the 
different functional effects fibre modifications can have.

There are multiple methods for determining the different materials 
that can be classified as dietary fibre. The methods, AOAC 993.43 and 
AOAC 2011.43 determine total dietary fibre, insoluble and soluble di-
etary fibre whereas AOAC 2011.25 determines resistant starch. 
Although these methods are standard practice, their results vary 
significantly. In a comparison study of wheat, soybean meal, rapeseed 
meal, sugar beet pulp, peas, horse beans, native pea starch, and two 
samples of corn between 3 laboratories, both the AOAC 993.43 and 
AOAC 2011.25 gave similar results for the total dietary fibre. However, 
the insoluble dietary fibre content was higher for corn, wheat, peas, and 
sugar beet pulp than the AOAC 2011.43 results. Moreover, the soluble 
fibre content was higher using 2011.43 for corn, rapeseed meal, soybean 
meal, and sugar beet pulp compared to AOAC 993.43 (Nguyen et al., 
2019). Similarly, Tobaruela et al. compared the total fibre content be-
tween AOAC 2011.43 and AOAC 991.43 among plums, atemoyas, 
jackfruits and mature coconuts. They concluded that AOAC 991.43 
underestimates the fibre content due to not accounting for low molec-
ular weight soluble dietary fibres (Tobaruela et al., 2018). The same 
conclusion was drawn by Frejancic et al. when testing 45 different foods 
consisting of fruits, vegetables, grains and legumes (Ferjančič et al., 
2022). The methodologies currently in place for dietary fibre solubility 
analysis are time-consuming and are only sometimes comparable to 
other results.

Currently, the simplicity of fibres’ characterisation has led to other 
terms being created to describe dietary fibres functionally and in more 
detail. The term “microbiota-accessible carbohydrates” or MACs is one 
of these terms, used to describe intestinally undigested carbohydrates 
that are degraded by microbes in the gastrointestinal tract (Ayakdaş & 
Ağagündüz, 2023; Sonnenburg & Sonnenburg, 2014). Critically, this 
term focuses on how fibres interact with the microbiome (Williams 
et al., 2019). The concept of microbiota-accessible carbohydrates 
(MACs) focuses on utilising carbohydrates by gut bacteria. Given the 
interpersonal gut microbiome variability, a MAC for one person might 
not be the one for another (Deehan et al., 2017). For example, Japanese 
individuals have a microbiome suited to the digestion of porphyrin, 
while most North Americans and Europeans do not (Ayakdaş & 
Ağagündüz, 2023). Similarly, lactose is a MAC for individuals with 
lactose intolerance, not those who can digest lactose (Sonnenburg & 
Sonnenburg, 2014).

3. Dietary fibre characteristics and properties considered for an 
enhanced classification system

Understanding the characteristics and properties of dietary fibre is 
essential for developing an enhanced classification system. Various 
analytical techniques provide detailed information about the molecular 
structure and physicochemical properties of dietary fibre, which directly 
influence its physiological functions and health benefits. Methods such 
as X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier- 
transform infrared spectroscopy, and X-ray diffraction can provide 
structural information on elemental composition, chemical bonds, 
functional groups, and crystalline structure, respectively (see Table 2 for 
a summary of these instruments’ utilities and limitations). Additionally, 
the surface morphology and overall shape of dietary fibre determine 
how it interacts with the environment and biological system 
(Widaningrum et al., 2024). Techniques such as scanning electron mi-
croscopy (SEM) and atomic force microscopy (AFM) can assess surface 
morphology, while small-angle X-ray scattering (SAXS) can determine 
the shape and size of crystallized compounds. Table 3 summarizes these 
techniques and their applications.

Dietary fibre exerts a variety of practical effects that lead to benefi-
cial health outcomes, which are important considerations for classifi-
cation. Fiber can bind significant amounts of water—up to 56 g of water 
per gram of pectin fibre—beneficially increasing stool output and pro-
moting regular bowel movements (Alison & Cummings, 1979). Other 
effects include binding bile acids and luminal cholesterol to reduce 
serum cholesterol levels, as well as binding glucose to mitigate post-
prandial glucose increases (Lupo et al., 2022; Ötles & Ozgoz, 2014). By 
affecting lipid and glucose metabolism, these characteristics can 
contribute to weight management and reduce the risk of metabolic 
diseases. Additionally, fibre can bind toxic ions such as lead and arsenic, 

Table 2 
Techniques to determine structural characteristics of dietary fibres.

