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Abstract: Recent discoveries revealed mechanistic insights into the control of adipogenesis
by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A

and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and
CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and
4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic
cells and represent a critical reservoir for cellular functions. In an early stage of adipo-
genesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked
to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition,
in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation
and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein
(CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. Dur-
ing terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid
droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors
of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on
the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes
is associated with diverse diseases, including obesity. Due to the tremendous impact
of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event
of malfunctions.

Keywords: COP9 signalosome (CSN); cullin-RING-ubiquitin ligases (CRLs); adipogenesis;
cell cycle inhibitor p27KIP; obesity; treatment

1. Introduction
The essential role of the Constitutive Photomorphogenesis 9 Signalosome (CSN) in

adipogenesis was demonstrated more than a decade ago [1]. Recently, the significance of
CSN’s interaction with cullin-RING-ubiquitin ligases (CRLs) to form permanent CSN-CRL
complexes was recognized [1–3]. The complexes are used for diverse cellular functions,
including adipogenesis [1]. Therefore, the main issue in this review is to illustrate the
role of CSNCSN7A-CRL3 and CSNCSN7B-CRL4 particles in adipogenesis and their malfunc-
tion in the development of obesity. The significance of CSN-CRLs was discovered by
Bennett et al. [2] and recently described in detail [4].

Most studies on adipogenic differentiation are undertaken with mouse 3T3-L1
preadipocytes [5]. In addition, human LiSa-2 cells [1] or mouse embryonic fibroblasts [5]
can also be used as adipocyte differentiation models. Results on CSN-CRL complexes
mostly come from LiSa-2 cells [1]. In mouse embryonic fibroblasts, some data on CSN-CRL
complexes were confirmed [6]. In 3T3-L1 cells, recent data support findings on LiSa-2
cells in CSN-CRL complexes [7], and other data are scattered and will be compiled during
this review.
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Adipogenic differentiation is governed by a plethora of regulatory proteins; many
are degraded by the ubiquitin–proteasome system (UPS) [8–11]. Differentiation of human
liposarcoma LiSa-2 preadipocytes is stimulated by a hormone mixture (HM) consisting of
insulin, triiodothyronine, and cortisol (Figure 1) [12].
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Figure 1. Stages of adipogenesis in LiSa-2 cells. Upon addition of a hormone mixture (HM) consisting
of insulin, triiodothyronine, and cortisol, LiSa-2 preadipocytes differentiate over about fourteen
days to mature adipocytes. Light microscopic images stained with O-Red-O (ORO) before HM
(proliferating) and after HM, during mitotic clonal expansion (MCE); post-mitotic growth arrest
and terminal adipocyte differentiation (TAD) are shown. Staining experiments are newly generated
for this review. Bars represent 50 µm. Expression of proteins that decrease (CHOP) or increase
(PPARγ, p27, neddylated CUL3, VEGF) is indicated. Cell cycle phases are demonstrated during
MCE. The mechanism of p27 accumulation takes place by the cullin-associated and neddylation-
dissociated 1 (CAND1)-dependent release of the appropriate substrate receptors (SRs) SKP2 from
CSNCSN1-CRL1SKP2-p27 and CDT2 from CSNCSN7B-CRL4ACDT2-p27. Consequently, protein p27 is not
ubiquitylated and not degraded by the 26S proteasome and accumulates [1].



Biomolecules 2025, 15, 372 3 of 14

Insulin is classically viewed as a promoter of adipogenesis as it increases the expression
of cAMP-response element-binding protein (CREB) and peroxisome proliferator-activated
receptor γ (PPARγ) [13]. Cortisol enhances adipogenic differentiation by upregulating
CCAAT/enhancer-binding proteins (C/EBPs) [14] and triiodothyronine increases lipid
droplet formation [15]. It is one of the most suitable models, possessing a high potential
for in vitro adipogenesis. The process can be visualized by staining lipids with Oil Red
O (ORO), which accumulates in LDs (Figure 1). In this review, we will discuss the role
of CSN-CRL complexes in adipogenesis, which occurs in two major steps: mitotic clonal
expansion (MCE) of preadipocytes and terminal adipocyte differentiation (TAD).

