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A B S T R A C T

Recent studies with peptide-based incretin therapies have focussed mainly on the glucagon-like peptide-1 (GLP- 
1) receptor agonist semaglutide and the dual agonist tirzepatide that engages receptors for GLP-1 and glucose- 
dependent insulinotropic polypeptide (GIP). Randomised clinical trials and ‘real-world’ studies have confirmed 
the marked glucose-lowering and weight-lowering efficacy of these agents across diverse populations. These 
include different ethnic groups, young and elderly individuals with and without diabetes and/or overweight or 
obesity. Recent studies have also confirmed protections against the development and progression of cardiovas-
cular and renal diseases that are additive to the benefits conferred by improved control of blood glucose and body 
weight. Emerging evidence suggests that incretin therapies could additionally ameliorate fatty liver disease, 
chronic inflammation, sleep apnea and possibly degenerative bone disorders and cognitive decline. New incretin- 
based peptide therapies in development include a long-acting glucagon receptor agonist (LY3324954), dual GLP- 
1/glucagon receptor agonists (survodutide, pemvidutide, mazdutide, G49), triple GLP-1/GIP/glucagon receptor 
agonists (retatrutide, efocipegtrutide), a combination of semaglutide with the amylin analogue cagrilintide 
(CagriSema), a unimolecular GLP-1/amylin receptor dual agonist (amycretin), and a GIP receptor antibody with 
GLP-1 receptor agonism (MariTide). The creation of multi-targeting incretin-based synthetic peptides provides 
opportunities for improved management of type 2 diabetes and obesity as well as new therapeutic approaches to 
an expanding list of associated co-morbidities. The aim of the review is to acquaint the reader with developments 
in the field from 2023 to the present (February 2025).

1. Introduction

The incretin peptides glucagon-like peptide-1 (GLP-1) and glucose- 
dependent insulinotropic polypeptide (GIP) are key regulators of 
nutrient metabolism that have been adapted as pharmacotherapies. 
GLP-1 receptor agonists (GLP-1RAs) are used to lower blood glucose in 
type 2 diabetes mellitus (T2DM) and reduce body weight in the man-
agement of obesity [1,2]. To enhance efficacy, mixtures of peptides as 
well as long-acting single-molecule mono-, dual- and multi-agonists 
have been developed to interact with receptors for GLP-1, GIP, 
glucagon (GCG), amylin and other peptides [1]. As shown in Table 1, 
several injectable and one oral GLP-1RA and one injectable 
GLP-1R/GIPR co-agonist are available in Europe and North America, 
with more available in other regions (reviewed in [3,4]). The years from 
2023 to the present have seen an explosion of interest in incretin pep-
tides, primarily the GLP-1RA semaglutide and the GIPR/GLP-1R 

co-agonist tirzepatide, among physicians, biomedical researchers, pa-
tients and healthy individuals concerned with body image. These years 
have led to realization that beyond their metabolic and weight-lowering 
effects, these agents have been shown to reduce the risk or severity of 
cardiovascular (CV) and renal diseases and to benefit other 
co-morbidities independently of glucose and weight control [5–7]. 
Previous reviews in the journal have focused upon the results of clinical 
trials of semaglutide, and tirzepatide involving primarily patients with 
T2DM and/or obesity up until 2022 [3,4]. This article emphasizes the 
properties of recently introduced incretin peptides and provides evi-
dence for their increased therapeutic relevance.

2. Metabolic efficacy

The glucose-lowering and weight-lowering effects of GLP-1RAs in 
individuals with T2DM across the age spectrum, with and without CV 
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disease, chronic kidney disease (CKD) and fatty liver disease are now 
well established [3,4,8]. GLP-1RAs administered by once weekly (QW) 
subcutaneous (SC) injection have generally produced greater metabolic 
effects in T2DM patients than other therapeutic drugs, provided that 
dose escalation is undertaken slowly to minimise initial (usually tem-
porary) gastrointestinal side effects [9]. Amongst agents injected QW, 
semaglutide (Ozempic, 2 mg) and tirzepatide (Mounjaro, up to 15 mg) 

reduced HbA1c by 2.2 % and 2.4 % respectively and reduced body 
weight by 6.9 kg and 11.3 kg respectively during 40 week randomised 
controlled trials in overweight/obese individuals with T2DM [10,11]. 
The weight-reducing efficacy of incretins is typically greater in in-
dividuals without T2DM (Table 1). Thus, in obese adults without dia-
betes, injection of semaglutide (Wegovy, 2.4 mg QW) reduced weight by 
15.7 kg (14.9 %) over 68 weeks (STEP-1 trial) [12], and tirzepatide 
(Zepbound, 15 mg QW) reduced weight by 21.9 kg (20.9 %) in a similar 
trial in obese non-diabetic adults for 72 weeks (SURMOUNT-1 trial) 
[13]. Comparable results were obtained in SURMOUNT 4 [14] and STEP 
4 [15] trials. A high dose (50 mg daily) of an oral formulation of sem-
aglutide reduced weight by 15.1 % over 68 weeks (OASIS-1 trial) in 
obese adults without diabetes [16]. In consequence, both semaglutide 
and tirzepatide have been widely adopted for weight loss management 
with efficacy across ethnic groups and the age spectrum [3,4,17,18]. 
Both semaglutide and tirzepatide can also reduce progression of pre-
diabetes to diabetes in obese individuals [13,19].