Techniques Utility Limitations Reference

Electron 
diffraction

Lattice systems Requires thin 
samples

(Li & Sun, 
2017; 
Rongpipi et al., 
2019)

Raman 
spectroscopy

Chemical 
functionality, 
molecular 
conformation, H- 
bonding 

Weak O–H 
vibrations

(Kim et al., 
2013; Panczer 
et al., 2012; 
Rongpipi et al., 
2019)

X-ray 
photoelectron 
spectroscopy

Hydrophobicity, 
elemental 
composition, bonds 

Only measures 
surface layer (1 nm – 
10 nm)

(Anette et al., 
2006; Dogan 
et al., 2015)

Fourier- 
transform 
infrared 
microscopy

Functional groups Strongly detects 
water

(Qadir & 
Wani, 2022; 
Rongpipi et al., 
2019)

X-ray diffraction Crystallinity Can damage sample (Djordjević 
et al., 2022; 
Rongpipi et al., 
2019)

Neutron 
diffraction

Crystalline structure Requires high 
sample volume and 
long measurement 
times

(Martínez- 
Sanz et al., 
2017; 
Rongpipi et al., 
2019)

Nuclear 
magnetic 
resonance

Linkage analysis, 3D 
structure.

Requires large 
sample volume and 
long measurement 
times

(Hell et al., 
2014; 
Rongpipi et al., 
2019; Haslam 
et al., 2022)

Sum frequency 
generation

2D structure, 3D 
system

Sensitive to non- 
centrosymmetric 
environments

(Choi et al., 
2022; 
Rongpipi et al., 
2019)
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aiding in their excretion and reducing their bioavailability (Wang et al., 
2015). Fermentation of dietary fibre in the colon produces short-chain 
fatty acids, which can inhibit cancer metastasis and beneficially modu-
late the immune system (Dong et al., 2023). Table 4 summarizes prop-
erties of dietary fibre that can be tested, which have direct implications 
in identifying fibres with specific health-promoting effects.

4. The microbiome and its relevance to the alimentary effects of 
dietary fibre

The human gastrointestinal tract harbors approximately 1014 bac-
teria, which are unevenly distributed throughout the gut and surpass the 
estimated number of human cells in the body (Nicholson et al., 2012; 
Wang et al., 2018). The predominant bacterial phyla in the gastroin-
testinal tract are Firmicutes (58–88 %), Bacteroidetes (8.5–28 %), Pro-
teobacteria (0.1–8 %), and Actinobacteria (2.5–5 %). However, it is 
suggested that up to 60 % of bacterial species have not yet been iden-
tified (Williams et al., 2019). The small intestine is primarily colonized 
by bacteria from the genus Lactobacillus and the family Enterobacteri-
aceae, while the colon is predominantly inhabited by members of the 
families Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospir-
aceae, and Ruminococcaceae (Luo et al., 2021; Rinninella et al., 2019). 
These microbial communities encode an extensive repertoire of 
carbohydrate-active enzymes (CAZymes), including over 130 families of 
glycoside hydrolases (GHs) that break down glycosidic linkages within 
carbohydrates, 22 families of polysaccharide lyases (PLs) capable of 
cleaving polysaccharides via beta-elimination, and more than 60,000 
carbohydrate-degrading enzymes capable of processing various plant- 
based materials, including dietary fibre (Ayakdaş & Ağagündüz, 2023; 
Sonnenburg & Sonnenburg, 2014). In contrast, the human genome en-
codes only 87 GHs, which collectively degrade a limited range of sub-
strates such as polysaccharides, oligosaccharides, proteoglycans, 
glycoproteins, and glycolipids (Hansen et al., 2020). The variety of 
degrading enzymes produced by the microbiota is required to effectively 
ferment the complex structures of dietary fibres. Individual bacteria can 
cleave specific linkages, necessitating a diverse gut environment to 
successfully degrade the heterogeneous structures of dietary fibres (Fang 
et al., 2023; Zhang, 2022).