Recently, malfunctions of CSN-CRL complexes have been associated with obesity,
the most serious public health threat because of its connection with metabolic syndromes
like type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases as well as
cancer [16,17]. Obesity is an expansion of the white adipose tissue (WAT) by hyperplasia,
when new adipocytes are formed from precursors during adipogenesis, and/or hyper-
trophia, the increase in size of existing adipocytes [8]. Normally, the main function of WAT
is to store energy in the form of triglycerides. In addition, fat tissue acts as an endocrine
organ by secreting a large number of hormones and cytokines called adipokines [18]. For
example, leptin, adiponectin, vascular endothelial growth factor (VEGF), and apelin are
adipokines secreted by adipocytes and involved in energy homeostasis, inflammation, and
insulin resistance [19]. Overexpression of adipokines because of obesity increases the risk
of metabolic diseases and cancer. Therefore, for prevention and treatment of obesity, it is
important to study the underlying CSN-CRL mechanisms of adipose tissue formation.

2. Composition of CSN-CRL Complexes
The core CSN in humans consists of eight subunits (CSN1-CSN8). It occurs as variants

which differ by paralog subunits [20,21]. Two variants in human cells are CSNCSN7A and
CSNCSN7B, characterized by the paralog subunits CSN7A and CSN7B. In addition, there
are CSNCSN8A and CSNCSN8B variants in humans and CSNCSN5A, CSNCSN5B, CSNCSN6A,
and CSNCSN6B in plants [20], which will not be addressed in this review. While both
CSN7A and CSN7B subunits have identical Proteasome lid-CSN-Initiation factor 3 (PCI)
domains, they differ in their N- and C-termini. Overall, they possess an identity of about
60% [1]. CSNCSN7A and CSNCSN7B variants are characterized by specific interaction part-
ners. CSNCSN7A preferentially binds CRL3 and CSNCSN7B to CRL4A/B. Stable CSNCSN7A-
CRL3BTB (BTB-Bric-a-brac, tramtrack and broad complex/Pox virus and Zinc finger pro-
teins) and CSNCSN7B-CRL4A/BDCAF (DCAF-DDB1 and CUL4-associated factors) can be
found in mammalian cells in a latent form and are therefore called latent CSN-CRL com-
plexes (Figure 2) [1].

Although neddylation–deneddylation of CRL complexes has impact on ubiquity-
lation by CRLs [22], it does not influence the stability of latent CSN-CRL complexes as
demonstrated by the inhibitors MLN4924, the neddylation inhibitor [23], and CSN5i-3,
a specific inhibitor of CSN-mediated deneddylation [22], respectively [1]. The existence
of CSN-CRL complexes in different cells independent of MLN4924 has been described
and a model of CRL dynamics was suggested, where the abundance of components drive
CRL network organization [2]. In the current model, CRL dynamics is regulated by cycles
of deneddylation and cullin-associated and neddylation-dissociated 1 (CAND1) to adapt
CRLs to fluctuations in substrate availability [24,25]. Based on new data, we suggest that
both models exist. Latent CSN-CRLs are already present under steady-state conditions and
as a main reservoir available in most cells for diverse cell functions [1]. However, under
specific conditions like adipogenesis, a fast exchange of substrate receptors (SRs) requires
CAND1 cycles [26].
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Figure 2. Preferential binding of CSNCSN7A to CRL3BTB and of CSNCSN7B to CRL4ADCAFs to form
permanent complexes and substrates detected in mitotic clonal expansion (MCE). During early phases
of adipogenesis, CAND1 exchanges CSNCSN7A-CRLBTB substrate receptors to KEAP1 and to BACURD3
as well as CSNCSN7B-CRL4ACDT2 to other DDB1- and CUL4-associated factors (DCAFs). In MCE,
CSNCSN7A-CRL3KEAP1 ubiquitylates CHOP, CSNCSN7A-CRL3BACURD3 is responsible for RHOA ubiqui-
tylation, and CSNCSN7B-CRL4CDT2 ubiquitylates p27 for degradation by the 26S proteasome.