Given the substantial cost of incretin-based medicines, their long- 
term use to treat obesity has been questioned and several trials have 
included ‘off-treatment’ extension periods. These have invariably shown 
‘off-treatment’ weight regain, but without rebound to above pretreat-
ment weight over periods up to 1 year [20–22]. Debate continues over 
how long and at what dose treatment should be continued when 
adequate weight reduction has been achieved, and which lifestyle 
strategies or alternative therapies can best mitigate weight regain [22, 
23].

3. Mechanisms of metabolic effects

The main mechanisms responsible for the anti-hyperglycaemic and 
anti-obesity effects of GLP-1RAs are well recognised, notably potentia-
tion of nutrient-stimulated insulin secretion (‘incretin effect’), suppres-
sion of prandial glucagon secretion, a centrally-mediated satiety effect 
and delayed gastric emptying [8,24]. Because GLP-1RAs do not initiate 
insulin secretion or impede ‘counter-regulatory’ glucagon secretion at 
low glucose concentrations, these agents do not cause overt hypo-
glycaemia, which enables their continuous use at high therapeutic 
concentrations.

GIP also potentiates nutrient-stimulated insulin secretion but this 
effect becomes much reduced during protracted exposure to hyper-
glycaemia in T2DM [8,25]. This may be due to chronic stimulation of 
pancreatic β-cells by persistent hyperglycaemia causing a switching of 
the sub-types of the GIP G-protein coupled receptors from Gs to Gq 
because GIP activates Gs but not Gq. In contrast, GLP-1 maintains its 
insulinotropic effect because GLP-1 can activate both Gs and Gq [25]. In 
addition, GIP can increase glucagon secretion and adipose tissue depo-
sition which seems inconsistent with the glucose-lowering and 
weight-lowering efficacy conferred by GIP receptor agonism either 
alone or together with GLP-1 receptor agonism in the GIPR/GLP-1R 
co-agonist tirzepatide [26]. This calls into question the role of GIPR 
agonism by tirzepatide. It has been suggested that the agent exerts a 
sufficiently potent and effective GLP-1R agonism to overcome the effects 
of GIPR agonism on glucagon and adipose deposition. In addition, the 
peptide may interact with the GIPR to create a biased agonism in which 
long-term metabolic signalling of the GIPR is reduced while that of the 
GLP-1R is increased [27]. The biased agonism could occur if the struc-
ture of tirzepatide alters the conformation of the GIPR so as to favour 
activation of arrestins that mediate increased endocytosis and degra-
dation of the receptor. In contrast, biased agonism might reduce endo-
cytosis of the GLP-1R and so increase the effects of a GLP-1RA [27–29]. 
Such a mechanism has been implicated in the ability of GIP and GLP-1 to 
exert additive effects on pancreatic β-cells [30–33]. This type of biased 
agonism is also consistent with the ability of GIPR antagonists to 
improve glucose and weight control in obese hyperglycaemic states 
[34].

A further uncertainty relating to GIP concerns its effect on food 

Table 1 
Efficacy of currently available incretin-based peptide agents in phase 3 trials that 
assessed lowering of A1C and body weight.

Agent 
(Brand)

Trial name 
n number 
Duration 
(wks)

Route, timing 
Dose(s)

Efficacy in phase 3 
randomised control 
trial*

Type 2 diabetes
   Baseline 

A1C %; 
BMI kg/ 
m2

Efficacy*
↓A1c%; 
↓BW kg

Exenatidea

(Byetta)
Amigo− 1 
n 272, 30 wks

SC, BD 
5, 10 ug

A1C 8.2 
BMI 34.2

↓ A1c 0.8 
↓ BW 2.8

Exenatide 
(Bydureon)

Duration− 1 
n 295, 30 wks

SC, QW 
2 mg

A1C 8.3 
BMI 35

↓ A1c 1.9 
↓ BW 3.9

Lixisenatideb

(Lyxumia)
GetGoal− 1 
n 484, 24 wks

SC, OD 
20 ug

A1C 8.1 
BMI 32.1

↓ A1c 0.4 
↓ BW 1.1

Liraglutidec

(Victoza)
Lead− 2 
n 1091, 26 wks

SC, OD 
0.6, 1.2, 1.8 mg

A1C 8.4 
BMI 30.9

↓ A1c 1.1 
↓ BW 3.8

Dulaglutide 
(Trulicity)

Award− 1 
n 976, 26 wks

SC, QW 
0.75, 1.5 mg

A1C 8.1 
BMI 33

↓ A1c 1.0 
↓ BW 2.5

Semaglutide
**
(Ozempic)

Sustain− 1 
n 388, 30 wks

SC, QW 
0.25, 0.5, 1, 2 mg

A1C 8.0 
BMI 32.9

↓ A1c 1.5 
↓ BW 3.5

Semaglutide 
(Rybelsus)

Pioneer− 1 
n 703, 26 wks

Oral, OD 
3, 7, 14 mg

A1C 8.0 
BMI 31.8

↓ A1c 1.1 
↓ BW 2.3

Tirzepatide
***
(Mounjaro)

Surpass− 1 
n 478, 40 wks

SC, QW 
0.25, 0.5, 0.75, 10, 
12.5. 15 mg

A1C 7.9 
BMI 31.9

↓ A1c 2.3 
↓ BW 8.8

Obesity
   Baseline 

BW kg 
BMI kg/ 
m2

Efficacy 
↓ BW kg 
(%)

Liragluride 
(Saxenda)

Scale− 1 
n 3731, 56 wks

SC, OD 
3 mg

BW 106.2 
BMI 38.3

↓ BW 5.6 
(5.2 %)

Semaglutide 
(Wegovy)

Step− 1 
N 1961, 68 
wks

SC, QW 
2.4 mg

BW 105.4 
BMI 37.8

↓ BW 
12.7 
(12.4 %)