Fermentation of dietary fibre occurs predominantly in the colon, 
producing various metabolites, among which short-chain fatty acids 
(SCFAs) such as acetate, propionate, and n-butyrate are significant 
components, present in an approximate ratio of 60:20:20, respectively 
(Silva et al., 2020). Most SCFAs are absorbed by colonocytes and can 
contribute up to 10 % of our daily energy intake (den Besten et al., 2013; 
Gamage et al., 2018). Short-chain-fatty-acid production depends on the 
available substrates and the bacterial species present. Butyrate is mainly 
produced by bacteria belonging to the genera Clostridium, Eubacterium, 
and Roseburia, and it has many important functions within the body. 
These include serving as the primary energy source for colonocytes, 
possibly stimulating leptin production, and inducing the secretion of 
glucagon-like peptide-1. Butyrate also exhibits anti-inflammatory ac-
tions, regulates neutrophil function, and can be metabolized by colo-
nocytes to produce ketone bodies and carbon dioxide (Nicholson et al., 
2012). Most SCFAs are produced in the proximal colon; however, fibres 
provide a more significant health benefit when they are fermented more 
distally in the colon, which is where most colorectal cancers occur 
(Barber et al., 2020; Carlsen & Pajari, 2023; Nicholson et al., 2012; Rose 
et al., 2007). Consequently, dietary fibre is an instrumental component 
in mediating the microbiota and promoting intestinal and overall health, 
affecting microbial communities throughout the gastrointestinal 
tract—from the oral cavity to the rectum (Anderson et al., 2009; Buttriss 
& Stokes, 2008; Cronin et al., 2021; Gill et al., 2021; Hou et al., 2022; Li 
& Komarek, 2017; Oz et al., 2023; Sedghi et al., 2019).

5. A novel dietary fibre framework for dietary fibre 
classification to accurately determine health outcomes

Given the complexity of dietary fibre structures and their range of 
functional effects, a robust framework needs to be created to better 
interpret and utilize them. Such a system can aid clinicians and con-
sumers in understanding which fibres should be consumed to reduce 
what is described as the “fibre gap.” Additionally, researchers can 
benefit by identifying which aspects of fibre need further development 

Table 3 
Instruments and their utility for determining morphological characteristics of 
dietary fibres.

Techniques Utility Limitations Reference

Scanning 
electron 
microscopy

Porosity, shape and 
particle 
arrangement, 
roughness 

Limited to nm 
resolution

(Tang et al., 
2024; Xie et al., 
2019)

Transmission 
electron 
microscopy 

Shapes of individual 
fibres 

Extensive sample 
preparation

(Ullah et al., 
2017)

Atomic force 
microscopy

Surface morphology Works best on flat 
samples.

(Morris et al., 
2011; Rongpipi 
et al., 2019)

Small angle X- 
ray scattering 

Size, shape and 
microfibril angle 

Functions between 
1 nm – 100 nm

(Gilbert, 2019; 
Rongpipi et al., 
2019)

Small angle 
neutron 
scattering

Size and shape Requires large 
sample volumes 
and longer 
measuring times

(Gilbert, 2019; 
Rongpipi et al., 
2019)

Table 4 
Functional properties and effect of dietary fibre.

Property Affect Reference

Water-holding- 
capacity

Decreases food intake, 
stool bulking and 
regularity. 