CSN-CRL complexes possess a slow turnover and interact with a multitude of addi-
tional proteins. First of all, deubiquitylase enzymes (DUBs) are associated with the CSN
deneddylase forming multi-DUB complexes [27]. While, in human cells, USP15 specifically
binds to CSN7A [28] and consequently to the CSNCSN7A-USP15-CRL3BTB complex [1], USP48
is associated with CSN1 [29] but interacts mostly with CSNCSN7B-USP48-CRL4A/B [1]. The
CSN-associated DUBs contribute to the stabilization of the target proteins [30], although
the exact mechanism has not yet been discovered.

Another CSN-CRL-interacting protein is the cell cycle inhibitor p27KIP1 (p27), most of
which is associated with CSNCSN7B-CRL4A [1,31]. Since there is no specific binding site
for p27 in the complex, it has been concluded that p27 binds to its SR, CDC10-dependent
transcript 2 (CDT2), in the complex CSNCSN7B-CRL4ACDT2-p27. The additional two highly
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important candidates of the CSN-CRL interactome are the small GTPase RAB18 and
caveolin 1 (CAV1). Under non-stimulatory cell conditions, immunoprecipitations reveal
predominant binding of RAB18 and CAV1 to CSNCSN7A-CRL3BTB. However, there is also
binding to CSNCSN7B-CRL4A/B. Under conditions of adipogenesis in LiSa-2 cells, RAB18
is phosphorylated, which promotes exclusive binding to CSNCSN7A-CRL3BTB [1].

3. Functions of CSN-CRL Complexes in Mitotic Clonal Expansion
White adipose tissue (WAT) is the main adipose tissue in humans, representing 10–15%

and 25% of the total body weight of healthy men and women, respectively [32]. WAT
adipocytes are derived from myogenic factor 5-negative stem cells [33]. The first step of
adipogenesis, MCE (Figure 1), links to the following characteristics: (i) active cell cycle;
(ii) rearrangement of the cytoskeleton; and (iii) irreversible commitment to adipogenesis.

After adipogenesis induction, adipocyte precursors undergo several rounds of cell
division before the cell cycle completely arrests. The commitment takes place in the
G1 phase of cell cycle. This phase is characterized by a dramatic increase in PPARγ
expression, which slows the cell cycle and determines the balance between proliferation
and terminal differentiation [34], also studied in 3T3-L1 cells [35]. In the early phase of
HM-induced differentiation, LiSa-2 cells enter the cell cycle for two rounds. In this early
period, PPARγ and C/EBPα, master regulators of adipogenesis, activate the expression
of genes connected with lipid metabolism and terminate MCE [35]. At the same time,
the first hallmark of adipogenesis in LiSa-2 cells becomes visible, the accumulation of
the cyclin-dependent kinase (CDK) inhibitor p27. CAND1 is required to eliminate SKP2
from CRL1SKP2, responsible for the ubiquitylation and subsequent degradation of p27 by
the 26S proteasome (Figure 1). Associated with an increase in CAND1 and a decrease in
SKP2, p27 accumulates during the adipogenic program of LiSa-2 preadipocytes [1]. In
mouse 3T3-L1 cells, p27 is also controlled by CRL1SKP2, and the increase in p27 protein
is likewise dependent on SKP2 suppression [36]. CRL4ACDT2 is another CRL involved in
the degradation of p27 [37]. The particle was identified in HeLa and LiSa-2 cells as latent
CSNCSN7B-CRL4ACDT2. During apoptosis in HeLa cells, the complex binds and stabilizes
p27 [1]. In addition, it is necessary for cell cycle arrest in MCE during adipogenesis [1].
CSNCSN7B-CRL4ACDT2 loses its SR during the first hours of MCE [1] and contributes to the
accumulation of p27 in the cytosol and in the nucleus at the end of MCE.