Semaglutide 
(Rybelsus)

Oasis− 1 
n 667, 68 wks

Oral, OD 
50 mg

BW 105.4 
BMI 37.5

↓ BW 
13.0 
(12.7 %)

Tirzepatide 
(Zepbound)

Surmount− 1 
n 2539, 72 wks

SC, QW 
5, 10, 15 mg

BW 105.6 
BMI 38.1

↓ BW 
21.2 
(17.8 %)

A1c, HbA1c (glycated haemoglobin); BD, twice daily; BMI, body mass index (kg/ 
m2); BW, body weight; OD, once daily; QW, once weekly; SC, subcutaneous 
injection; wks, weeks; ↓, decrease

* Efficacy was calculated as placebo-subtracted change in A1C or body weight 
using data from a phase 3 randomised controlled trial. In trials involving in-
dividuals with type 2 diabetes, test agent or placebo was administered as add-on 
to lifestyle (diet + exercise) or lifestyle plus metformin. In trials involving in-
dividuals without diabetes, test agent or placebo was administered as add-on to 
lifestyle.

** Data for semaglutide in individuals with type 2 diabetes are based on 1 mg 
dose. In a subsequent 40 week trial (n = 961, baseline A1C 8.9 % and BMI 34.6), 
a 2 mg dose of semaglutide once weekly lowered A1c by 0.3 % more and body 
weight by 0.9 kg more than with a 1 mg dose.

*** Data for tirzepatide in individuals with type 2 diabetes are based on the 
15 mg dose which was taken for 20 weeks after a 20-week dose titration period.

a Byetta was discontinued in 2024: biosimilar products may be available in 
some regions.

b Lyxumia was discontinued in 2023: biosimilar products may be available in 
some regions.

c Victoza: biosimilar products may be available in some regions.
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intake. Previous studies in rodents, non-human primates and human 
subjects involving either GIPR activation or inhibition have provided 
inconsistent results (reviewed in [25,28]). GIP does not acutely affect 
appetite or food intake in humans but recent studies in mice have found 
that chronic exposure to long-acting GIPRAs reduces food intake 
through direct effects within the central nervous system involving re-
gions of the hypothalamus and hind brain [35,36]. This is consistent 
with the strong long-term weight loss effect of tirzepatide but does not 
account for the effectiveness of GIPR antagonism [11,13,14,34]. The 
multifunctional activities of GLP-1 and GIP are compared and contrasted 
in Fig. 1.

4. Cardiovascular effects

CV outcome trials (CVOTs) conducted with newly introduced 
glucose-lowering agents have noted fewer major adverse cardiac events 
(MACE) including non-fatal myocardial infarction, stroke or severe 
heart failure among individuals treated with a GLP-1RA compared with 
placebo. For individual agents these may be numerical differences (not 
statistically significant) but meta-analyses have shown significant re-
ductions in MACE across the GLP-1RA class. For example, recent meta- 
analyses of GLP-1RA use in randomised clinical trials have reported 
reductions of MACE by13–14 %, all-cause mortality by ~12 % and heart 
failure by ~11 % [37]. A pooled analysis of trials with injected sem-
aglutide has noted reduced progression of heart failure irrespective of 
baseline ejection fraction [38] and a CVOT (SOUL trial) with the oral 
formulation of semaglutide (Rybelsus) found a 14 % reduction in MACE 
[39].

Considering the heavy burden of CV disease for people with diabetes, 
appreciation of the CV benefits of GLP-1RAs has resulted in the inclusion 
of these agents as first line pharmacological therapies alongside met-
formin and sodium-glucose co-transporter-2 (SGLT2) inhibitors in some 
of the latest guidelines for treatment of T2DM [40,41]. In particular, 
GLP-1RAs are considered appropriate for individuals who already have 
established atherosclerotic CV disease or who are considered to be at 
especially high CV risk. Recent randomised placebo-controlled trials 
have also noted modest reductions in the onset or progression of heart 
failure (with reduced or preserved ejection fraction) during treatment 
with semaglutide or tirzepatide in overweight/obese people with or 
without diabetes. For example, in overweight/obese patients with CV 

disease and without diabetes, semaglutide (2.4 mg QW for 39 months) 
afforded numerical reductions in CV death by 15 % and heart failure by 
18 % [42]. In obese patients with preserved ejection fraction heart 
failure and without diabetes tirzepatide (up to 15 mg QW for 52 weeks) 
reduced CV death or worsening heart failure by 38 % [43]. In these and 
other trials, patients have reported that the incretin treatment improved 
their health status as assessed using the Kansas City Cardiomyopathy 
Questionnaire [44].

Because the cardiovascular effects of GLP-1RAs show little correla-
tion with the extent of glucose-lowering or weight-lowering in T2DM or 
overweight/obese people without diabetes, the possibility of direct ac-
tions on the CV system has generated much interest [45]. GLP-1 re-
ceptors are expressed by cardiac and vascular tissues, and GLP-1RAs 
improve the blood lipid profile and reduce blood pressure. The former 
effect is mostly attributed to reduced nutrient intake and the latter to 
increased endothelial production of nitric oxide and reduced production 
of angiotensin II [46,47]. GLP-1RAs also reduce chronic inflammation 
(see Section 6.1) and appear to impede various steps in the atherogenic 
process while acting directly on myocardial cells to enhance nutrient 
metabolism and reduce oxidative stress [48,49]. Accordingly, sem-
aglutide has recently been approved to reduce the complication of 
overweight/obesity in people with severe CV conditions, and there is 
debate regarding the potential use of GLP-1RAs to reduce CV risk 
independently of diabetes or obesity [50,51].