(Dhingra et al., 2012; Liu 
et al., 2020; Raghavendra 
et al., 2004; Tejada-Ortigoza 
et al., 2016)

Glucose-absorption- 
capacity

Capturing and binding 
glucose

(Liu et al., 2020)

Bile-acid-binding- 
capacity

Capturing bile-acids (Liu et al., 2020; Wood, 
2007)

Viscosity Delay gastric emptying, 
reduce rate of glucose, 
and bile acid absorption

(Lupo et al., 2022; Tang 
et al., 2024)

Cholesterol-binding- 
capacity

Ability to bind 
cholesterol

(Wood, 2007)

Anti-tumour activity Cytotoxicity towards 
cancer cells 

(Tang et al., 2024)

Fermentability Metabolite production 
and microbiota 
modulation

(Cronin et al., 2021; 
Jonathan et al., 2012)

Immunomodulatory 
activity

Regulating immune 
response

(Dong et al., 2023; Tang 
et al., 2024)

Swelling Affects regularity and 
stool bulking.

(Dhingra et al., 2012; 
Raghavendra et al., 2004; 
Tang et al., 2024)

Particle size Affects binding ability 
and fermentation of fibre 

(Dhingra et al., 2012)

Gelling capacity Increased satiation (Wanders et al., 2013)

Oil-holding capacity Mouthfeel and taste (Siddiqui et al., 2023)

Adsorption of toxic 
ions

Binding of toxic elements (Wang et al., 2015)

Cation absorption 
capacity

Binding of glucose and 
lipids

(Gupta & Premavalli, 2011)

Zeta potential Matrix stability, ion 
binding, folding

(Gu et al., 2020)
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for enhanced therapeutic potential (Cantu-Jungles & Hamaker, 2020; 
Deehan et al., 2017; Pieper et al., 2015). The fibre gap describes the 
difference between the amount of fibre consumed by the populace and 
the recommended intake (Fuller et al., 2016; Jones, 2014; Stephen et al., 
2017). The recommended dietary fibre intake is 28–42 g per day, while 
the median intake is 12–14 g per day for Americans and 18–24 g per day 
in European countries (Stephen et al., 2017; Thompson & Brick, 2016).

Successful development of an accurate classification requires that 
multiple fundamental properties be included. This novel classification 
framework selects properties that account for various aspects of fibre 
consumption, including its native structure, interactions with the sur-
rounding environment, and the effects of its degradation—a “bottom- 
up” approach that utilizes fundamental aspects to determine overall 
effects. A summary of the incorporated categories is presented in Table 5
and depicted in Fig. 1. The bottom-up approach comprises five cate-
gories with multiple subcategories, creating a high-fidelity under-
standing of a fibre substance. This robust categorization framework 
applies to both purified and composite samples, such as fibre supple-
ments or foods.

Firstly, the dietary fibre backbone is categorized based on whether it 
is a branched structure and its degree of polymerization (DP). Including 
backbone length via DP makes the classification applicable worldwide, 
since dietary fibre definitions differ between countries based on DP, 
allowing individual countries to select which fibres to include. As such, 
this classification can enable harmonious and translatable data between 
countries with different dietary fibre definitions (de Menezes et al., 
2013). The DP and branching affect important characteristics like 
swelling, water-holding capacity, stool bulking, and slowing nutrient 
absorption (Li et al., 2024). Branched fibre structures have greater 
stearic hindrance between their bonds, affecting their ability to emulsify 
fats, bind water and affect viscosity. DP is associated with modulating 
different bacteria species, altering the metabolites that are produced 
(Chen et al., 2020; Van De Wiele et al., 2007). Higher branched struc-
tures positively modulate beneficial bacteria such as Bacteroides, 
Lachnospira, and Phascolarctobacterium, while negatively modulating 
harmful bacteria such as Fusobacterium and Paeniclostridium (Li et al., 
2024), whereas shorter structures increase bifidobacterial growth (Ho 
et al., 2018). Therefore, the backbone structure indicates the branching 
and chain length that a fibre contains. Branching is subcategorized into 
linear, branched, and both, whereas chain length is split into short fibres 
with DP less than 10 and long fibres with DP more than 10 (Agamennone 
et al., 2023; Ho et al., 2018; Tungland & Meyer, 2002). This category is 
more practical for purified samples due to their homogeneous nature, in 
contrast to whole foods that contain branched and unbranched fibres of 
various lengths (McRorie, 2015).