A cytoskeleton rearrangement occurs at the beginning of adipogenesis. Members of
the RHO family of small GTPases regulate the actin dynamics in cells. They control micro-
tubules, cell shape, movement, and differentiation [38]. A CRL3-dependent degradation of
RHOA in mouse embryonic fibroblasts and in LiSa-2 cells using BTB domain-containing
adapter/receptor for CUL3-mediated RHOA degradation protein 3 (BACURD3) as SR
was shown (Figure 2) [6]. The ubiquitylation and degradation of RHOA by CSNCSN7A-
CRL3BACURD3, connected with the rearrangement of the cytoskeleton, begin very early in
adipogenesis and continue until TAD [6].

In the undifferentiated status, LiSa-2 preadipocytes accumulate large amounts of
factors such as CHOP, an inhibitor of adipogenesis, which is quickly degraded after in-
duction of the adipogenic program. CHOP forms a dominant negative heterodimer with
C/EBPβ, preventing the transactivation ability of C/EBPβ, which results in the inhibition
of adipogenesis [39]. It was shown that CHOP is ubiquitylated by the CRL3KEAP1 (KEAP1-
KELCH-like ECH-associated protein 1) complex [1], most likely CSNCSN7A-CRL3KEAP1

(Figure 2). KEAP1 integration into the CRL3 complex is initiated by CAND1, available in
large quantities in MCE [26]. Subsequently, CHOP is degraded by the 26S proteasome and
disappears during TAD (Figure 1), one example of adipogenesis-specific proteolysis.
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In summary, CSN-CRL complexes play a crucial role in the first phase of adipogenesis.
CRL1 complexes, mostly involved in the cell cycle [40], are partially inactivated at the
end of MCE. The accumulation of p27 is a hallmark of early differentiation in LiSa-2
cells, leading to cell cycle arrest. The cytoskeleton is rearranged, e.g., by CSNCSN7A-
CRL3BACURD3 (Figure 2), for later transport of proteins and lipids during adipogenesis.
Moreover, inhibitors of adipogenic differentiation like CHOP are degraded via CSNCSN7A-
CRL3 using CAND1 and specific SRs (Figure 2). The process is similar in other model
systems [41].

4. CSNCSN7A-CRL3BTB Is Recruited to Lipid Droplets by RAB18
During TAD

Lipid droplets (LDs) are dynamic organelles derived from the endoplasmic reticulum
(ER). LDs store neutral lipids, triglycerides, and cholesterol esters (Figure 3) [42] and are
consumed when lipids are required.
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Figure 3. Recruitment of CSNCSN7A-CRL3BTB to lipid droplet membranes by RAB18. Latent
CSNCSN7A-CRL3BTB is captured by GDP-RAB18 in the cytosol. The guanin nucleotide exchange fac-
tor (GEF) catalyzes the dissociation of GDP and binding of GTP to RAB18. GTP-RAB18 together with
CSNCSN7A-CRL3BTB is associated with the nascent lipid droplet (LD) on the endoplasmic reticulum
(ER) membrane. On the LD membrane, the CSNCSN7A-CRL3BTB is neddylated/activated. Whether
the SR is linked to the CSN-CRL complex before recruitment or on the LD membrane is not yet clear.

Their hydrophobic core is bound by a monolayer phospholipid membrane originating
from the ER [43]. Biogenesis of LDs in the ER membrane starts with lens formation, which
is induced by sterol ester synthesis by acyl-CoA: cholesterol O-acyltransferases (ACAT1
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and ACAT2) and triacylglycerols produced by diacylglycerol acyltransferases (DGAT1
and DGAT2). The next step is LD budding induced by the ER phospholipid composition.
Proteins like seipin and PEX30 (YLR324W) are necessary for correct budding [44]. LDs
grow through LD-LD fusion, through the transfer of triacylglycerol to LDs via the ER
membrane, or through triacylglycerol synthesis on the LD (Figure 3). The LD proteome
differs between cell types and comprises more than one hundred proteins in mammalian
cells. Many proteins are involved in lipid synthesis and degradation. The perilipin (PLIN)
family (PLINs 1–5) mostly maintains the structural integrity of LDs [9]. In general, proteins
decorating LDs are subdivided into two classes: proteins derived from the ER and proteins
originating from cytosol. ER proteins include the lipid biosynthesis enzymes glycerol-3
phosphate acyltransferase 4 (GPAT4) and diacylglycerol O-acyltransferase 2 (DGAT2),
the acyl-CoA synthetase (ACSL3), the ER-associated degradation (ERAD) factors ancient
ubiquitous protein 1 (AUP1) and ubiquitin-X domain adaptor 8 (UBXD8), the putative
methyltransferase (AAM-B), caveolin-1 and caveolin-2, the hepatitis C virus (HCV) core
protein (HSD17B11), and associated with LD protein 1 (ALD1) [9]. Proteins translated in
the cytosol and targeted to LDs are, for example, PLINs. Many proteins such as PLIN1 [45],
PLIN2 [46], adipose triglyceride lipase (ATGL) [47], and others are substrates of the UPS.
Until now, it is mostly unclear how cytosolic proteins are transported to LDs.