Preliminary evidence from the SURPASS trials suggests that tirze-
patide also offers CV benefits similar to those seen with GLP-1RAs [52, 
53]. GIP receptors are expressed in cardiac and vascular tissues, and GIP 
is known to reduce blood pressure, improve the lipid profile and reduce 
atherosclerosis in rodent models of CV disease [6,54]. Endothelial ef-
fects of GIP that are similar to GLP-1 have been reported, such as 
increased vasodilation via increased nitric oxide production and 
reduced inflammation [55,56].

5. Renal effects

Treatment of patients with T2DM with a GLP-1RA has typically 
reduced the onset and progression of albuminuria independently of the 
extent of reductions in blood glucose, body weight or blood pressure, 
and generally with little effect on the rate of decline in estimated 
glomerular filtration rate (eGFR) [57,58]. Recently, reductions of 

Fig. 1. An illustration of the diverse actions of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) with therapeutic 
significance. ASCVD, atherosclerotic cardiovascular disease; BP, blood pressure; heart rate; MASLD, metabolic dysfunction-associated steatotic liver disease; TG, 
triglyceride. ↑, increase; ↓, decrease. The dashed line indicates that GLP-1 and GIP are susceptible to rapid degradation by the enzyme dipeptidyl peptidase-4.
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albuminuria have been noted in overweight/obese individuals without 
diabetes. For example, in the STEP trials semaglutide (2.4 mg QW for 68 
weeks) reduced the urinary albumin-creatinine ratio (UACR) by 32 % 
without a significant effect on eGFR in overweight/obese non-diabetic 
adults [59]. Similarly, in the SELECT trial, semaglutide (2.4 mg QW 
for 3 years) reduced the UACR by 31 % in overweight/obese 
non-diabetic individuals with macroalbuminuria and CV disease [60].

Most patients in these trials had a normal eGFR at baseline which 
was little affected by the GLP-1RA therapy but individuals with CKD 
often showed a reduced rate of decline in eGFR during therapy. In the 
FLOW trial which enrolled T2DM patients with CKD and albuminuria 
(eGFR 25–75 ml /min/ 1.73 m2 and UACR 100–5000 mg/g), semaglu-
tide (1 mg QW for 3.4 years) reduced UACR by 38 % and slowed the rate 
of decline in eGFR by 1.16 ml/min/ 1.73 m2 [61]. Other studies with 
semaglutide and with tirzepatide have also noted reductions in albu-
minuria in people with or without CKD and with or without T2DM [37, 
62,63]. Indeed, semaglutide and other GLP-1RAs have been used to 
improve glycaemic control and achieve weight loss in people with end 
stage renal disease and on dialysis [64,65] Studies evaluating how 
GLP-1RAs can affect kidney function independently of glycaemia, 
weight and blood pressure have favoured reduced inflammation as a 
likely mechanism. GLP-1RAs may also help to protect glomerular 
integrity by suppressing the receptor for advanced glycation end prod-
ucts (RAGE) and reducing oxidative damage via reduced NAD(P)H ox-
idase activity [66,67].

6. Other possible benefits

In the 10 years since the first long-acting GLP-1RA (exenatide) 
became available, circumstantial evidence has suggested that these 
agents offer additional therapeutic opportunities beyond their metabolic 
and cardiorenal benefits.

6.1. Inflammation

A number of clinical studies have observed a decrease in pro- 
inflammatory markers during use of a GLP-1RA, and an anti- 
inflammatory effect has been considered to contribute to the pleio-
tropic properties of these agents across metabolic, cardiorenal, neuro-
degenerative, osteoarthritic and other diseases [47,68,69]. Although it 
is difficult to identify mechanisms in most of the clinical studies, in vitro 
experiments indicate a direct effect of GLP-1RAs on immune cells and 
other cell types to suppress the activation of nuclear factor-kappa B 
(NF-κB), thereby reducing production of a range of pro-inflammatory 
cytokines including C-reactive protein, interferon-γ, IL-1β. IL-2, IL-6, 
IL-17, and tumor-necrosis factor-α, and

GLP-1RAs can also stimulate production of anti-inflammatory Il-10 
[(reviewed in [70]). Indeed, use of a GLP-1RA may reduce the excessive 
inflammatory response and improve survival during Covid-19 infection 
and reduce airway inflammation in asthma and other respiratory con-
ditions [71–73].

6.2. Fatty liver

The expansion and re-designation of non-alcoholic fatty liver disease 
into metabolic dysfunction-associated steatotic liver disease (MASLD) or 
metabolic dysfunction-associated steatohepatitis (MASH) has been 
accompanied by the inclusion of GLP-1RAs into guidelines as potentially 
useful for prevention and treatment [74–77]. For example, several 
retrospective studies have noted that use of a GLP-1RA or tirzepatide has 
reduced progression of steatotic liver disease and the development of 
cirrhosis, while prospective studies have observed reductions in liver fat 
content, transaminases, lipid stiffness and fibrosis [78–84]. The mech-
anism likely involves reduced visceral adiposity, although direct effects 
on hepatic lipid metabolism are possible. Molecules that combine GCGR 
agonism together with a GLP-1RA are gaining traction as a potential new 

approach to the treatment of steatotic liver disease, eg pemvidutide, 
mazdutide, efinopeglutide, AZD9550 and the triple agonist retatrutide 
[85].