Dietary fibre structures can contain functional groups that can 

become charged, such as carboxyl groups from uronic acids and 
phenolic acids in lignin. These negatively charged functional groups 
enhance fibre’s ability to bind toxic cations (e.g., arsenic or lead), 
facilitate cation exchange, increase its solubility and water-holding ca-
pacity, improve emulsifying ability, and increase glucose adsorption 
capacity. Additionally, a lower surface charge increases alpha-amylase 
inhibition (Zhang et al., 2023). Although charged sites increase 
swelling capacity and water-holding capacity, they are not as conducive 
to proliferating Bifidobacterium and Lactobacillus species as neutral 
carbohydrates. However, lower charge increases the production of 
butyrate and acetate (Guillon & Champ, 2000; Li et al., 2024; Qiao et al., 
2021; Thebaudin et al., 1997), whereas higher charge creates more 
stable solutions (Gu et al., 2020; Gupta & Premavalli, 2011; Meĭchik 
et al., 2011; Ullah et al., 2017; Yang et al., 2024). Carbohydrate charge is 
predicated upon the functional groups present within its structure, 
namely, carboxyl groups, phenolic groups, and sulphate groups. Un-
derstanding the charged groups present allows inference of the overall 
charge and can be experimentally quantified. The second category is the 
structure charge, split into negative, neutral, and positive, indicating the 
effective charge of the fibre at neutral pH (the luminal pH of the small 
intestine).

The fibre matrix can be defined as the physical state of the fibre once 
it enters the stomach. The fibre matrix has significant implications for 
fibre’s hydration properties, satiation effects, glycaemic control, lipid 
control, and effects on the microbiota. Gelled matrices can more effec-
tively absorb water, glucose, and cholesterol, and are readily fermented 
by the intestinal microbiota. The converse holds for more rigid matrices, 
which remain unchanged once they have entered the intestinal tract (Li 
et al., 2024; Raghavendra et al., 2004). Composite foods, which contain 
a mix of fibres and other substances, can be described as aggregates, 
where a coalescing suspension is formed. The third category is fibre 
matrix and describes the structural integrity as it passes through the 
gastrointestinal tract, subcategorized into rigid, gel, and aggregate, 
delineating important physical states (Qin et al., 2021).

Fermentation rate denotes the speed at which fibres are fermented in 
the large intestine. This category accounts for aspects such as the degree 
of methylation of fibres and the terminal ends of fibre structures, which 
affect the fermentation rate and quantify SCFA production (Wang et al., 
2019). The speed at which a fibre ferments can indicate the intestinal 
discomfort experienced due to bloating and is a key determinant in fibre 
functionality (Ratanpaul et al., 2023). Furthermore, it reflects gut bac-
teria’s ability to degrade the carbohydrates and produce SCFAs. Fibers 
that are not fermented until they reach the distal colon could provide 
more alimentary effects, as most colorectal cancers originate distally 
(Kaur et al., 2011; Van De Wiele et al., 2007). The fourth category is 
fermentation rate, accounting for the effect of microbiota interacting with 
dietary fibre, with two sections: rapidly fermented fibres, which are 
completely fermented in the proximal colon, and slowly fermenting fi-
bres, which are not entirely fermented in the proximal colon, thereby 
reaching the distal colon (Stribling & Ibrahim, 2023).

Lastly, water-holding-capacity (WHC) indicates the amount of water 
retained by a fibre without the application of external forces beyond 
atmospheric pressure and gravity. WHC is crucial for determining the 
health effects of dietary fibres. The capacity to retain water aids in stool 
softening, increases viscosity, prolongs transit time in the stomach and 
small intestine, and decreases transit time in the large intestine. WHC 
can also serve as a proxy for the absorption of other nutrients and may 
indicate microbial community evenness. Factors influencing WHC 
include particle size, surface area, shape, porosity, and charge (Alison & 
Cummings, 1979; Brownlee, 2011; Raghavendra et al., 2006; Takahashi 
et al., 2009). WHC can be categorized as follows: low for substances that 
hold less than 2 g of water per gram of dry matter, medium for those that 
hold between 2 and 10 g of water per gram of dry matter, and high for 
food matrices that retain more than 10 g of water per gram of dry matter.