RAB small GTPases affect the functions of LDs connected with the transfer of proteins.
Recently, it was shown that the CSNCSN7A-CRL3 complex is recruited by RAB18 to LD
membranes [1]. In LiSa-2 cells, RAB18 is phosphorylated upon stimulation of adipogenesis.
Phosphorylation of RAB proteins has been described [48–50], but their functions remain
unclear. We speculate that RAB18 is phosphorylated to elevate its affinity to CRL3. Phos-
phorylation of RAB18 begins upon induction of adipogenesis from day 1 and continues
more than 2 weeks [1]. It strengthens the bond of RAB18 with the CSNCSN7A-CRL3 complex
and thus enables recruitment to the LDs. The guanosine diphosphate (GDP)-bound inactive
state (RAB18-GDP) localized in the cytosol binds the latent CSNCSN7A-CRL3 complex. The
membrane-associated guanosine triphosphate (GTP)-bound active conformation (RAB18-
GTP) fixes its cargo to the LD membrane (Figure 3). RAB18-GTP targets the entire latent
CSNCSN7A-CRL3 to the LD membrane [1]. Interestingly, CRL3 is targeted to the surface
of RAB7-positive endosomes. Unfortunately, in this case, the existence of CSN was not
examined [51].

Whether appropriate BTB proteins are already attached or are on their way to or on
the LD membranes assembled is not yet clear. It has been shown that KEAP1 is integrated
into CRL3 in a CAND1-dependent manner for CHOP degradation [1] and that BACURD3
is an SR for the degradation of RHOA [6]. However, it is currently unclear when and
where the SRs are installed and with which SRs the CSNCSN7A-CRL3 is equipped on LDs.
Interestingly, in 3T3-L1 cells, KBTBD11 has been described as a BTB protein that is required
for adipogenesis [52].

There is another exciting observation. The proteome of CULs includes DUBs like
USP15 which specifically interacts with CSN7A [1]. In targeting CSNCSN7A-CRL3 to LD,
RAB18 also transfers USP15 to the LD membrane as CSNCSN7A-USP15-CRL3BTB. Interest-
ingly, USP15 has been identified on LDs. It interacts with PLIN2 [53], a protein responsible
for the stability of the organelles. Under conditions of lipid deprivation, PLIN2 is poly-
ubiquitylated and degraded by the 26S proteasome followed by reduced LD size and
numbers [54]. We speculate that the function and stability of PLIN2 on LDs are controlled
by the CSNCSN7A-USP15-CRL3BTB complex.

Before CRLs come into action, they must be activated by neddylation. According
to recent data in LiSa-2 cells, CUL3, as a component of CRL3, is neddylated at the LD
membrane during adipogenesis (Figure 3) [6]. By inhibition of CRL3 neddylation using
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MLN4924 [6], LDs are not formed and adipogenesis is blocked. In other words, CSNCSN7A-
CRLBTB complexes loaded with the correct BTB protein and activated by neddylation are
essential for LD formation and for TAD.