6.3. Neurocognitive disorders

A neuroprotective effect of GLP-1RAs is well recognised in preclini-
cal experimentation and this is variously attributed to reductions in 
inflammation, apoptosis and oxidative stress, as well as increased 
autophagy and activation of various intracellular signalling proteins in 
nerve cells [86–88]. However, clinical studies of motor function in 
Parkinson’s disease and cognitive function in dementia/Alzheimer’s 
disease have given mixed results [89]. An analysis of prospective data 
gathered during the CVOTs in T2DM found that the risk of new-onset 
dementia with liraglutide or semaglutide was more than halved over 4 
years, and lixisenatide has been reported to slow motor deterioration in 
Parkinson’s disease [90]. Other studies have been less positive and 
several meta-analyses of studies involving Parkinson’s and Alzheimer’s 
patients have been inconclusive, noting that there are considerable 
variations in the design of these studies, and many have probably been 
too short to allow measurable changes [91–93]. Accordingly, in-
vestigations are continuing to explore the potential for GLP-RAs to 
contribute to the treatment of neural disorders.

6.4. Type 1 diabetes

Intensive insulin therapy in adults with type 1 diabetes mellitus 
(T1DM) may result in overweight or obesity. In a small-scale study 
involving 50 patients with T1DM treated with either semaglutide or 
tirzepatide and 50 appropriately matched T1DM control subjects not 
receiving these agents, off-label use over 1 year produced weight loss of 
9.1 % in the semaglutide group and 21.4 % in the tirzepatide group. 
Improved glucose control was observed in both groups [94].

Separate injections as well as fixed-ratio mixtures of a GLP-1RA with 
a basal insulin have improved glycaemic control with reductions of in-
sulin requirement and weight gain in both T2DM and type 1 diabetes ) 
[95]. However, uptake has been limited, particularly for T1DM, and 
recent studies assessing efficacy using continuous glucose monitoring 
(CGM) have noted the difficulty in determining how to reduce the in-
sulin dose to avoid ‘time below range’ when a GLP-1RA is introduced 
[96]. Pharmacokinetic studies with an up-coming QW fixed-ratio com-
bination of the basal insulin icodec with semaglutide (IcoSema) may help 
to alleviate this concern and simplify use [97].

6.5. Osteoarthritis and bone health

Although preclinical studies have consistently shown that both GIP 
and GLP-1 promote bone formation involving increased activity of os-
teoblasts and decreased activity of osteoclasts, clinical evidence remains 
inconclusive. Some recent clinical studies with GLP-1RAs have reported 
decreased risk of fractures and positive changes in markers of bone 
metabolism, but others have been unable to confirm beneficial effects on 
bone health and long-term studies are ongoing [98,99].

The indirect effects of GLP-1RAs on weight loss and glucose-lowering 
in conjunction with possible direct effects on inflammatory pathways 
and cartilage preservation has suggested a role for these agents in 
management of osteoarthritis [100,101]. In a 68-week, double-blind, 
randomized, placebo-controlled trial involving 407 participants with 
obesity and knee osteoarthritis with moderate-to-severe pain, 
once-weekly injection of semaglutide (2.4 mg) resulted in significantly 
greater reductions in body weight and pain related to knee osteoarthritis 
than placebo. Adverse events (primarily gastrointestinal disorders) 
leading to discontinuation of the trial regimen occurred in 6.7 % of the 
participants in the treatment group and in 3.0 % in the placebo group 
[102]
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6.6. Additional potential uses of incretin therapies

Accumulating evidence indicates that GLP-1RAs and the GIPR/GLP- 
1R co-agonist tirzepatide are beneficial in the management of obstruc-
tive sleep apnoea in people with obesity, and tirzepatide has recently 
gained approval by the FDA for this indication [103–105]. Studies have 
now linked the use of GLP-1RAs to reductions in craving behaviours for 
specific foods as well as alcohol and opiate abuse that are mediated 
centrally through dopaminergic pathways [106,107]. Possible links 
between the use of GLP-1RAs and the prevalence of anxious or depres-
sive behaviours, and suicidal ideation have been claimed but remain to 
be substantiated [108–111].

7. Cautions and limitations of incretin therapies

The therapeutic use of GLP-1RAs and tirzepatide has been limited by 
possible loss of muscle mass and gastrointestinal (GI) tolerability and as 
well as with high cost and limited availability. Controversy regarding 
the effect of GLP-1RA therapies on loss of lean body mass is no closer to 
resolution following two recent meta-analyses. An analysis of dual- 
energy X-ray absorptiometry (DEXA) data found that loss of fat-free 
mass accounted for 20–40 % of overall weight loss [112]. However, 
another analysis that included data from DEXA, bioimpedance, mag-
netic resonance imaging and computed tomography suggested a smaller 
loss of lean body mass (average about 1 kg) which was comparable with 
the loss of lean body mass by individuals achieving similar overall 
weight loss without using a GLP-1RA [113]. Caution continues to be 
needed regarding the use of a GLP-1RA in sarcopenia especially in the 
case of frail individuals, noting also that such patients may be more 
susceptible to hypoglycaemia with GLP-1RA therapy [114].