Table 5 
Enhanced dietary fibre classifications.

Characteristic Sub-category

Backbone structure (isolated fibres) a) Chain Structure 
i. Linear

ii. Branched
iii. Both

b) Chain length 
i. Short DP < 10

ii. Long DP > 10
Structure charge a) Negative

b) Neutral
c) Positive

Fibre matrix a) Rigid
b) Gel
c) Aggregate

Fermentation rate a) Slow
b) Fast

Water-holding-capacity a) Low (<2 g/g)
b) Medium (2–10 g/g)
c) High (> 10 g/g)
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6. Utilising the bottom-up approach

To understand the practicality, efficacy, and versatility of the 
bottom-up approach, we compare the outcomes of the previous classi-
fication system—soluble and insoluble fibres—with the new multipoint 
system. We will examine distinct types of dietary fibres: cellulose, guar 
gum, pineapple pomace, and type II resistant starch (RS2). Under the 
current system, pure cellulose is described as an insoluble fibre with 
inferred health benefits such as increasing stool moisture content and 
stool bulk, and it is not fermented by the gut microbiota. Guar gum is 
described as soluble, with inferred benefits including reducing blood 
glucose and cholesterol levels and being rapidly fermented by the 
microbiota. Pineapple pomace cannot be accurately described by the 
current system due to its complex composition. Type II resistant starch is 
classified as insoluble, suggesting it would have similar health benefits 
to cellulose. The bottom-up approach adds crucial details for health effect 
induction. Below the bottom-up approach is utilised to describe cellulose, 
guar gum, pineapple pomace and RS2.

The bottom-up approach adds crucial details for understanding 
health effects. Below, this approach is utilized to describe cellulose, guar 
gum, pineapple pomace, and RS2.

Cellulose 

1. Fermentation rate – Slow (Wang et al., 2019)
2. Backbone structure – Linear with long chains (McNamara et al., 

2015)
3. Charge – Neutral
4. Fibre matrix – Rigid
5. Water-holding-capacity – Medium (Chau et al., 2008)

Cellulose has a low fermentation rate and requires specific bacteria 
for its degradation, such as Ruminococcus champanellensis. Slow 
fermentation supplies SCFAs effectively along the length of the large 

intestine (Moraïs et al., 2016; Moraïs et al., 2024). Its molecular struc-
ture is a long and linear chain, indicating low solubility and fermenta-
tion but usefulness in aiding stool bulk. The neutral charge suggests it 
may not strongly adhere to cations. Cellulose remains a rigid structure 
once consumed, further indicating low binding ability for trapping in-
testinal molecules. Its medium water-holding capacity makes it suitable 
for aiding stool softening and inducing satiety.

Unmodified guar gum 

1. Fermentation rate – Slow
2. Backbone structure – branched long chains.
3. Charge – Neutral
4. Fibre matrix − Gel
5. Water-holding-capacity – High

Unmodified guar gum is a slowly fermenting fibre and a branched 
long-chain molecule, indicating that Bifidobacteria are less likely to 
ferment it. However, Clostridium butyricum can completely degrade 
guar gum. A slower fermenting fibre will be fermented more distally in 
the colon. Guar gum is composed of linked mannose monomers with 
branched galactose monomers and contains no carboxyl or phenolic 
groups, indicating a neutral charge. This leads to a low potential for 
binding ions such as lead, mercury, and bile salts. When consumed, guar 
gum dissolves in water and forms a gel, allowing it to entrap glucose, 
amylase, and cholesterol. Guar gum has a high water-holding capacity 
(WHC) of 40  g water/g gum, giving it a great ability to moisten stool and 
aid in inducing satiety.