5. Selected Malfunctions of CSNCSN7A-CRL3BTB and
CSNCSN7B-CRL4ADCAF Connected with Obesity

Deregulation of adipocyte differentiation has been associated with obesity [55], car-
diovascular diseases [56], and cancer [57], risk factors for premature death. Defects of
CSN-CRL complexes, main regulators of adipogenesis, can lead to obesity (Figure 4).
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Figure 4. Selected causes of obesity. Malfunctions of CSN-CRL complexes can lead to obesity.
High-fat diets with low physical activity, CSN-CRL gene defects, and infection subject healthy white
adipose tissue to hypertrophy and/or hyperplasia. Possible side effects are inflammation, hypoxia,
overexpression of adipokines, invasion of immune cells, and others. Associated are diseases like type
2 diabetes, hypertension, cardiovascular diseases, and cancer.
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The current understanding of obesity is an imbalance of consumed and expended calo-
ries. At a body mass index (BMI) of 30 or greater, the patient is considered obese. Physical
activity reduces the risk of obesity. Unfortunately, most of the population has an energy
balance disorder. Under this condition, an accumulation of more fat leads to more/larger
LDs, hypertrophy, and hyperplasia of white adipocyte cells (Figure 4). Currently, despite
modest weight loss after lifestyle modifications and available medications for obesity, e.g.,
orlistat, phentermine/topiramate, lorcaserin, bupropion, and liraglutide [32], the disease
cannot be cured. Progress has been made using glucagon-like peptide 1 (GPL-1) receptor
agonists for the treatment of obesity, which, however, is embossed by severe side effects [58].
A hopeful drug is the bioactive natural product curcumin. It relieves obesity by block-
ing CSNCSN7A-CRL3 neddylation and inducing apoptosis [1]. In addition, curcumin or
curcumin-derived compounds reduce serum lipid levels and modulate inflammation [59].
In severely obese individuals with a body mass index (BMI) of ~ 40 and above, bariatric
surgery is the only evidence-based approach producing marked and sustainable weight
loss. In studies with laparoscopic gastric bypass and sleeve gastrectomy, the average BMI
decreased by more than 25% two years after surgery. In correlation with the BMI, VEGF
decreased proportionally, which reduces the risk of cancer [60].

Recently, chromosomal defects causing obesity have been identified [61]. These defects
include the deletion of chromosome region 17p11.2 (Smith Magenis syndrome; SMS). SMS is
a typical example, which is a multiple congenital anomaly/intellectual disability syndrome
associated with an interstitial deletion of chromosome band 17p11.2 [62]. In SMS, the
COPS3/CSN3 gene becomes haploinsufficient. The remaining CSN3 molecules form an
intact CSN complex [62]. However, the reduced concentration of CSN might be responsible
for defects of differentiation in the brain or fat tissue during embryogenesis and childhood.
Recent observations show that besides neurodevelopmental disorders, >90% of patients
with SMS are overweight or obese after 10 years of age [63]. Although many authors
believe that retinoic acid-induced 1 (RAI1), localized in chromosome band 17p11.2, alone is
responsible for the obese phenotype [64], we speculate that the reduced CSN could be an
additional reason for the appearance of obesity after 10 years.

Interestingly, COPS7A/CSN7A, localized on 12p13.31, is synergistically expressed
with all the other CSN subunit genes in regular tissues. The expression of COPS7B/CSN7B,
mapped on 2q37.1, is regulated in a different way [65]. Children with an increase in
the 12q13.31 region exhibit developmental delays, seizures, macrocephaly, eczema, and
obesity [66]. Deletions of the 2q37 locus lead to brachydactyly mental retardation syndrome
(BDMR). Patients exhibit overweight or obesity as well as cancer [67].

A monogenetic cause has been described for the heterozygous mutation of CSN2WT/K70E

in gene-manipulated mice [68]. CSN2 K70 is important for inositol hexakisphosphate
(IP6)-mediated CSN-CRL binding, the glue between CSN and CRL [69]. Heterozygous
mice with partially disrupted CSN-CRL display congenital hyperinsulinism and insulin
resistance with risks of obesity. Homozygous CSN2K70E/K70E knock-in mice as well as
CSN2-null mice are embryonically lethal [68]. Interestingly, in the Human Obesity Gene
Map, CSN genes are localized in chromosome regions with evidence for the presence of
linkage with obesity-related phenotypes [68].