Initial GI disturbances are common and in clinical trials 10–30 % of 
patients have reported at least one bout of nausea or vomiting. These are 
generally temporary, mostly occurring during the first 1–2 months of 
therapy. They are reduced by delaying dose titration and account for 
discontinuation in < 5 % of patients in most of the recent clinical trials 
[115]. A recent comprehensive study analysing health outcomes in 2 
million people using a range of antihyperglycemic agents concluded that 
GLP-1RAs reduce risks of neurocognitive, cardiovascular and respira-
tory disorders and substance abuse but increase risks of gastrointestinal 
issues, hypotension and pancreatitis [116]. A more recent analysis of the 
safety profile of once-weekly subcutaneous semaglutide (2.4 mg) 
involving patients enrolled in the SELECT study identified a small but 
significant increased frequency of gallbladder-related disorders in the 
semaglutide group versus placebo (2.8 % vs. 2.3 %; p = 0.04), mainly 
driven by cholelithiasis [117]. The risk of developing neutralizing an-
tibodies remains a consideration. However, anti-drug antibodies have 
been identified in very few recipients of incretin-based peptides, and 
therapeutic efficacy has not been significantly affected [3].

Risk of increased progression (‘early worsening’) of retinopathy has 
been noted in some studies in which semaglutide has been prescribed for 
T2DM individuals with already-established retinopathy [118]. Early 
worsening has been attributed in part to a large, rapid and sustained 
reduction in glycaemia but this is not a consistent finding and remains 
under investigation [119]. A link between long-term administrations of 
GLP-1RAs and nonarteritic anterior ischemic optic neuropathy (NAION) 
has been suggested but remains to be firmly established [120]. A study 
involving a cohort of 424,152 Danish patients with T2D concluded that 
during five years of observation the use of once-weekly semaglutide 
more than doubled the risk of NAION [121]. However, a retrospective 
multinational population-based study involving a global electronic 
medical records database suggested that semaglutide may not be asso-
ciated with an increased risk of NAION in the general population, It was 
concluded that avoidance of semaglutide based solely on concerns 
regarding the risk of NAION may not be warranted because its potential 
benefits for blood glucose control and cardiovascular health likely 
outweigh its potential risks [122].

The cost of GLP-1RAs and allied injectable incretin medicines con-
tinues to restrict individual usage and has demoted the positioning of 
these medicines in some treatment algorithms. Increased demand for 
incretin therapies associated with their uptake for the management of 
obesity has given rise to shortages. There is evidence that the availability 
of Wegovy and Zepbound has led to an increase in “fat shaming” and 
paediatricians are concerned by the increasing numbers of healthy 
schoolchildren and adolescents who are requesting these medications as 
a result of peer-pressure (C.A. MacGeorge, unpublished observations).

The short-acting GLP-1RAs, namely exenatide (Byetta) and lixisena-
tide (Lyxumia) have been discontinued in some countries in 2024. This 
has provided market access for compounded versions and appearance of 
fake products that have been linked to altered efficacy or adverse re-
actions. This has deterred some prospective users [123–125]. Accounts 
in the popular press suggest that fake products are usually acquired 
on-line and used independently of a healthcare professional. Some have 
contained insulin or amphetamines which cause hypoglycaemia or a 
racing pulse. Others have contained the highest dose of the peptide 
which has been injected without the required gradual dose titration. 
However, it is anticipated that improved methodologies for solid-phase 
peptide synthesis will facilitate the commercial production of bona fide 
incretin peptides and help to contain costs [126].

8. Incretins in development

The markedly increased efficacy of semaglutide and tirzepatide 
compared with earlier incretin-based therapies has ignited a surge in 
medical and non-medical demand for ever more potent weight-loss 
agents, preferably with fewer side effects, longer durations of action 
and/or oral delivery. The oral formulation of semaglutide is now 
approved and widely adopted, and the introduction of further orally- 
active incretin peptide formulations is anticipated. The development 
of effective and orally-active non-peptide agents would undoubted have 
a marked effect on the market as such compounds would be easiest to 
synthesize than the currently available injectable GLP-1RAs and so 
presumably at less cost to the patient. Although several small molecule 
GLP-1RAs (gliprons) have received preclinical and early clinical 
assessment, few have proceeded into a phase 3 clinical program and 
some have been discontinued due to raised liver transaminases and/or 
insufficient efficacy [127,128]. However, daily oral administration of 
the small molecule, orforglipron showed promise in phase 2 clinical 
trials producing significant weight reduction and improvement in lipid 
profile while mild to moderate adverse events were similar to those with 
injectable GLP-1 receptor agonists [129,130]. Phase 3 clinical trials 
conducted by Eli Lilly are expected to be completed by 2026. This apart, 
peptide molecules constitute the most advanced prospects for new 
incretin-based therapies in the near future. Newly introduced 
long-acting GLP-1RAs include ecnoglutide, a modified GLP-1 (7–37) 
peptide containing the substitution Ala8 → Val and a C-18 fatty acid at 
Lys30 [131] and XT002 [132]. However, most novel agents under 
investigation are unimolecular dual or triple agonists that interact with 
the GLP-1R and/or GIPR and/or GCGR (Table 2). The primary struc-
tures, where available, of the agents presented in this review are shown 
in Fig. 2.

Several GLP-1R/GCGR dual agonists have shown significant weight- 
lowering efficacy (eg survodutide [133], pemvidutide [134] and maz-
dutide [135]). Although GCGRA activity may seem counterintuitive 
(discussed earlier, Section 3), it is relevant to note here that GCGRAs 
reduce appetite and increase energy consumption, thereby giving ad-
ditive weight-lowering efficacy [1–4]. Indeed, treatment of diet-induced 
obese mice with the long-acting GCGRA, LY3324954 stimulated energy 
expenditure, weight loss, reduction of adiposity and benefited 
whole-body lipid homeostasis [136]. However, it is worthwhile to point 
out that in the past a number of potential anti-obesity drugs that func-
tion by increasing energy expenditure have been withdrawn because of 
adverse cardiac complications [137]. A combination of a GCGRA with a 
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GLP-1RA enables the GLP-1RA to counter the rise in blood glucose by 
inhibiting endogenous glucagon secretion and increasing insulin secre-
tion. GLP-1R/GCGR dual agonists have shown encouraging effects to 
reduce liver fat content in individuals with metabolic 
dysfunction-associated steatotic liver disease (MASLD) and may be 
particularly suited for this purpose [81,84]. The once weekly 
GIPR/GLP-1R/GCGR triple agonist retatrutide has shown marked 
glucose-lowering and weight-lowering potency in phase 2 trials to treat 

T2DM and obesity and is effective in MASLD [85,138,139]. Efocipeg-
trutide (HM12511), a GLP-1R/GCGR/GIPR triple agonist chemically 
conjugated with the constant region of human immunoglobulin via a 
non-peptidyl flexible linker, has also shown promise in the treatment of 
non-alcoholic steatohepatitis [140].