Pineapple juice pomace 

1. Fermentation rate – High
2. Backbone structure – Branched long chains.
3. Charge − Negative
4. Fibre matrix – Aggregate

Fig. 1. Visualising the bottom-up approach within a truncated intestinal system. The figure depicts a molecular structure of cellulose and hemicellulose, highlighting 
free charges on each side of the structures. Water-holding-capacity is illustrated by a fibre structure attracting water. In the large intestine section of the diagram 
different fibre matrixes are shown surrounded by gut bacteria.
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5. Water-holding-capacity − Medium

Understanding more complex and composite structures helps in 
comprehending the effects that fibre-containing foods can have on the 
body. Categorizing a whole food such as pineapple juice pomace is 
different from categorizing purified samples, as the whole food contains 
a variety of compounds and can be processed in ways that change its 
properties. Regardless, the categorization process remains the same. 
Pineapple pomace has a slow fermentation rate (Widaningrum et al., 
2024). Due to its content of cellulose, hemicellulose, lignin, and small 
amounts of pectin, it cannot be solely described as linear or branched; 
thus, this category can be omitted. Pineapple pomace has high quantities 
of phenolic compounds, contributing to a negative charge and giving it a 
high potential to bind toxic cations and bile salts (Cardona et al., 2022; 
Mohd Ali et al., 2020). The fiber matrix is aggregated, aiding in its 
ability to bind, obstruct, and adhere to glucose, α-amylase, etc., which, 
given its tight packing and composition, can obstruct bacterial degra-
dation4. Pineapple pomace has a medium WHC of 5.32  g water/g 
pomace (Widaningrum et al., 2024). Pineapple pomace has a medium 
WHC of 5.32 g(water)/g(pomace) (Selani et al., 2014), making it 
capable of softening stool and aiding in the attenuation of glucose and 
cholesterol absorption.

Type 2 resistant starch 

1. Fermentation rate – Slow
2. Backbone structure – Branched long chains.
3. Charge − Neutral
4. Fibre matrix – Aggregate
5. Water-holding-capacity – Low

There are five types of resistant starch, each resistant due to a 
different mechanism. This example focuses on RS2. RS2 is slowly 
fermentable, and its structural nature and composition lead to fermen-
tation that yields a higher abundance of Bifidobacterium, Ruminococcus 
bromii, Eubacterium rectale, Bacteroidetes, and Actinobacteria 
(Haghighatdoost et al., 2021; Tiwari et al., 2019). RS2 is composed of 
linear glucose molecules that are semi-crystalline and compact (Joye, 
2019), indicating low binding potentials and slow digestibility. RS2 has 
no charged functional groups and is neutral, reducing its ability to bind 
ions, glucose, and cholesterol. Due to its compact structure and its ma-
trix during digestion, it can be classified as an aggregate. It has low 
WHC, which lowers its ability to moisten stool and possibly attenuate 
glucose and cholesterol absorption.

The examples categorizing cellulose, guar gum, pineapple pomace, 
and resistant starch provide a basis for the versatility of the proposed 
classification framework and demonstrate its ability to predict the 
physiological effects of consuming these foods more accurately.

7. Final remarks

Since its initial definition in 1953, the concept of dietary fibre has 
undergone significant evolution. While substantial efforts have been 
made to clarify its definition, the development of classification systems 
has been neglected, resulting in an overly simplistic binary categoriza-
tion of fibres as either soluble or insoluble. This dichotomy fails to ac-
count for the diverse structures and physicochemical functionalities of 
dietary fibres, limiting our understanding of their varied health effects.

This article proposes a comprehensive categorization frame-
work—the bottom-up approach—that encompasses the quintessential 
properties of dietary fibres and subcategorizes them for a higher- 
resolution understanding. By considering factors such as molecular 
backbone structure, charge, fibre matrix, fermentation rate, and water- 
holding capacity, this framework provides a nuanced classification that 
better reflects the complexity of dietary fibres.

Utilization of this approach can aid consumers, researchers, and 
clinicians in identifying which aspects of dietary fibres are most 

important for specific health outcomes. It enables a more precise cor-
relation between fibre characteristics and their physiological effects, 
facilitating targeted dietary recommendations and the development of 
functional foods with enhanced therapeutic potential. Additionally, the 
bottom-up approach introduces a new paradigm for interpreting and 
understanding dietary fibres, paving the way for advancements in 
nutrition science and public health.
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