Research in past decades disclosed specialization of CRL families. Whilst CRL3 com-
plexes fulfill pivotal functions in mammalian cell differentiation, CRL4 particles are often
associated with chromatin and DNA repair [40]. CUL3 was identified as a candidate gene
for neurodevelopmental disorders like autism spectrum disorder [70]. Analyses suggest
that a defect in CUL3 affects multiple organs involved in the vascular, muscular, skeletal,
and neurological systems [71]. CUL3 is mapped to chromosome 2q36.2. A genetic cause of
obesity has been described for CUL3. In a deletion of exon 9, amino acids 403–459 of CUL3
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are missing (CUL3∆403–459), causing pseudohypoaldosteronism type II, a familial form of
hyperkalemia and hypertension [72]. The mutated CUL3∆403–459 is unable to ubiquitylate
WNK (With-No Lysine (K)) kinases or regulate Na2+/Cl− transport connected with blood
pressure adjustment. CUL3∆403–459 loses its binding to CSN, causing self-ubiquitylation,
and does not degrade substrates necessary for adipogenesis such as RHOA [72]. Unsurpris-
ingly, pseudohypoaldosteronism type II, or so-called Gordon syndrome, is associated with
obesity [73]. Patients possessing 13q34 microdeletions, the localization of the CUL4A gene,
display clinical features including intellectual disability, mild facial dysmorphism, and
obesity [74]. Recent data support the notion that high expression of CUL4A is associated
with several types of cancer, including breast, lung, and bone cancer [75,76]. Interestingly,
the anti-obesity factor WDTC1 (DCAF9), an SR of CRL4, reduces lipid production and
suppresses adipogenesis via the CRL4WDTC1 ligase in 3T3-L1 cells [77]. Furthermore, in
mice, the interaction between CSN-CRL can be modified by IP6, as mentioned above.
IP6-dependent CSN-COP1 competition controls CRL4 activity, regulating glucose induced
insulin secretion. Deregulation of CRL4-COP1 formation leads to obesity [68]. Findings
support that supplementation and repair of deleted CSN subunit genes or CUL3 as well as
CUL4 by CRISPR technology emerge as novel therapeutic approaches for the treatment of
specific types of obesity.

Infection has recently received greater attention as an inducing factor of obesity
(Figure 4) [78]. Six viruses are known to lead to obesity in animals [79]. Lately, human
adenovirus 36 infection was related to obesity. In 3T3-L1 cells, adenovirus 36 stimulates
the expression of genes involved in cell differentiation, including CSN and CRL genes,
and increases lipid accumulation. The presence of adenovirus 36 in adipose tissue of
overweight and obese humans has been confirmed [80,81]. The biological plausibility of
obesity by viral infection rises, and the direct potential of some viruses to reprogram host
metabolism toward increased lipid production and faster adipogenesis is presented. As
soon as the infection is certain, work should be carried out on a vaccination against the
corresponding virus.

6. Concluding Remarks
Discovery of the significant contribution of CSN-CRL complexes to adipogenesis

represents another milestone in understanding the adipogenic program. The next step
is to determine the missing SRs and to identify other CSN-CRLs involved in the process.
Revealing wanted SRs will lead to the exact ubiquitylation reactions. Further, additional
interacting key factors will be identified. Discovering crucial factors presents excellent
targets for possible treatment. Since RAB18 has been identified as a CSN-CRL transporter
to the LDs, the exact function of other RABs will be elucidated. It is assumed that RABs
might also be outstanding treatment targets.

Obesity is an excellent example of how deeper knowledge of the involved process
leads to better treatment options. While the inhibition of adipogenesis for the treatment of
obesity is problematic so far, today, researchers are considering how inhibition of the process
can alleviate obesity. Accurate knowledge of the CSN-CRL reaction offers outstanding
opportunities for new therapies.

Future research will reveal how genetic treatment for specific forms of obesity might
be appropriate. Along with the chemical influence of CSN-CRL complexes, genetic modifi-
cations might be suitable approaches. New insights will bring further answers for efficient
treatment of obesity.
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