Following the introduction of tirzepatide, several GLP-1RA/GIPRA 
peptides are proceeding in development such as CT-388 [141], 
VK-2735 [142] and G49 [143]. Although the chronic action of the 
GIPRA component is unclear (see Section 3), evidence that GIPR 
antagonism (as well as GIPR agonism) can reduce blood glucose and 
body weight, has encouraged the development of MariTide (maridebart 
cafraglutide, formerly AMG133) comprising a bispecific monoclonal 
anti-human GIPR antagonist antibody covalently linked to two 
GLP-1RAs. This agent is given by once monthly subcutaneous injection. 
In a phase 1 trial involving overweight/obese participants without 
diabetes, MariTide (420 mg QM) reduced body weight by 14 % after 3 
months and most of this effect was maintained for a further 2–3 months 
without further treatment [34]. In a 52-week phase 2 trial, over-
weight/obese participants without diabetes who received MariTide (280 
or 420 mg QM) lost 17–20 % body weight, while overweight/obese 
participants with diabetes who received the same doses lost 14–17 % 
body weight with reductions of HbA1c by 2.0–2.2 % [144].

Renewed interest in the weight-lowering properties of amylin ana-
logues has emerged, noting that a soluble (non-aggregating) short-acting 
analogue of amylin (pramlintide) has been available in some regions 
since 2005. Pramlintide is used as an adjunct to insulin therapy to 
improve glycaemic control by suppression of post-prandial glucagon 
release and reduce weight gain by suppressing appetite via slowing of 
gastric emptying [145]. The reduction in body weight has been accen-
tuated with a longer-acting amylin analogue, cagrilintide, which has an 
N-terminal C-20 fatty acid chain to enable binding to albumin (Fig. 2). 
When cagrilintide was administered together with semaglutide (both at 
a dose of 2.4 mg by QW injection) HbA1c was reduced by 2.2 % and 
body weight by 15.6 % in a 32-week phase 2 trial in overweight/obese 
T2DM adults [146]. A phase 3 trial (REDEFINE-1) of 3417 over-
weight/obese participants without diabetes noted that 68 weeks of 
treatment with CagriSema (a fixed dose combination of cagrilintide 
2.4 mg and semaglutide 2.4 mg by QW injection once per week) was 
associated with a 22.7 % weight loss compared with 2.3 % with placebo 
[147]. The weight loss in each of the two trials above was greater than 
either cagrilintide or semaglutide alone at the same dose. Amycretin, a 
single peptide amylin receptor/GLP-1RA co-agonist molecule contain-
ing salcaprozate sodium (sodium N-[8-(2-hydroxybenzoyl) amino] 
caprylate; SNAC) as a permeation enhancer, has been developed and 
formulated into a once-daily 50 mg tablet for oral delivery. In a phase 1 
study administration of the tablet achieved a 13 % weight loss in 12 
weeks in obese individuals [148]. The functionality of the amylin re-
ceptor system (AMY1, AMY2 and AMY3), which comprise heterodimers 
of the calcitonin receptor, is especially complicated. Interplay with 
calcitonin has prompted preclinical studies showing that dual amy-
lin/calcitonin receptor agonists (DACRAs) can achieve greater weight 
loss than amylin analogues alone [149,150]. At a preclinical stage there 
are even more complex multi-agonists in development that exert amylin 
receptor agonism. For example, PTT-A is a long-acting tetra-agonist 
acting at the GLP-1, GIP, amylin and calcitonin receptors that decreased 
food intake and body weight in diet-induced obese rats [151].

Appetite suppression is an important attribute of GLP-1RAs, and the 
appetite-suppressing properties of other gut peptides such as peptide 
tyrosine tyrosine (PYY), pancreatic polypeptide, GLP-2 and secretin as 
well as the inhibition of appetite stimulants such as neuropeptide Y are 
being considered in preclinical studies as templates for potential anti- 
obesity drugs [152,153]. Further potential partners for anti-obesity 
incretin therapies are neurokinin-2 activators which increase energy 
expenditure [154].

Because incretin peptides and the various appetite-suppressing en-
ergy-expending peptides considered above generally do not cause overt 

Table 2 
Incretin-based peptide agents in clinical development: evidence from rando-
mised clinical trials.

Agent 
Sponsor

Receptor targets Route 
Timing 
Phase

Patients, trial 
duration 
Primary trial results

Ref

MariTide 
(AMG133) 
Amgen

GLP− 1RA/GIPRi SC, QM 
Phase 
2

OW/O T2DM, 52 wks, 
↓A1C ~2.2 %, ↓BW 
~17 % 
OW/O, 52 wks, 
↓BW ~20 %

[144]

Amycretin 
Novo

GLP− 1RA/ 
amylinRA

Or, OD 
Phase 
1

OW/O, 12 wks, 
↓BW 13.1 %

[148]

CagriSema 
Novo

GLP− 1RA 
+ amylinRA mix

SC, 
QW 
Phase 
2 
SC, 
QW 
Phase 
3

OW/O T2DM, 32 wks, 
↓A1C ~2.2 %, ↓BW 
15.6 % 
OW/O, 68 wks, 
↓BW 20.4 %

[146]
[147]

CT− 388 
Carmot

GLP− 1RA/GIPRA SC, 
QW 
Phase 
1

OW/O, 24 wks, 
↓BW 18.8 %

[141]

Ecnoglutide 
Sciwind

GLP− 1RA SC, 
QW 
Phase 
2

NW/OW T2DM, 20 
wks, 
↓A1C 2.39 %, ↓BW 
2.26 kg

[131]

Mazdutide 
Lilly

GLP− 1RA/GCGRA SC, 
QW 
Phase 
3

OW/O, 48 wks, 
↓BW 13.3 %

[135]

Pemvidutide 
Altimmune

GLP− 1RA/GCGRA SC, 
QW 
Phase 
2

OW/O MASLD 
+ T2DM, 12 wks, 
↓BW 3.5 %, rrLFC 
57.1 %

[134]

Retatrutide 
Lilly

GLP− 1RA/GIPRA/ 
GCGRA

SC, 
QW 
Phase 
2

OW/O T2DM, 24 wks, 
↓A1C 2.02 %; 
36 wks ↓BW 16.9 % 
OW/O, 48 wks, 
↓BW 24.2 % 
OW/O MASLD, 24 
wks, 
↓BW 17.6 %, rrLFC 
82.4 %

[138]
[139]

Survodutide 
BI

GLP− 1RA/GCGRA SC, 
QW 
Phase 
2

OW/O, 46 wks, 
↓BW 14.9 %

[133]

VK− 2735 
Viking

GLP− 1RA/GIPRA SC, 
QW 
Phase 
2 
PO, OD 
Phase 
1

OW/O, 13 wks, 
↓BW 14.7 % 
OW/O, 4 wks, 
↓BW 8.29 %

[142]

ZT− 002 
Beijing QL

GLP− 1RA SC, QM 
Phase 
1

OW/O, 14 wks, 
↓BW 13.1 %

[132]

Trial results refer to top dose tested. BI, Boehringer Ingelheim; MASLD, meta-
bolic dysfunction-associated steatotic liver disease; Mix, mixture within same 
injection, NW, normal body weight; OD, once daily; OW, overweight; PO, per 
oral; QM, once monthly; QW, once weekly; RA, receptor agonist; Ri, receptor 
inhibitor; rrLFC, relative reduction in liver fat content.
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hypoglycaemia when administered at pharmacological doses, they can 
be utilised in long-acting and continuous delivery systems, such as 
monthly injections, hydrogel-based subcutaneous depots, nano-capsules 
and skin patches. Technologies for oral administration of peptides 
including absorption enhancers for gastrointestinal uptake continue to 
advance, and although bioavailability presents an on-going challenge it 
has been possible to deliver a high dose (50 mg) of semaglutide in tablet 

form for obesity treatment [15,155].

9. Conclusions

The manipulation of incretin molecules has created glucose-lowering 
and weight-lowering agents with sufficient potency to challenge the 
position of bariatric surgery in the management of T2DM and obesity 

Fig. 2. Some recently introduced incretin peptides with therapeutic potential. X = α-aminoisobutyric acid, Δ = 1-amino-1-cyclobutanecarboxylic acid, ▾ 
= α-methyl-L-leucine, K denotes the site of attachment of a fatty acid or fatty di-acid. K denotes the site of attachment of two GLP-1R agonists to a human monoclonal 
GIPR antibody (Ab). C denotes the site of attachment of a 40 kDa polyethylene glycol (PEG) moiety.
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[156]. Several recent studies have reported weight-lowering by > 15 % 
in overweight/obese individuals without T2DM and reductions in 
HbA1c by about 2 % in individuals with T2DM. Incretin-based agents, 
alone or in combination with other therapies, can offer cardioprotective 
and nephroprotective effects that favour use in patients with athero-
sclerotic disease and albuminuric chronic kidney disease. This is now 
recognised in the positioning of various incretin therapies earlier in the 
treatment algorithms for T2DM patients with these co-morbidities. 
Emerging evidence also suggests potential benefits against inflamma-
tory disorders, fatty liver, and sleep apnea and possibly for neurological 
conditions and bone health - all potential future therapeutic applications 
for incretin-based agents. Thus, with due attention to tolerability, cost 
and availability, multi-agonist incretin-based peptides offer the oppor-
tunity to customize treatments that address a variety of targets against 
T2DM, obesity and associated co-morbidities.

It is fitting that this article should be included in the special issue A 
centennial tribute to Viktor Mutt as the first dual agonist incretin 
peptide, the CGGRA/GLP-1RA oxyntomodulin, was purified and char-
acterized by Bataille and co-workers in Prof. Mutt’s laboratory in 1981 
[157]. Infusions of oxyntomodulin reduce food intake and increases 
energy expenditure in humans as well as improving glucose tolerance in 
T2DM patients which led to the prediction in 2013, now fully realized, 
that “dual agonists of the GCGR and GLP-1R represent new promising 
treatments for diabetes and obesity with the potential for weight loss 
and glucose lowering superior to that of GLP-1R agonists” [158]. Thus, 
we see yet another example of fundamental work carried out under the 
direction of Prof. Mutt that has led to major advances in the treatment of 
human diseases.
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